-
Notifications
You must be signed in to change notification settings - Fork 7
/
utils.py
248 lines (215 loc) · 8.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import random
import time
# import openai
# from dotenv import load_dotenv
import tiktoken
import os
import numpy as np
import re
# load_dotenv()
# openai.api_key = os.getenv("OPENAI_API_KEY")
# openai.organization = os.getenv("OPENAI_ORG")
# os.environ['TIKTOKEN_CACHE_DIR'] = './tmp'
def print_msg(msg):
msg = "## {} ##".format(msg)
length = len(msg)
msg = "\n{}\n".format(msg)
print(length*"#" + msg + length * "#")
def camel_to_normal(camel_string):
# 使用正则表达式将驼峰字符串转换为正常字符串
normal_string = re.sub(r'(?<!^)(?=[A-Z])', ' ', camel_string).lower()
return normal_string
def clean_symbol_in_rel(rel):
'''
clean symbol in relation
Args:
rel (str): relation name
'''
rel = rel.strip("_") # Remove heading
# Replace inv_ with inverse
# rel = rel.replace("inv_", "inverse ")
if "/" in rel:
if "inverse" in rel:
rel = rel.replace("inverse ", "")
rel = "inverse " + fb15k_rel_map[rel]
else:
rel = fb15k_rel_map[rel]
# WN-18RR
elif "_" in rel:
rel = rel.replace("_", " ") # Replace _ with space
# UMLS
elif "&" in rel:
rel = rel.replace("&", " ") # Replace & with space
# YAGO
else:
rel = camel_to_normal(rel)
return rel
def query(message, model="gpt-4"):
'''
Query ChatGPT API
:param message:
:return:
'''
# Chekc if the input is too long
maximun_token, tokenizer = get_token_limit(model)
input_length = len(tokenizer.encode(message))
if input_length > maximun_token:
print(f"Input lengt {input_length} is too long. The maximum token is {maximun_token}.\n Right tuncate the input to {maximun_token} tokens.")
message = message[:maximun_token]
while True:
try:
response = openai.ChatCompletion.create(
model=model,
messages=[{"role": "user", "content": message}],
request_timeout=180,
)
result = response["choices"][0]["message"]["content"].strip()
return result
except Exception as e:
print(e)
time.sleep(60)
continue
def check_prompt_length(prompt, list_of_paths, model):
'''Check whether the input prompt is too long. If it is too long, remove the first path and check again.'''
all_paths = "\n".join(list_of_paths)
all_tokens = prompt + all_paths
maximun_token = model.maximun_token
if model.token_len(all_tokens) < maximun_token:
return all_paths
else:
# Shuffle the paths
random.shuffle(list_of_paths)
new_list_of_paths = []
# check the length of the prompt
for p in list_of_paths:
tmp_all_paths = "\n".join(new_list_of_paths + [p])
tmp_all_tokens = prompt + tmp_all_paths
if model.token_len(tmp_all_tokens) > maximun_token:
return "\n".join(new_list_of_paths)
new_list_of_paths.append(p)
def num_tokens_from_message(path_string, model):
"""Returns the number of tokens used by a list of messages."""
messages = [{"role": "user", "content": path_string}]
try:
encoding = tiktoken.encoding_for_model(model)
except KeyError:
print("Warning: model not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
if model in ["gpt-3.5-turbo", 'gpt-3.5-turbo-16k']:
tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n
elif model == "gpt-4":
tokens_per_message = 3
else:
raise NotImplementedError(f"num_tokens_from_messages() is not implemented for model {model}.")
num_tokens = 0
for message in messages:
num_tokens += tokens_per_message
for key, value in message.items():
num_tokens += len(encoding.encode(value))
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>
return num_tokens
def get_token_limit(model='gpt-4'):
"""Returns the token limitation of provided model"""
if model in ['gpt-4', 'gpt-4-0613']:
num_tokens_limit = 8192
elif model in ['gpt-3.5-turbo-16k', 'gpt-3.5-turbo-16k-0613']:
num_tokens_limit = 16384
elif model in ['gpt-3.5-turbo', 'gpt-3.5-turbo-0613', 'text-davinci-003', 'text-davinci-002']:
num_tokens_limit = 4096
else:
raise NotImplementedError(f"""get_token_limit() is not implemented for model {model}.""")
tokenizer = tiktoken.encoding_for_model(model)
return num_tokens_limit, tokenizer
def split_path_list(path_list, token_limit, model):
"""
Split the path list into several lists, each list can be fed into the model.
