-
Notifications
You must be signed in to change notification settings - Fork 0
/
Calculate Nationwide Decomposition.R
570 lines (513 loc) · 31.5 KB
/
Calculate Nationwide Decomposition.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
#####
# N.D. McTigue, Q.A. Walker, and C.A. Currin 2021
# Refining estimates of greenhouse gas emissions from salt marsh “blue carbon” erosion and decomposition
# email: quentin.walker@noaa.gov, mctigue@utexas.edu
#####
## Run this script fourth ##
# *** this script is designed to be run with the water temperature data already downloaded ***
# if you do not have the water temperature files saved run the "Download and save water temp data.R" script (warning that script takes a while to run)
# .csv files for water temperature are also available for download from the github for this project
# @ https://github.com/QAWalker/BlueCarbonErosionAndDecomp/tree/main/data/Water%20Temp%20Data
# This script takes the downloaded data from NOAA CO-OPS water temperature stations and determines
# the amount of decomposition that would occur at each station in a year
library(tidyverse)
library(lubridate)
# load in function to propagate error
source(file.path(getwd(),"mutate_with_error.R"))
#### Read in all the data ####
# Load the station list
idlist <- read.csv(file.path(getwd(), "data", "coops-activewatertempstations.csv"), stringsAsFactors = F) %>%
mutate(ObjName = gsub(" ", "",.$Name, fixed =T)) %>%
mutate(ObjName = gsub(",", "",.$ObjName, fixed =T),
ObjName = paste(ObjName, State, sep = ".")) %>%
filter(Region %in% c("Atlantic", "Gulf", "Pacific"))
# Load the metadata
stationmetadata <- read.csv(file.path(getwd(), "data", "stations metadata.csv")) %>%
filter(!is.na(State))
# load the previously downloaded water temperature data
WTlist <- lapply(
idlist$ObjName,
function(on){
tryCatch({
read.csv(file.path(getwd(), "data", "Water Temp Data", paste0(on,".csv")), stringsAsFactors = F) %>%
as_tibble() %>%
mutate(t = ymd_hms(t))
}, error = function(e){
message(e)
cat(paste0(" ", on, " \n"))
WTlist[[on]] <- NA
})
}
)
names(WTlist) <- idlist$ObjName
#### here's where the analysis starts ####
## Find the most complete years including starting on the first of each month in that dataset
#figure out how many 6 minute readings should have happened in each year (changes based on leap years)
daysinayear <- data.frame(day = seq(as.Date("2010-01-01"), as.Date("2020-12-31"), by="1 day")) %>%
mutate(year = year(day)) %>%
{as.data.frame(table(.[, c('year')]))} %>%
mutate(hours = Freq*24,
minutes = hours*60,
sixminute = minutes/6)
monthyearslist <- data.frame(ObjName = NULL, Month= NULL, Year= NULL, Readings= NULL, readings.pct= NULL)
# this loop calculates the number of readings that were collected in each 12 month period and stores the number in a data.frame called monthyearslist
for(i in 1:length(WTlist)){
nm <- names(WTlist[i])
# prints to the console so that you know that something is happening behind the scenes
cat(paste(nm, ""))
if(!is.null(WTlist[[i]])){
if(!is.na(WTlist[[i]])){
monthyearslist <- bind_rows(
monthyearslist,
data.frame(ObjName=nm, date = seq(as.Date("2010-01-01"), as.Date("2020-12-31"), by="1 month")) %>%
mutate(Month = month(date), Year = year(date),
# calculate recall the # of potential 6min readings that happened in the 12 months
# (any year that starts after feb. you have to look at the total the next year)
potentialreadings = ifelse(Month<=2,
unlist(lapply(Year, function(yr) daysinayear$sixminute[daysinayear$Var1==yr])),
unlist(lapply(Year, function(yr) daysinayear$sixminute[daysinayear$Var1==yr+1]))),
# count the number of readings in the 12 months following each month
numreadings = unlist(lapply(date, function(month){length(filter(WTlist[[i]], t >= month, t < month + years(1))$v)})),
