-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsentiment.py
48 lines (37 loc) · 1.68 KB
/
sentiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from models import models
from tqdm import tqdm
from collections import defaultdict
def getSentiment(comments, links):
# [['Time Frame', 'Sentiment', { "role": 'style' }]]
# create a dict of data lists for each model
# as well as a dict to track the average thread sentiment
output = {}
threads = defaultdict(lambda: defaultdict(lambda: [0.0, 0]))
for model in models:
output[model.name] = {"sentiment": 0.0, "most_positive": "", "most_negative": ""}
# sum the sentiment of each comment for each model inidividually
for model in models:
sentiments = model.predict(comments)
for i, sentiment in enumerate(sentiments):
output[model.name]["sentiment"] += sentiment
threads[model.name][links[i]][0] += sentiment
threads[model.name][links[i]][1] += 1
# if this isn't an empty bin divide each sum to get the average
if comments:
for model in models:
output[model.name]["sentiment"] /= len(comments)
""" for thread in threads[model.name].keys():
threads[model.name][thread] = threads[model.name][thread][0] / threads[model.name][thread][1] """
most_neg, most_pos = "", ""
low, high = 99999.0, -99999.0
for thread in threads[model.name].keys():
val = threads[model.name][thread][0]
if val < low:
low = val
most_neg = thread
if val > high:
high = val
most_pos = thread
output[model.name]["most_positive"] = most_pos
output[model.name]["most_negative"] = most_neg
return output