forked from koide3/open3d_graph_slam
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathslam.py
executable file
·138 lines (104 loc) · 4.1 KB
/
slam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#!/usr/bin/python3
import os
import copy
import numpy
import open3d
import pyquaternion
def change_background_to_black(vis):
opt = vis.get_render_option()
opt.background_color = numpy.asarray([0, 0, 0])
opt.point_size = 1.
opt.light_on = True
opt.show_coordinate_frame = True
# opt.load_from_json('./opt.json')
return False
key_to_callback = {ord("K"): change_background_to_black}
class Keyframe(object):
def __init__(self, id, cloud, odom):
self.id = id
self.odom = copy.deepcopy(odom)
self.cloud = copy.deepcopy(cloud)
self.transformed = copy.deepcopy(cloud)
self.node = open3d.registration.PoseGraphNode(odom)
self.update_transformed()
def update_transformed(self):
self.transformed.points = self.cloud.points
self.transformed.normals = self.cloud.normals
self.transformed.transform(self.node.pose)
class GraphSLAM(object):
def __init__(self):
self.graph = open3d.registration.PoseGraph()
self.keyframes = []
self.last_frame_transformation = numpy.identity(4)
self.keyframe_angle_thresh_deg = 15.0
self.keyframe_trans_thresh_m = 1.0
self.vis = open3d.visualization.Visualizer()
self.vis.create_window()
def update(self, cloud):
cloud = cloud.voxel_down_sample(voxel_size=0.05)
if not len(self.keyframes):
self.keyframes.append(Keyframe(0, cloud, numpy.identity(4)))
self.vis.add_geometry(self.keyframes[-1].transformed)
self.graph.nodes.append(self.keyframes[-1].node)
return
if not self.update_keyframe(cloud):
return
print('optimizing...')
option = open3d.registration.GlobalOptimizationOption(max_correspondence_distance=1.0,
edge_prune_threshold=0.25, reference_node=0)
print(open3d.registration.global_optimization(self.graph,
open3d.registration.GlobalOptimizationLevenbergMarquardt(),
open3d.registration.GlobalOptimizationConvergenceCriteria(),
option))
for keyframe in self.keyframes:
keyframe.update_transformed()
self.vis.poll_events()
self.vis.update_renderer()
def update_keyframe(self, cloud):
criteria = open3d.registration.ICPConvergenceCriteria(max_iteration=100)
reg = open3d.registration.registration_icp(cloud,
self.keyframes[-1].cloud,
1.0,
self.last_frame_transformation,
open3d.registration.TransformationEstimationPointToPlane(),
criteria=criteria)
angle = pyquaternion.Quaternion(matrix=reg.transformation[:3, :3]).degrees
trans = numpy.linalg.norm(reg.transformation[:3, 3])
if abs(angle) < self.keyframe_angle_thresh_deg and abs(trans) < self.keyframe_trans_thresh_m:
self.last_frame_transformation = reg.transformation
return False
odom = numpy.dot(self.keyframes[-1].odom, reg.transformation)
self.keyframes.append(Keyframe(len(self.keyframes), cloud, odom))
self.graph.nodes.append(self.keyframes[-1].node)
self.vis.add_geometry(self.keyframes[-1].transformed)
self.last_frame_transformation = numpy.identity(4)
information = open3d.registration.get_information_matrix_from_point_clouds(self.keyframes[-1].cloud,
self.keyframes[-2].cloud,
1.0,
reg.transformation)
edge = open3d.registration.PoseGraphEdge(self.keyframes[-1].id,
self.keyframes[-2].id,
reg.transformation,
information,
uncertain=False)
self.graph.edges.append(edge)
return True
def generate_map(self):
map_cloud = open3d.geometry.PointCloud()
for keyframe in self.keyframes:
transformed = copy.deepcopy(keyframe.cloud)
transformed.transform(keyframe.node.pose)
map_cloud += transformed
return map_cloud.voxel_down_sample(voxel_size=0.05)
def main():
dataset_path = '/home/koide/datasets/kit/scenario1'
cloud_files = sorted([dataset_path + '/' + x for x in os.listdir(dataset_path) if '.pcd' in x])
graph_slam = GraphSLAM()
for cloud_file in cloud_files[:100]:
print(cloud_file)
cloud = open3d.io.read_point_cloud(cloud_file)
graph_slam.update(cloud)
graph_slam.vis.destroy_window()
open3d.visualization.draw_geometries_with_key_callbacks([graph_slam.generate_map(), ], key_to_callback)
if __name__ == '__main__':
main()