# determine the pct of potential readings that were actually recorded
readings.pct = numreadings/potentialreadings))
}
}
}
# find the best (most temporally complete) year at each station
bestyears <- lapply(unique(monthyearslist$ObjName), function(nm){
maxreading = max(monthyearslist[monthyearslist$ObjName==nm, "readings.pct"], na.rm = T)
monthyearslist %>%
arrange(desc(Year), desc(Month)) %>%
filter(., ObjName==nm, readings.pct==maxreading) %>%
.[1,]
})
# turn the output list from above into a df
bestyears <- as.data.frame(do.call(rbind, bestyears))
# remove the unneeded columns
bestyears <- select(bestyears, -c("date"))
#join the best year data with the station metadata
stationmetadata <- stationmetadata %>%
left_join(., bestyears)
# create a list to store the full water temp data for the most complete years
WTlist.bestyears <- list()
# create a df to store the count of six minute readings at each temperature
tempcount <- data.frame(temp = -5:50)
# loop through each station and store the data into the WTlist.bestyears list and count the readings at each temperature
for (i in 1:length(WTlist)) {
nm <- names(WTlist[i])
m <- stationmetadata$Month[stationmetadata$ObjName==nm&!is.na(stationmetadata$ObjName)]
yr <- stationmetadata$Year[stationmetadata$ObjName==nm&!is.na(stationmetadata$ObjName)]
if(!is_empty(yr)&!is.na(nm)){
WTlist.bestyears[[nm]] <- filter(WTlist[[i]], t>=mdy(paste(m, 1, yr))&t<mdy(paste(m, 1, yr+1)))
# create a new variable to store the temperature rounded to the nearest interger
WTlist.bestyears[[nm]]$v.rounded <- round(WTlist.bestyears[[nm]]$v,0)
# create a temporary df 'x' that stores the count data
x <- data.frame(table(WTlist.bestyears[[nm]][, "v.rounded"]))
for(j in unique(as.numeric(as.character(x$Var1)))){
#store the count data into the tempcount df
tempcount[tempcount$temp == j, paste0(nm)] <- x$Freq[x$Var1==j]
}
}
}
rm(x)
# set all the NAs in the tempcount df to 0s
for (nm in names(tempcount)) {
tempcount[is.na(tempcount[,nm]), nm] <- 0
}
#### determine the size of the gaps in the best years ####
gapdf <-
lapply(
names(WTlist.bestyears),
function(nm){
t <- mutate(WTlist.bestyears[[nm]], d = as.difftime(t - lag(t, ), units = "mins"))$d %>%
table() %>% as.data.frame() %>%
t() %>% as.data.frame()
names(t) <- t[1,]
t <- t[2,] %>%
mutate_all(as.numeric) %>%
mutate(Name = nm) %>%
select("Name", everything())
return(t)
}
)
# take the output list and put it into a dataframe
gapdf <- as.data.frame(do.call(bind_rows, gapdf))
# order the columns from low to high, left to right
gapdf <- gapdf[,c(1,names(gapdf)[names(gapdf)!="Name"] %>%
as.numeric() %>%
order()+1)]
# create a melted df to store the gaps, which will be easier to use to retrieve the info
gapdf.melt <- reshape2::melt(gapdf, id.vars = "Name", na.rm = T, value.name = "count", variable.name = "gap") %>%
mutate(gap = as.numeric(as.character(gap)))
# Summary df to add to the main station metadata df
gapdf.summary <- gapdf.melt %>%
group_by(Name) %>%
summarize(largestGap = max(gap, na.rm = T),
largestGapCount = count[which(gap==max(gap))],
sixMinGaps = count[which(gap == 6)],
sixMinGaps.pct = sixMinGaps/sum(count)) %>%
ungroup()
# add to the main station metdata df
stationmetadata <- left_join(stationmetadata, gapdf.summary, by = c("ObjName" = "Name"))
#### calculate the decomposition #####
# constants calculated from experiments
R <- .00831446 #kJ mol^-1 K^-1
K2 <- c(finalRates$slope[finalRates$Treatment == "IB 30"]) #mol C mol C^-1 d^-1 #changes based on deep, shallow sediment
K2.sd <- c(finalRates$sd[finalRates$Treatment == "IB 30"])
K1 <- c(finalRates$slope[finalRates$Treatment == "IB 20"]) #mol C mol C^-1 d^-1 #changes based on deep, shallow sediment
K1.sd <- c(finalRates$sd[finalRates$Treatment == "IB 20"])