"""
output_list = []
current_list = []
current_token_count = 4
for path in path_list:
path += '\n'
path_token_count = num_tokens_from_message(path, model) - 4
if current_token_count + path_token_count > token_limit: # If the path makes the current list exceed the token limit
output_list.append(current_list)
current_list = [path] # Start a new list.
current_token_count = path_token_count + 4
else: # The new path fits into the current list without exceeding the limit
current_list.append(path) # Just add it there.
current_token_count += path_token_count
# Add the last list of tokens, if it's non-empty.
if current_list: # The last list not exceed the limit but no more paths
output_list.append(current_list)
return output_list
def shuffle_split_path_list(path_content_list, prompt_len, model):
"""
First shuffle the path_content list, then split the path list into a list of several lists
Each list can be directly fed into the model
"""
token_limitation = get_token_limit(model) # Get input token limitation for current model
token_limitation -= prompt_len + 4 # minus prompt length for path length
all_path_content = '\n'.join(path_content_list)
token_num_all_path = num_tokens_from_message(all_path_content, model)
random.shuffle(path_content_list)
if token_num_all_path > token_limitation:
list_of_paths = split_path_list(path_content_list, token_limitation, model)
else:
list_of_paths = [[path + '\n' for path in path_content_list]]
return list_of_paths
def ill_rank(pred, gt, ent2idx, q_h, q_t, q_r):
pred_ranks = np.argsort(pred)[::-1]
truth = gt[(q_h, q_r)]
truth = [t for t in truth if t != ent2idx[q_t]]
filtered_ranks = []
for i in range(len(pred_ranks)):
idx = pred_ranks[i]
if idx not in truth and pred[idx] > pred[ent2idx[q_t]]:
filtered_ranks.append(idx)
rank = len(filtered_ranks) + 1
return rank
def harsh_rank(pred, gt, ent2idx, q_h, q_t, q_r):
pred_ranks = np.argsort(pred)[::-1]
truth = gt[(q_h, q_r)]
truth = [t for t in truth]
filtered_ranks = []
for i in range(len(pred_ranks)):
idx = pred_ranks[i]
if idx not in truth and pred[idx] >= pred[ent2idx[q_t]]:
filtered_ranks.append(idx)
rank = len(filtered_ranks) + 1
return rank
def balance_rank(pred, gt, ent2idx, q_h, q_t, q_r):
if pred[ent2idx[q_t]]!=0:
pred_ranks = np.argsort(pred)[::-1]
truth = gt[(q_h, q_r)]
truth = [t for t in truth if t!=ent2idx[q_t]]
filtered_ranks = []
for i in range(len(pred_ranks)):
idx = pred_ranks[i]
if idx not in truth:
filtered_ranks.append(idx)
rank = filtered_ranks.index(ent2idx[q_t])+1
else:
truth = gt[(q_h, q_r)]
filtered_pred = []
for i in range(len(pred)):
if i not in truth:
filtered_pred.append(pred[i])
n_non_zero = np.count_nonzero(filtered_pred)
rank = n_non_zero+1
return rank
def random_rank(pred, gt, ent2idx, q_h, q_t, q_r):
pred_ranks = np.argsort(pred)[::-1]
truth = gt[(q_h, q_r)]
truth = [t for t in truth if t != ent2idx[q_t]]
truth.append(ent2idx[q_t])
filtered_ranks = []
for i in range(len(pred_ranks)):
idx = pred_ranks[i]
if idx not in truth and pred[idx] >= pred[ent2idx[q_t]]:
if (pred[idx] == pred[ent2idx[q_t]]) and (np.random.uniform() < 0.5):
filtered_ranks.append(idx)
else:
filtered_ranks.append(idx)
rank = len(filtered_ranks) + 1
return rank