-
Notifications
You must be signed in to change notification settings - Fork 11
/
dynamics_strong_B_generalized.py
195 lines (164 loc) · 6.99 KB
/
dynamics_strong_B_generalized.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#-Begin-preamble-------------------------------------------------------
#
# CERN
#
# European Organization for Nuclear Research
#
#
# This file is part of the code:
#
# PyECLOUD Version 8.7.1
#
#
# Main author: Giovanni IADAROLA
# BE-ABP Group
# CERN
# CH-1211 GENEVA 23
# SWITZERLAND
# giovanni.iadarola@cern.ch
#
# Contributors: Eleonora Belli
# Philipp Dijkstal
# Lorenzo Giacomel
# Lotta Mether
# Annalisa Romano
# Giovanni Rumolo
# Eric Wulff
#
#
# Copyright CERN, Geneva 2011 - Copyright and any other
# appropriate legal protection of this computer program and
# associated documentation reserved in all countries of the
# world.
#
# Organizations collaborating with CERN may receive this program
# and documentation freely and without charge.
#
# CERN undertakes no obligation for the maintenance of this
# program, nor responsibility for its correctness, and accepts
# no liability whatsoever resulting from its use.
#
# Program and documentation are provided solely for the use of
# the organization to which they are distributed.
#
# This program may not be copied or otherwise distributed
# without permission. This message must be retained on this and
# any other authorized copies.
#
# The material cannot be sold. CERN should be given credit in
# all references.
#
#-End-preamble---------------------------------------------------------
from numpy import sqrt, sin, cos, squeeze, sum
import scipy.io as sio
from . import int_field_for as iff
me = 9.10938291e-31
qe = 1.602176565e-19
qm = qe / me
#formulas are already written for a negative charge
class pusher_strong_B_generalized():
def __init__(self, Dt, B0x, B0y, \
B_map_file, fact_Bmap, B_zero_thrhld):
print("Tracker: Generalized strong B")
self.Dt = Dt
self.B0x = B0x
self.B0y = B0y
self.B_zero_thrhld = B_zero_thrhld
if B_map_file is None:
self.flag_B_map = False
self.analyt_quad_grad1 = False
elif B_map_file is 'analytic_qaudrupole_unit_grad':
print("B map analytic quadrupole")
self.flag_B_map = False
self.analyt_quad_grad1 = True
self.fact_Bmap = fact_Bmap
else:
self.flag_B_map = True
self.analyt_quad_grad1 = False
print('Loading B map')
dict_Bmap = sio.loadmat(B_map_file)
self.Bmap_x = fact_Bmap * squeeze(dict_Bmap['Bx'].real)
self.Bmap_y = fact_Bmap * squeeze(dict_Bmap['By'].real)
self.xx = squeeze(dict_Bmap['xx'].T)
self.yy = squeeze(dict_Bmap['yy'].T)
self.xmin = min(self.xx)
self.ymin = min(self.yy)
self.dx = self.xx[1] - self.xx[0]
self.dy = self.yy[1] - self.yy[0]
# ####Debug
# import pylab as pl
# pl.figure(1)
# pl.imshow(self.Bmap_x.T, cmap=None, norm=None, aspect=None, interpolation=None,
# alpha=None, vmin=None, vmax=None, origin=None, extent=None)
# pl.figure(2)
# pl.imshow(self.Bmap_y.T, cmap=None, norm=None, aspect=None, interpolation=None,
# alpha=None, vmin=None, vmax=None, origin=None, extent=None)
#
# pl.show()
#
# raise ValueError
#
# ####
# def step(self, xn, yn, zn, vxn, vyn, vzn,Ex_n,Ey_n):
def step(self, MP_e, Ex_n, Ey_n, Ez_n=0., Bx_n=0., By_n=0., Bz_n=0.):
if MP_e.N_mp > 0:
xn = MP_e.x_mp[0:MP_e.N_mp]
yn = MP_e.y_mp[0:MP_e.N_mp]
zn = MP_e.z_mp[0:MP_e.N_mp]
vxn = MP_e.vx_mp[0:MP_e.N_mp]
vyn = MP_e.vy_mp[0:MP_e.N_mp]
vzn = MP_e.vz_mp[0:MP_e.N_mp]
if self.flag_B_map:
Bx_n, By_n = iff.int_field(xn, yn, self.xmin, self.ymin,\
self.dx, self.dy, self.Bmap_x, self.Bmap_y)
# the rescaling factor has already been applied to the map
elif self.analyt_quad_grad1:
# the rescaling factor has to be applied here
Bx_n = self.fact_Bmap * yn.copy()
By_n = self.fact_Bmap * xn.copy()
else:
Bx_n = 0 * xn
By_n = 0 * xn
Bx_n = Bx_n + self.B0x
By_n = By_n + self.B0y
#Bx_n = 0*xn + self.B0x
#By_n = 0*xn + self.B0y
B_mod = sqrt(Bx_n * Bx_n + By_n * By_n)
flag_B_zero = B_mod < self.B_zero_thrhld
N_B_zero = sum(flag_B_zero)
#introduce fake B for zero field points
if N_B_zero > 0:
B_mod[flag_B_zero] = 1.