T2 <- 30 + 273.15 #Kelvin
T1 <- 20 + 273.15 #Kelvin
# Create a data frame to feed to the error propagation function.
# Each object, even the constants needs to have an error, I used 0 for the constants
Kvals <- data.frame(temp = rep(-5:50, each = 2)+273.15, dtemp = 0, # no error for temp
temp.C = rep(-5:50, each = 2), dtemp.C = 0, # no error for temp
depth = c("deep", "shallow"),
K1, dK1,
K2, dK2,
R, dR = 0, # no error for gas constant
T1, dT1 = 0, # no error for temp
T2, dT2 = 0) %>% # no error for temp
# calc activation energy and propagate the error
mutate_with_error(Ea ~ (log(K2)-log(K1))*R/((1/T2)-(1/T1))*(-1)) %>% # kJ mol^-1
# calc the K value at each temperature and propagate the error
mutate_with_error(Ktemp ~ (-1*(Ea/R)*((1/temp)-(1/T1)))) %>%
mutate_with_error(Ktemp ~ exp(Ktemp+log(K1))) #not sure why but have to separate these two steps
# sort the kvals df into a df that is interpretable
Arrmodel <- data.frame(filter(Kvals, depth=="deep")[,c("temp", "temp.C")],
filter(Kvals, depth=="deep")[,c("Ktemp", "dKtemp")],
filter(Kvals, depth=="shallow")[,c("Ktemp", "dKtemp")])
# rename
names(Arrmodel) <- c("temp", "temp.C",
"Ktemp.deep", "dKtemp.deep",
"Ktemp.shallow", "dKtemp.shallow")
# store the portion of C respired at each temperature for a year
decomp.list <- list()
decomp.list <- lapply(2:length(names(tempcount)), function(i){
Arrmodel %>%
mutate(name.tc = names(tempcount)[i],
count = tempcount[,i],
days = count * 6/60/24,
ddays = 0) %>%
mutate_with_error(decomp.deep ~ days * Ktemp.deep) %>% # mol C mol^-1 C
mutate_with_error(decomp.shallow ~ days * Ktemp.shallow) %>%
select(starts_with("temp"), "days", starts_with("decomp"), starts_with("ddecomp"))
})
# rename
names(decomp.list) <- names(tempcount)[2:length(names(tempcount))]
# find the portion of C respired from all temperatures for the year
totalDecomp <- list()
totalDecomp <- lapply(names(decomp.list), function(nm){
data.frame(ObjName = nm,
totalDecomp.deep = sum(decomp.list[[nm]]$decomp.deep), # sum the portion of C respired at each temperature
sdDecomp.deep = sqrt(sum((decomp.list[[nm]]$ddecomp.deep)^2)), # manually propagate the error
totalDecomp.shallow = sum(decomp.list[[nm]]$decomp.shallow),
sdDecomp.shallow = sqrt(sum((decomp.list[[nm]]$ddecomp.shallow)^2))) # manually propagate the error
})
totalDecomp <- as.data.frame(do.call(rbind, totalDecomp))
#join the total decomp to the metadata list
stationmetadata <- left_join(stationmetadata, totalDecomp)
#### normalize the total decomp to a year ####
# divide the total decomp in the selected year by the pct of the readings recorded
stationmetadata <- stationmetadata %>%
mutate(across(contains("Decomp"),
function(x, pct, potentialreadings) ifelse(potentialreadings == 87840, (x/pct)*365/366, x/pct),
pct = readings.pct, potentialreadings = potentialreadings))
######## Calculate sediment loss from erosion and the carbon decomposed because of that #######
# read in the Gittman 2015 marsh shoreline length data
shorelinelengths <- read.csv(paste0(getwd(), "/Gittman 2015.csv")) %>%
select('Region', "State" = 'Abb', "MarshShore" = "Marsh.shore..km.")
# See manuscript for details on why we use this estimate for Louisiana
# it is from the 2014 Louisiana Environmental Sensitivity Index (ESI) file
# (https://response.restoration.noaa.gov/esi_download#Louisiana), in particular, the ESIL layer (www.fisheries.noaa.gov/inport/item/53935).
shorelinelengths$MarshShore[shorelinelengths$State=="LA"] = 66459
shorelinelengths <- distinct(shorelinelengths)
#estimate for bank height
BankHt <- c(0.0003, 0.0001) # km large and small estimate
