-
Notifications
You must be signed in to change notification settings - Fork 124
/
Copy pathmathlib.c
433 lines (368 loc) · 12.8 KB
/
mathlib.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
/*
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
$Id: mathlib.c,v 1.7 2007-10-29 00:13:26 d3urk Exp $
*/
#include "common.h"
struct mplane_s;
vec3_t vec3_origin = {0, 0, 0};
int _mathlib_temp_int1, _mathlib_temp_int2, _mathlib_temp_int3;
float _mathlib_temp_float1, _mathlib_temp_float2, _mathlib_temp_float3;
vec3_t _mathlib_temp_vec1, _mathlib_temp_vec2, _mathlib_temp_vec3;
void ProjectPointOnPlane(vec3_t dst, const vec3_t p, const vec3_t normal) {
float d, inv_denom;
vec3_t n;
inv_denom = 1.0F / DotProduct(normal, normal);
d = DotProduct(normal, p) * inv_denom;
VectorScale(normal, inv_denom, n);
VectorMA(p, -d, n, dst);
}
void PerpendicularVector(vec3_t dst, const vec3_t src) {
if (!src[0]) {
VectorSet(dst, 1, 0, 0);
} else if (!src[1]) {
VectorSet(dst, 0, 1, 0);
} else if (!src[2]) {
VectorSet(dst, 0, 0, 1);
} else {
VectorSet(dst, -src[1], src[0], 0);
VectorNormalizeFast(dst);
}
}
void VectorVectors(vec3_t forward, vec3_t right, vec3_t up) {
PerpendicularVector(right, forward);
CrossProduct(right, forward, up);
}
void MakeNormalVectors (/* in */ vec3_t forward, /* out */ vec3_t right, vec3_t up)
{
float d;
// this rotate and negate guarantees a vector
// not colinear with the original
right[1] = -forward[0];
right[2] = forward[1];
right[0] = forward[2];
d = DotProduct (right, forward);
VectorMA (right, -d, forward, right);
VectorNormalize (right);
CrossProduct (right, forward, up);
}
void RotatePointAroundVector(vec3_t dst, const vec3_t dir, const vec3_t point, float degrees) {
float t0, t1, angle, c, s;
vec3_t vr, vu, vf;
angle = DEG2RAD(degrees);
c = cos(angle);
s = sin(angle);
VectorCopy(dir, vf);
VectorVectors(vf, vr, vu);
t0 = vr[0] * c + vu[0] * -s;
t1 = vr[0] * s + vu[0] * c;
dst[0] = (t0 * vr[0] + t1 * vu[0] + vf[0] * vf[0]) * point[0]
+ (t0 * vr[1] + t1 * vu[1] + vf[0] * vf[1]) * point[1]
+ (t0 * vr[2] + t1 * vu[2] + vf[0] * vf[2]) * point[2];
t0 = vr[1] * c + vu[1] * -s;
t1 = vr[1] * s + vu[1] * c;
dst[1] = (t0 * vr[0] + t1 * vu[0] + vf[1] * vf[0]) * point[0]
+ (t0 * vr[1] + t1 * vu[1] + vf[1] * vf[1]) * point[1]
+ (t0 * vr[2] + t1 * vu[2] + vf[1] * vf[2]) * point[2];
t0 = vr[2] * c + vu[2] * -s;
t1 = vr[2] * s + vu[2] * c;
dst[2] = (t0 * vr[0] + t1 * vu[0] + vf[2] * vf[0]) * point[0]
+ (t0 * vr[1] + t1 * vu[1] + vf[2] * vf[1]) * point[1]
+ (t0 * vr[2] + t1 * vu[2] + vf[2] * vf[2]) * point[2];
}
//Split out like this for ASM to call.