omegac = B_mod * qm
sinwcDt = sin(omegac * self.Dt)
coswcDt = cos(omegac * self.Dt)
vB_Bmod = (vxn * By_n - vyn * Bx_n) / B_mod
EB_Bmodsq = (Ex_n * By_n - Ey_n * Bx_n) / (B_mod * B_mod)
Dz = vzn * sinwcDt / omegac + vB_Bmod * coswcDt / omegac + \
EB_Bmodsq * (self.Dt - sinwcDt / omegac) - vB_Bmod / omegac
Dz_tilde = (vzn * (1 - coswcDt) + vB_Bmod * sinwcDt) / (omegac * omegac) + \
EB_Bmodsq * (self.Dt * self.Dt / 2. + (coswcDt - 1.) / (omegac * omegac)) \
- vB_Bmod * self.Dt / omegac
vzn1 = vzn * coswcDt - vB_Bmod * sinwcDt + EB_Bmodsq * (1. - coswcDt)
vxn1 = vxn - qm * (Ex_n * self.Dt - By_n * Dz)
vyn1 = vyn - qm * (Ey_n * self.Dt + Bx_n * Dz )
xn1 = xn + vxn * self.Dt - qm * (Ex_n * self.Dt * self.Dt / 2. - By_n * Dz_tilde)
yn1 = yn + vyn * self.Dt - qm * (Ey_n * self.Dt * self.Dt / 2. + Bx_n * Dz_tilde)
zn1 = zn + Dz
# correcting zero field points
if N_B_zero > 0:
xn1[flag_B_zero] = xn[flag_B_zero] + vxn[flag_B_zero] * self.Dt\
- 0.5 * qm * Ex_n[flag_B_zero] * self.Dt * self.Dt
yn1[flag_B_zero] = yn[flag_B_zero] + vyn[flag_B_zero] * self.Dt\
- 0.5 * qm * Ey_n[flag_B_zero] * self.Dt * self.Dt
zn1[flag_B_zero] = zn[flag_B_zero] + vzn[flag_B_zero] * self.Dt
vxn1[flag_B_zero] = vxn[flag_B_zero] - qm * Ex_n[flag_B_zero] * self.Dt
vyn1[flag_B_zero] = vyn[flag_B_zero] - qm * Ey_n[flag_B_zero] * self.Dt
vzn1[flag_B_zero] = vzn[flag_B_zero]
MP_e.x_mp[0:MP_e.N_mp] = xn1
MP_e.y_mp[0:MP_e.N_mp] = yn1
MP_e.z_mp[0:MP_e.N_mp] = zn1
MP_e.vx_mp[0:MP_e.N_mp] = vxn1
MP_e.vy_mp[0:MP_e.N_mp] = vyn1
MP_e.vz_mp[0:MP_e.N_mp] = vzn1
return MP_e