#estimate for bank erosion rate
ErosionRate <- c(0.0003, 0.0001) # km/yr, large and small estimate
#marsh carbon density
Cdensity <- 27 # kg C / m^3
dCdensity <- 13 # kg C / m^3; (n = 8280)
# Create a summary
station.decomp.summary <-
lapply(
unique(
paste(stationmetadata$State, stationmetadata$Region)
),
function(x) {
x <- unlist(strsplit(x, split = " "))
df <-
filter(stationmetadata, State == x[1], Region == x[2], readings.pct >=
0.95)
y <- data.frame(
State = x[1],
Region = x[2],
n = length(df[, 1]),
meanDecomp.deep = mean(df$totalDecomp.deep, na.rm = T),
meanDecomp.shallow = mean(df$totalDecomp.shallow, na.rm = T)
) %>%
mutate(
dDecomp.deep = sqrt(sum(df$sdDecomp.deep^2, na.rm = T))/length(df$totalDecomp.deep),
dDecomp.shallow =sqrt(sum(df$sdDecomp.shallow^2, na.rm = T))/length(df$totalDecomp.shallow)
)
# mutate(
# dDecomp.deep = abs(meanDecomp.deep) * sqrt(sum(df$sdDecomp.deep^2, na.rm = T)) / sum(df$totalDecomp.deep, na.rm = T),
# dDecomp.shallow = abs(meanDecomp.shallow) * sqrt(sum(df$sdDecomp.shallow^2, na.rm = T)) / sum(df$totalDecomp.shallow, na.rm = T)
# )
# mutate(
# dDecomp.deep = abs(meanDecomp.deep) * sqrt(sum((df$sdDecomp.deep / df$totalDecomp.deep) ^
# 2, na.rm = T
# )),
# dDecomp.shallow = abs(meanDecomp.shallow) * sqrt(sum((df$sdDecomp.shallow /
# df$totalDecomp.shallow) ^ 2, na.rm = T
# ))
# )
return(y)
})
station.decomp.summary <- as.data.frame(do.call(rbind, station.decomp.summary)) %>%
select("State", "Region", "n", contains("deep"), contains("shallow"))
# apply shallow rate to shallow part (0 - 10 cm) and deep to rest (11 - 30 cm)
statedecomp <- shorelinelengths %>%
left_join(station.decomp.summary) %>%
rename(Decomp.deep = meanDecomp.deep, Decomp.shallow = meanDecomp.shallow) %>%
#marsh area eroded by large and small erosion rate
mutate(erodedSedArea.Large = (ErosionRate[1] * 1000) * (MarshShore * 1000) , # m^2/yr
erodedSedArea.Small = (ErosionRate[2] * 1000) * (MarshShore * 1000)) %>% # m^2/yr
#marsh sed volume of the deep and shallow portions
mutate(erodedSedVolume.LargeShallow = erodedSedArea.Large * BankHt[2]*1000, # m^3/yr
erodedSedVolume.SmallShallow = erodedSedArea.Small * BankHt[2]*1000, # m^3/yr
erodedSedVolume.LargeDeep = erodedSedArea.Large * (BankHt[1]*1000 - BankHt[2]*1000), # m^3/yr
erodedSedVolume.SmallDeep = erodedSedArea.Small * (BankHt[1]*1000 - BankHt[2]*1000)) %>% # m^3/yr
#total marsh sed volume of the tall and short bank heights
mutate(erodedSedVolume.LargeTall = erodedSedVolume.LargeShallow + erodedSedVolume.LargeDeep,
erodedSedVolume.SmallTall = erodedSedVolume.SmallShallow + erodedSedVolume.SmallDeep,
erodedSedVolume.LargeShort = erodedSedVolume.LargeShallow,
erodedSedVolume.SmallShort = erodedSedVolume.SmallShallow) %>%
#carbon in the shallow and deep portions
mutate(erodedSedC.LargeShallow = erodedSedVolume.LargeShallow * Cdensity, # kg C/yr
derodedSedC.LargeShallow = 0, # kg C/yr
erodedSedC.SmallShallow = erodedSedVolume.SmallShallow * Cdensity, # kg C/yr
derodedSedC.SmallShallow = 0, # kg C/yr
erodedSedC.LargeDeep = erodedSedVolume.LargeDeep * Cdensity, # kg C/yr
derodedSedC.LargeDeep = 0, # kg C/yr
erodedSedC.SmallDeep = erodedSedVolume.SmallDeep * Cdensity, # kg C/yr
derodedSedC.SmallDeep = 0) %>% # kg C/yr
# total carbon of the tall and short bank heights
mutate(erodedSedC.LargeTall = erodedSedC.LargeShallow + erodedSedC.LargeDeep,
erodedSedC.SmallTall = erodedSedC.SmallShallow + erodedSedC.SmallDeep,
erodedSedC.LargeShort = erodedSedC.LargeShallow,
erodedSedC.SmallShort = erodedSedC.SmallShallow) %>%
mutate_with_error(Decomp.LargeShallow ~ erodedSedC.LargeShallow * Decomp.shallow) %>%
