From 215f6abf56618c5a35e8bedde8b7fe564028ac96 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Fabiana=20=F0=9F=9A=80=20=20Campanari?= Date: Tue, 24 Dec 2024 19:30:43 -0300 Subject: [PATCH] Update README.md MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Signed-off-by: Fabiana 🚀 Campanari --- README.md | 33 ++++++++++++++------------------- 1 file changed, 14 insertions(+), 19 deletions(-) diff --git a/README.md b/README.md index dda6420..722609b 100644 --- a/README.md +++ b/README.md @@ -63,40 +63,37 @@ Below are the exercises solved in this repository. They have been written in LaT ### [Exercicise A:]() +${\huge \bf \int \left(x^{\frac{3}{2}} + 2x + 1\right) \, dx}$ - ${\huge \bf \int \left(x^{\frac{3}{2}} + 2x + 1\right) \, dx}$ - -☟ [**Solution:**: We can integrate each term separately:]() +[**Solution:**: We can integrate each term separately:]() ☟ $\huge \bf \int x^{\frac{3}{2}} \, dx + \int 2x \, dx + \int 1 \, dx$ -☟ [**1st:**]() +[**1st:**]() ☟ $\huge \bf \int x^{\frac{3}{2}} dx$ -
-$$\huge \bf \frac{x^{\frac{3}{2} + 1}}{\frac{3}{2} + 1} \rightarrow \frac{x^{\frac{5}{2}}}{\frac{5}{2}} \rightarrow \frac{2}{5}x^{\frac{5}{2}}$$ +$\huge \bf \frac{x^{\frac{3}{2} + 1}}{\frac{3}{2} + 1} \rightarrow \frac{x^{\frac{5}{2}}}{\frac{5}{2}} \rightarrow \frac{2}{5}x^{\frac{5}{2}}$ -

+
-☟ [**2st:**]() ☞ $\huge \bf \int 2x dx\$ +[**2st:**]() ☟ -
+$\huge \bf \int 2x dx\$ - $$\huge \bf \frac{x^{1+1}}{1+1} \rightarrow 2 \cdot \frac{x^2}{2} \rightarrow x^2$$ +$\huge \bf \frac{x^{1+1}}{1+1} \rightarrow 2 \cdot \frac{x^2}{2} \rightarrow x^2$ -

+
- ☟ [**3st:**]() +[**3st:**]() ☟ - $\huge \bf \int 1 dx$ - -

The indefinite integral of \(1\) with respect to \(x\) is given by: +$\huge \bf \int 1 dx$ +The indefinite integral of \(1\) with respect to \(x\) is given by: ☟ $\huge \bf \int 1 \, dx \rightarrow x + k$ @@ -106,11 +103,9 @@ $\huge \bf \int 1 \, dx \rightarrow x + k$ $\huge \bf \ x + k$ -☟ [**Final Result:**]() - - -$$\huge \bf \int \left(x^{\frac{3}{2}} + 2x + 1\right) \, dx \rightarrow \frac{2}{5}x^{\frac{5}{2}} + x^2 + x + k$$ +[**Final Result:**]() ☟ +$\huge \bf \int \left(x^{\frac{3}{2}} + 2x + 1\right) \, dx \rightarrow \frac{2}{5}x^{\frac{5}{2}} + x^2 + x + k$ #