void BOPS_Error (void) {
Sys_Error ("BoxOnPlaneSide: Bad signbits");
}
//Returns 1, 2, or 1 + 2
int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct mplane_s *p) {
//the following optimisation is performed by BOX_ON_PLANE_SIDE macro
//if (p->type < 3)
// return ((emaxs[p->type] >= p->dist) | ((emins[p->type] < p->dist) << 1));
switch(p->signbits) {
default:
case 0:
return (((p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2]) >= p->dist) |
(((p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2]) < p->dist) << 1));
case 1:
return (((p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2]) >= p->dist) |
(((p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2]) < p->dist) << 1));
case 2:
return (((p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2]) >= p->dist) |
(((p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2]) < p->dist) << 1));
case 3:
return (((p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2]) >= p->dist) |
(((p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2]) < p->dist) << 1));
case 4:
return (((p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2]) >= p->dist) |
(((p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2]) < p->dist) << 1));
case 5:
return (((p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2]) >= p->dist) |
(((p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2]) < p->dist) << 1));
case 6:
return (((p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2]) >= p->dist) |
(((p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2]) < p->dist) << 1));
case 7:
return (((p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2]) >= p->dist) |
(((p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2]) < p->dist) << 1));
}
}
void AngleVectors (vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) {
float angle, sr, sp, sy, cr, cp, cy, temp;
if (angles[YAW]) {
angle = DEG2RAD(angles[YAW]);
sy = sin(angle);
cy = cos(angle);
} else {
sy = 0;
cy = 1;
}
if (angles[PITCH]) {
angle = DEG2RAD(angles[PITCH]);
sp = sin(angle);
cp = cos(angle);
} else {
sp = 0;
cp = 1;
}
if (forward) {
forward[0] = cp * cy;
forward[1] = cp * sy;
forward[2] = -sp;
}
if (right || up) {
if (angles[ROLL]) {
angle = DEG2RAD(angles[ROLL]);
sr = sin(angle);
cr = cos(angle);
if (right) {
temp = sr * sp;
right[0] = -1 * temp * cy + cr * sy;
right[1] = -1 * temp * sy - cr * cy;
right[2] = -1 * sr * cp;
}
if (up) {
temp = cr * sp;
up[0] = (temp * cy + sr * sy);
up[1] = (temp * sy - sr * cy);
up[2] = cr * cp;
}
} else {
if (right) {
right[0] = sy;
right[1] = -cy;
right[2] = 0;
}
if (up) {
up[0] = sp * cy ;
up[1] = sp * sy;
up[2] = cp;
}
}
}
}
//VULT COLLISION
void AngleVectorsFLU (const vec3_t angles, vec3_t forward, vec3_t left, vec3_t up)
{
double angle, sr, sp, sy, cr, cp, cy;
angle = angles[YAW] * (M_PI*2 / 360);
sy = sin(angle);
cy = cos(angle);
angle = angles[PITCH] * (M_PI*2 / 360);
sp = sin(angle);
cp = cos(angle);
if (forward)
{
forward[0] = cp*cy;
forward[1] = cp*sy;
forward[2] = -sp;
}
if (left || up)
{
angle = angles[ROLL] * (M_PI*2 / 360);
sr = sin(angle);
cr = cos(angle);
if (left)
{
left[0] = sr*sp*cy+cr*-sy;
left[1] = sr*sp*sy+cr*cy;
left[2] = sr*cp;
}
if (up)
{
up[0] = cr*sp*cy+-sr*-sy;
up[1] = cr*sp*sy+-sr*cy;
up[2] = cr*cp;
}
}
}
vec_t VectorLength (vec3_t v) {
float length;
length = v[0] * v[0] + v[1] * v[1] + v[2] * v[2];
return sqrt(length);
}
float VectorNormalize (vec3_t v) {
float length;
length = v[0] * v[0] + v[1] * v[1] + v[2] * v[2];
length = sqrt (length);
if (length)
VectorScale(v, 1 / length, v);
return length;
}
void R_ConcatRotations (float in1[3][3], float in2[3][3], float out[3][3]) {
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0];
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1];
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2];
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0];
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1];
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2];
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0];
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1];
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2];
}
void R_ConcatTransforms (float in1[3][4], float in2[3][4], float out[3][4]) {
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0];
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1];
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2];
out[0][3] = in1[0][0] * in2[0][3] + in1[0][1] * in2[1][3] + in1[0][2] * in2[2][3] + in1[0][3];
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0];
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1];
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2];
out[1][3] = in1[1][0] * in2[0][3] + in1[1][1] * in2[1][3] + in1[1][2] * in2[2][3] + in1[1][3];
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0];
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1];
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2];
out[2][3] = in1[2][0] * in2[0][3] + in1[2][1] * in2[1][3] + in1[2][2] * in2[2][3] + in1[2][3];
}
//Returns mathematically correct (floor-based) quotient and remainder for numer and denom, both of
//which should contain no fractional part. The quotient must fit in 32 bits.