mutate_with_error(Decomp.SmallShallow ~ erodedSedC.SmallShallow * Decomp.shallow) %>%
mutate_with_error(Decomp.LargeDeep ~ erodedSedC.LargeDeep * Decomp.deep) %>%
mutate_with_error(Decomp.SmallDeep ~ erodedSedC.SmallDeep * Decomp.deep) %>%
mutate(Decomp.LargeShort = Decomp.LargeShallow,
dDecomp.LargeShort = dDecomp.LargeShallow,
Decomp.LargeTall = Decomp.LargeShallow + Decomp.LargeDeep,
dDecomp.LargeTall = sqrt((dDecomp.LargeShallow)^2 + (dDecomp.LargeDeep)^2),
Decomp.SmallShort = Decomp.SmallShallow,
dDecomp.SmallShort = dDecomp.SmallShallow,
Decomp.SmallTall = Decomp.SmallShallow + Decomp.SmallDeep,
dDecomp.SmallTall = sqrt((dDecomp.LargeShallow)^2 + (dDecomp.LargeDeep)^2))
regiondecomp <- statedecomp %>%
#filter(Region == "Gulf", MarshShore != 1551) %>%
#mutate(Region = paste0(Region, "1986")) %>%
#bind_rows(filter(statedecomp, MarshShore != 73745)) %>%
group_by(Region) %>%
summarize(MarshShore = sum(MarshShore),
n = sum(n, na.rm = T),
#volume for the Short and Tall banks
erodedSedVolume.LargeShort = sum(erodedSedVolume.LargeShort, na.rm = T),
erodedSedVolume.SmallShort = sum(erodedSedVolume.SmallShort, na.rm = T),
erodedSedVolume.LargeTall = sum(erodedSedVolume.LargeTall, na.rm = T),
erodedSedVolume.SmallTall = sum(erodedSedVolume.SmallTall, na.rm = T),
# carbon for the Short and Tall banks
erodedSedC.LargeShort = sum(erodedSedC.LargeShort, na.rm = T),
erodedSedC.SmallShort = sum(erodedSedC.SmallShort, na.rm = T),
erodedSedC.LargeTall = sum(erodedSedC.LargeTall, na.rm = T),
erodedSedC.SmallTall = sum(erodedSedC.SmallTall, na.rm = T),
Decomp.LargeShort = sum(Decomp.LargeShort, na.rm = T), # kg C/yr
dDecomp.LargeShort = sqrt(sum(dDecomp.LargeShort^2, na.rm = T)), # kg C/yr
Decomp.LargeTall = sum(Decomp.LargeTall, na.rm = T), # kg C/yr
dDecomp.LargeTall = sqrt(sum(dDecomp.LargeTall^2, na.rm = T)), # kg C/yr
Decomp.SmallShort = sum(Decomp.SmallShort, na.rm = T), # kg C/yr
dDecomp.SmallShort = sqrt(sum(dDecomp.SmallShort^2, na.rm = T)), # kg C/yr
Decomp.SmallTall = sum(Decomp.SmallTall, na.rm = T), # kg C/yr
dDecomp.SmallTall = sqrt(sum(dDecomp.SmallTall^2, na.rm = T))) %>% # kg C/yr
ungroup()
nationaldecomp <-
statedecomp %>%
#filter(MarshShore != 1551) %>%
#mutate(Region = paste0(Region, "1986"), national = "1986") %>%
#bind_rows(filter(statedecomp, MarshShore != 73745) %>% mutate(national = "2015")) %>%
#group_by(national) %>%
summarize(MarshShore = sum(MarshShore),
n = sum(n, na.rm = T),
erodedSedVolume.LargeShort = sum(erodedSedVolume.LargeShort, na.rm = T),
erodedSedVolume.SmallShort = sum(erodedSedVolume.SmallShort, na.rm = T),
erodedSedVolume.LargeTall = sum(erodedSedVolume.LargeTall, na.rm = T),
erodedSedVolume.SmallTall = sum(erodedSedVolume.SmallTall, na.rm = T),
erodedSedC.LargeShort = sum(erodedSedC.LargeShort, na.rm = T),
erodedSedC.SmallShort = sum(erodedSedC.SmallShort, na.rm = T),
erodedSedC.LargeTall = sum(erodedSedC.LargeTall, na.rm = T),
erodedSedC.SmallTall = sum(erodedSedC.SmallTall, na.rm = T),
Decomp.LargeShort = sum(Decomp.LargeShort, na.rm = T), # kg C/yr
dDecomp.LargeShort = sqrt(sum(dDecomp.LargeShort^2, na.rm = T)), # kg C/yr
Decomp.LargeTall = sum(Decomp.LargeTall, na.rm = T), # kg C/yr
dDecomp.LargeTall = sqrt(sum(dDecomp.LargeTall^2, na.rm = T)), # kg C/yr
Decomp.SmallShort = sum(Decomp.SmallShort, na.rm = T), # kg C/yr
dDecomp.SmallShort = sqrt(sum(dDecomp.SmallShort^2, na.rm = T)), # kg C/yr
Decomp.SmallTall = sum(Decomp.SmallTall, na.rm = T), # kg C/yr
dDecomp.SmallTall = sqrt(sum(dDecomp.SmallTall^2, na.rm = T))) %>% # kg C/yr
ungroup()# %>%
# rename("LAestYear" = "national")
#### create a df for an erosion and decomp summary ####
statedecomp.melt <- reshape2::melt(statedecomp,
id.vars = c("Region", "State", "MarshShore", "n"),
measure.vars = names(statedecomp)[grepl(pattern = "Tall|Short", names(statedecomp))]) %>%
mutate(BankHt = grepl(x = variable, pattern = "Short"),
ErosionRate = grepl(x = variable, pattern = "Large"),
sedVol = grepl(x = variable, pattern = "Volume"),
sedC = grepl(x = variable, pattern = "SedC"),
SD = grepl(x = variable, patter = "dD"),
BankHt = ifelse(BankHt, "Shallow", "Deep"),
ErosionRate = ifelse(ErosionRate, "Large", "Small"))
statedecomp.melt <- left_join(
filter(statedecomp.melt, !SD, !sedVol, !sedC) %>%
select(-c("SD", "variable"), "Decomp" = "value"),
filter(statedecomp.melt, SD, !sedVol, !sedC) %>%
select(-c("n", "variable", "SD"), "SD" = "value"),
by = c("Region", "State", "MarshShore", "BankHt", "ErosionRate")) %>%
left_join(
filter(statedecomp.melt, !SD, sedVol, !sedC) %>%
select(-c("n", "variable", "SD"), "erodedSedVolume" = "value"),
by = c("Region", "State", "MarshShore", "BankHt", "ErosionRate")) %>%
left_join(
filter(statedecomp.melt, !SD, !sedVol, sedC) %>%
select(-c("n", "variable", "SD"), "erodedSedCarbon" = "value"),
by = c("Region", "State", "MarshShore", "BankHt", "ErosionRate")) %>%
select("Region", "State", "MarshShore", "n", "BankHt", "ErosionRate", "erodedSedVolume", "erodedSedCarbon", "Decomp", "SD")
regiondecomp.melt <- reshape2::melt(regiondecomp,
id.vars = c("Region", "MarshShore", "n")) %>%
mutate(BankHt = grepl(x = variable, pattern = "Short"),
ErosionRate = grepl(x = variable, pattern = "Large"),
sedVol = grepl(x = variable, pattern = "Volume"),
sedC = grepl(x = variable, pattern = "SedC"),
SD = grepl(x = variable, patter = "dD"),
BankHt = ifelse(BankHt, "Shallow", "Deep"),
ErosionRate = ifelse(ErosionRate, "Large", "Small"))
regiondecomp.melt <-
left_join(
filter(regiondecomp.melt, !SD, !sedVol, !sedC) %>%
select(-c("SD", "variable", "sedVol", "sedC"), "Decomp" = "value"),
filter(regiondecomp.melt, SD, !sedVol, !sedC) %>%
select(-c("n", "variable", "SD", "sedVol", "sedC"), "SD" = "value"),
by = c("Region", "MarshShore", "BankHt", "ErosionRate")) %>%
left_join(
filter(regiondecomp.melt, !SD, sedVol, !sedC) %>%
select(-c("n", "variable", "SD", "sedVol", "sedC"), "erodedSedVolume" = "value"),
by = c("Region", "MarshShore", "BankHt", "ErosionRate")) %>%
left_join(
filter(regiondecomp.melt, !SD, !sedVol, sedC) %>%
select(-c("n", "variable", "SD"), "erodedSedCarbon" = "value"),
by = c("Region", "MarshShore", "BankHt", "ErosionRate")) %>%
select("Region", "MarshShore", "n", "BankHt", "ErosionRate", "erodedSedVolume", "erodedSedCarbon", "Decomp", "SD")
nationaldecomp.melt <- reshape2::melt(nationaldecomp, id.vars = c("MarshShore", "n")) %>%
mutate(BankHt = grepl(x = variable, pattern = "Short"),
ErosionRate = grepl(x = variable, pattern = "Large"),
sedVol = grepl(x = variable, pattern = "Volume"),
sedC = grepl(x = variable, pattern = "SedC"),
SD = grepl(x = variable, patter = "dD"),
BankHt = ifelse(BankHt, "Shallow", "Deep"),
ErosionRate = ifelse(ErosionRate, "Large", "Small"))
nationaldecomp.melt <-
left_join(
filter(nationaldecomp.melt, !SD, !sedVol, !sedC) %>%
select(-c("SD", "variable", "sedVol", "sedC"), "Decomp" = "value"),
filter(nationaldecomp.melt, SD, !sedVol, !sedC) %>%
select(-c("n", "variable", "SD", "sedVol", "sedC"), "SD" = "value"),
by = c("MarshShore", "BankHt", "ErosionRate")) %>%
left_join(
filter(nationaldecomp.melt, !SD, sedVol, !sedC) %>%
select(-c("n", "variable", "SD", "sedVol", "sedC"), "erodedSedVolume" = "value"),
by = c("MarshShore", "BankHt", "ErosionRate")) %>%
left_join(