void FloorDivMod (double numer, double denom, int *quotient, int *rem) {
int q, r;
double x;
#ifndef PARANOID
if (denom <= 0.0)
Sys_Error ("FloorDivMod: bad denominator %d", denom);
#endif
if (numer >= 0.0) {
x = floor(numer / denom);
q = (int) x;
r = (int) floor(numer - (x * denom));
} else {
// perform operations with positive values, and fix mod to make floor-based
x = floor(-numer / denom);
q = -(int)x;
r = (int)floor(-numer - (x * denom));
if (r != 0) {
q--;
r = (int)denom - r;
}
}
*quotient = q;
*rem = r;
}
int GreatestCommonDivisor (int i1, int i2) {
if (i1 > i2) {
if (i2 == 0)
return (i1);
return GreatestCommonDivisor (i2, i1 % i2);
} else {
if (i1 == 0)
return (i2);
return GreatestCommonDivisor (i1, i2 % i1);
}
}
//
// Based on http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html#The%20C%20Code
//
int IsPointInPolygon(int npol, vec3_t *v, float x, float y)
{
int i, j;
qbool c = false;
for (i = 0, j = npol-1; i < npol; j = i++)
{
if ((((v[i][1] <= y) && (y < v[j][1])) ||
((v[j][1]<=y) && (y < v[i][1]))) &&
(x < (v[j][0] - v[i][0]) * (y - v[i][1]) / (v[j][1] - v[i][1]) + v[i][0]))
{
c = !c;
}
}
return c;
}
//
// From: http://www.cse.ucsc.edu/~pang/160/f98/Gems/GemsIV/centroid.c
// polyCentroid: Calculates the centroid (xCentroid, yCentroid) and area
// of a polygon, given its vertices (x[0], y[0]) ... (x[n-1], y[n-1]). It
// is assumed that the contour is closed, i.e., that the vertex following
// (x[n-1], y[n-1]) is (x[0], y[0]). The algebraic sign of the area is
// positive for counterclockwise ordering of vertices in x-y plane;
// otherwise negative.
//
// Returned values: 0 for normal execution; 1 if the polygon is
// degenerate (number of vertices < 3); and 2 if area = 0 (and the centroid is undefined).
int GetPolyCentroid(vec3_t *v, int n, float *xCentroid, float *yCentroid, float *area)
{
register int i, j;
float ai, atmp = 0, xtmp = 0, ytmp = 0;
if (n < 3)
{
return 1;
}
for (i = n - 1, j = 0; j < n; i = j, j++)
{
ai = v[i][0] * v[j][1] - v[j][0] * v[i][1];
atmp += ai;
xtmp += (v[j][0] + v[i][0]) * ai;
ytmp += (v[j][1] + v[i][1]) * ai;
}
*area = atmp / 2;
if (atmp != 0)
{
*xCentroid = xtmp / (3 * atmp);
*yCentroid = ytmp / (3 * atmp);
return 0;
}
return 2;
}
//Inverts an 8.24 value to a 16.16 value
fixed16_t Invert24To16(fixed16_t val) {
if (val < 256)
return (0xFFFFFFFF);
return (fixed16_t) (((double) 0x10000 * (double) 0x1000000 / (double) val) + 0.5);
}
/*
Init rotation matrix 'out', 'angle' in radians, 'v' should be normilized vector.
*/
void Matrix3x3_CreateRotate (matrix3x3_t out, float angle, const vec3_t v)
{
float c = cos(angle);
float s = sin(angle);
out[0][0] = v[0] * v[0] + c * (1 - v[0] * v[0]);
out[1][0] = v[0] * v[1] * (1 - c) + v[2] * s;
out[2][0] = v[2] * v[0] * (1 - c) - v[1] * s;
out[0][1] = v[0] * v[1] * (1 - c) - v[2] * s;
out[1][1] = v[1] * v[1] + c * (1 - v[1] * v[1]);
out[2][1] = v[1] * v[2] * (1 - c) + v[0] * s;
out[0][2] = v[2] * v[0] * (1 - c) + v[1] * s;
out[1][2] = v[1] * v[2] * (1 - c) - v[0] * s;
out[2][2] = v[2] * v[2] + c * (1 - v[2] * v[2]);
}
/*
Multiply matrix 'in' by vector 'v', note what 'out' is vector.
*/
void Matrix3x3_MultiplyByVector (vec3_t out, const matrix3x3_t in, const vec3_t v)
{
out[0] = in[0][0] * v[0] + in[0][1] * v[1] + in[0][2] * v[2];
out[1] = in[1][0] * v[0] + in[1][1] * v[1] + in[1][2] * v[2];
out[2] = in[2][0] * v[0] + in[2][1] * v[1] + in[2][2] * v[2];
}