filter(nationaldecomp.melt, !SD, !sedVol, sedC) %>%
select(-c("n", "variable", "SD"), "erodedSedCarbon" = "value"),
by = c("MarshShore", "BankHt", "ErosionRate")) %>%
mutate(Region = "National") %>%
select("Region", "MarshShore", "n", "BankHt", "ErosionRate", "erodedSedVolume", "erodedSedCarbon", "Decomp", "SD")
ErosionAndDecompSummary <- bind_rows(statedecomp.melt, regiondecomp.melt, nationaldecomp.melt)
needtosave = F
if(needtosave) {
#### Save results ####
stationmetadata %>%
# give the results names that are human readable with units
select(everything(),
"Deep Sed C Annual Decomp (mol C/mol C)" = "totalDecomp.deep", "Deep Sed C Annual Decomp SD (mol C/mol C)" = "sdDecomp.deep",
"Shallow Sed C Annual Decomp (mol C/mol C)" = "totalDecomp.shallow", "Shallow Sed C Annual Decomp SD (mol C/mol C)" = "sdDecomp.shallow",
) %>%
write.csv(paste0(getwd(), "/data/results/station metadata and decomp.csv"), row.names = F, na = "")
write.csv(tempcount, paste0(getwd(), "/results/Temp Freq table.csv"), row.names = F, na = "")
station.decomp.summary %>%
# give the results names that are human readable with units
select("Region", "State", "n stations" = "n",
"Mean Deep Sed Annual Decomp (mol C/mol C)" = "meanDecomp.deep", "SD Deep Sed Annual Decomp (mol C/mol C)" = "dDecomp.deep",
"Mean Shallow Sed Annual Decomp (mol C/mol C)" = "meanDecomp.shallow", "SD Shallow Sed Annual Decomp SD (mol C/mol C)" = "dDecomp.shallow",) %>%
write.csv(paste0(getwd(), "/data/results/state decomp summary.csv"), row.names = F, na = "")
statedecomp %>%
# give the results names that are human readable with units
select("Region", "State", "n stations" = "n", "Marsh Shoreline (km)" = "MarshShore",
"Deep Sed Annual Decomp (mol C/mol C)" = "Decomp.deep", "Deep Sed Annual Decomp SD (mol C/mol C)" = "dDecomp.deep",
"Shallow Sed Annual Decomp (mol C/mol C)" = "Decomp.shallow", "Shallow Sed Annual Decomp SD (mol C/mol C)" = "dDecomp.shallow",
"Eroded Marsh Sediment Volume Deep Bank & Large Erosion (m^3/yr)" = "erodedSedVolume.LargeTall",
"Eroded Marsh Sediment Volume Deep Bank & Small Erosion (m^3/yr)" = "erodedSedVolume.SmallTall",
"Eroded Marsh Sediment Volume Shallow Bank & Large Erosion (m^3/yr)" = "erodedSedVolume.LargeShort",
"Eroded Marsh Sediment Volume Shllow Bank & Small Erosion (m^3/yr)" = "erodedSedVolume.SmallShort",
"Eroded Marsh Sediment Carbon Deep Bank & Large Erosion (kg/yr)" = "erodedSedC.LargeTall",
"Eroded Marsh Sediment Carbon Deep Bank & Small Erosion (kg/yr)" = "erodedSedC.SmallTall",
"Eroded Marsh Sediment Carbon Shallow Bank & Large Erosion (kg/yr)" = "erodedSedC.LargeShort",
"Eroded Marsh Sediment Carbon Shllow Bank & Small Erosion (kg/yr)" = "erodedSedC.SmallShort",
"Eroded Carbon Decomposed Shallow Bank & Large Erosion (kg/yr)" = "Decomp.LargeShort", "Eroded Carbon Decomposed Shallow Bank & Large Erosion SD (kg/yr)" = "dDecomp.LargeShort",
"Eroded Carbon Decomposed Deep Bank & Large Erosion (kg/yr)" = "Decomp.LargeTall", "Eroded Carbon Decomposed Deep Bank & Large Erosion SD (kg/yr)" = "dDecomp.LargeTall",
"Eroded Carbon Decomposed Shallow Bank & Small Erosion (kg/yr)" = "Decomp.SmallShort", "Eroded Carbon Decomposed Shallow Bank & Small Erosion SD (kg/yr)" = "dDecomp.SmallShort",
"Eroded Carbon Decomposed Deep Bank & Small Erosion (kg/yr)" = "Decomp.SmallTall", "Eroded Carbon Decomposed Deep Bank & Small Erosion SD (kg/yr)" = "dDecomp.SmallTall") %>%
write.csv(paste0(getwd(), "/data/results/state decomp and erosion summary.csv"), row.names = F, na = "")
regiondecomp %>%
# give the results names that are human readable with units
select("Region", "n stations" = "n", "Marsh Shoreline (km)" = "MarshShore",
"Eroded Marsh Sediment Volume Deep Bank & Large Erosion (m^3/yr)" = "erodedSedVolume.LargeTall",
"Eroded Marsh Sediment Volume Deep Bank & Small Erosion (m^3/yr)" = "erodedSedVolume.SmallTall",
"Eroded Marsh Sediment Volume Shallow Bank & Large Erosion (m^3/yr)" = "erodedSedVolume.LargeShort",
"Eroded Marsh Sediment Volume Shllow Bank & Small Erosion (m^3/yr)" = "erodedSedVolume.SmallShort",
"Eroded Marsh Sediment Carbon Deep Bank & Large Erosion (kg/yr)" = "erodedSedC.LargeTall",
"Eroded Marsh Sediment Carbon Deep Bank & Small Erosion (kg/yr)" = "erodedSedC.SmallTall",
"Eroded Marsh Sediment Carbon Shallow Bank & Large Erosion (kg/yr)" = "erodedSedC.LargeShort",
"Eroded Marsh Sediment Carbon Shllow Bank & Small Erosion (kg/yr)" = "erodedSedC.SmallShort",
"Eroded Carbon Decomposed Shallow Bank & Large Erosion (kg/yr)" = "Decomp.LargeShort", "Eroded Carbon Decomposed Shallow Bank & Large Erosion SD (kg/yr)" = "dDecomp.LargeShort",
"Eroded Carbon Decomposed Deep Bank & Large Erosion (kg/yr)" = "Decomp.LargeTall", "Eroded Carbon Decomposed Deep Bank & Large Erosion SD (kg/yr)" = "dDecomp.LargeTall",
"Eroded Carbon Decomposed Shallow Bank & Small Erosion (kg/yr)" = "Decomp.SmallShort", "Eroded Carbon Decomposed Shallow Bank & Small Erosion SD (kg/yr)" = "dDecomp.SmallShort",
"Eroded Carbon Decomposed Deep Bank & Small Erosion (kg/yr)" = "Decomp.SmallTall", "Eroded Carbon Decomposed Deep Bank & Small Erosion SD (kg/yr)" = "dDecomp.SmallTall") %>%
write.csv(paste0(getwd(), "/data/results/regional decomp and erosion summary.csv"), row.names = F, na = "")
nationaldecomp %>%
# give the results names that are human readable with units
select(#"Year of Louisiana Shoreline Estimate" = "LAestYear",
"n stations" = "n", "Marsh Shoreline (km)" = "MarshShore",
"Eroded Marsh Sediment Volume Deep Bank & Large Erosion (m^3/yr)" = "erodedSedVolume.LargeTall",
"Eroded Marsh Sediment Volume Deep Bank & Small Erosion (m^3/yr)" = "erodedSedVolume.SmallTall",
"Eroded Marsh Sediment Volume Shallow Bank & Large Erosion (m^3/yr)" = "erodedSedVolume.LargeShort",
"Eroded Marsh Sediment Volume Shllow Bank & Small Erosion (m^3/yr)" = "erodedSedVolume.SmallShort",
"Eroded Marsh Sediment Carbon Deep Bank & Large Erosion (kg/yr)" = "erodedSedC.LargeTall",
"Eroded Marsh Sediment Carbon Deep Bank & Small Erosion (kg/yr)" = "erodedSedC.SmallTall",
"Eroded Marsh Sediment Carbon Shallow Bank & Large Erosion (kg/yr)" = "erodedSedC.LargeShort",
"Eroded Marsh Sediment Carbon Shllow Bank & Small Erosion (kg/yr)" = "erodedSedC.SmallShort",
"Eroded Carbon Decomposed Shallow Bank & Large Erosion (kg/yr)" = "Decomp.LargeShort", "Eroded Carbon Decomposed Shallow Bank & Large Erosion SD (kg/yr)" = "dDecomp.LargeShort",
"Eroded Carbon Decomposed Deep Bank & Large Erosion (kg/yr)" = "Decomp.LargeTall", "Eroded Carbon Decomposed Deep Bank & Large Erosion SD (kg/yr)" = "dDecomp.LargeTall",
"Eroded Carbon Decomposed Shallow Bank & Small Erosion (kg/yr)" = "Decomp.SmallShort", "Eroded Carbon Decomposed Shallow Bank & Small Erosion SD (kg/yr)" = "dDecomp.SmallShort",
"Eroded Carbon Decomposed Deep Bank & Small Erosion (kg/yr)" = "Decomp.SmallTall", "Eroded Carbon Decomposed Deep Bank & Small Erosion SD (kg/yr)" = "dDecomp.SmallTall") %>%
write.csv(paste0(getwd(), "/data/results/national decomp and erosion summary.csv"), row.names = F, na = "")
ErosionAndDecompSummary %>%
# mutate(State = ifelse(State=="LA"& MarshShore >= 70000, "LA 1986", State)) %>%
write.csv(paste0(getwd(), "/data/results/decomp and erosion summary.csv"), row.names = F, na = "")
}