-
Notifications
You must be signed in to change notification settings - Fork 11
/
cross_ionization.py
518 lines (393 loc) · 20 KB
/
cross_ionization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
#-Begin-preamble-------------------------------------------------------
#
# CERN
#
# European Organization for Nuclear Research
#
#
# This file is part of the code:
#
# PyECLOUD Version 8.7.1
#
#
# Main author: Giovanni IADAROLA
# BE-ABP Group
# CERN
# CH-1211 GENEVA 23
# SWITZERLAND
# giovanni.iadarola@cern.ch
#
# Contributors: Eleonora Belli
# Philipp Dijkstal
# Lorenzo Giacomel
# Lotta Mether
# Annalisa Romano
# Giovanni Rumolo
# Eric Wulff
#
#
# Copyright CERN, Geneva 2011 - Copyright and any other
# appropriate legal protection of this computer program and
# associated documentation reserved in all countries of the
# world.
#
# Organizations collaborating with CERN may receive this program
# and documentation freely and without charge.
#
# CERN undertakes no obligation for the maintenance of this
# program, nor responsibility for its correctness, and accepts
# no liability whatsoever resulting from its use.
#
# Program and documentation are provided solely for the use of
# the organization to which they are distributed.
#
# This program may not be copied or otherwise distributed
# without permission. This message must be retained on this and
# any other authorized copies.
#
# The material cannot be sold. CERN should be given credit in
# all references.
#
#-End-preamble---------------------------------------------------------
import scipy.io as sio
import os
import numpy as np
from numpy.random import rand
from scipy.constants import e as qe
class Ionization_Process(object):
def __init__(self, pyecl_input_folder, process_name, process_definitions, cloud_dict, target_area):
# Warn if target density doesn't correspond to density of gas ionization class?
self.name = process_name
print(('Init process %s' % self.name))
self.target_dens = process_definitions['target_density']
print(('Target density = %.2e' %(self.target_dens)))
self.last_reported_target_dens = self.target_dens
self.target_area = target_area
self.N_target = self.target_dens * target_area
self.E_eV_init = process_definitions['E_eV_init']
if 'extract_sigma' in list(process_definitions.keys()):
self.extract_sigma = process_definitions['extract_sigma']
else:
self.extract_sigma = True
if 'generate_equally' in list(process_definitions.keys()):
self.generate_equally = process_definitions['generate_equally']
else:
self.generate_equally = False
# Check that ionization product names correspond to existing clouds
product_names = process_definitions['products']
for product in product_names:
assert product in list(cloud_dict.keys()), "Product name %s does not correspond to a defined cloud name."%(product)
self.products = product_names
# Read cross section file
cross_section_file = process_definitions['cross_section']
if os.path.isfile(pyecl_input_folder + '/' + cross_section_file):
cross_section_file_path = pyecl_input_folder + '/' + cross_section_file
elif os.path.isfile(pyecl_input_folder + '/' + cross_section_file + '.mat'):
cross_section_file_path = pyecl_input_folder + '/' + cross_section_file + '.mat'
else:
cross_section_file_path = cross_section_file
print(('Cross-section from file %s' %cross_section_file_path))
cross_section = sio.loadmat(cross_section_file_path)
if self.extract_sigma:
self.extract_sigma_path = cross_section_file_path.split('.mat')[0]
self.extract_sigma_path += '_extracted.mat'
else:
self.extract_sigma_path = None
self.energy_eV = cross_section['energy_eV'].squeeze()
self.sigma_cm2 = cross_section['cross_section_cm2'].squeeze()
# Check the energy step and define helpers for interp
self.energy_eV_min = self.energy_eV.min()
self.energy_eV_max = self.energy_eV.max()
self.sigma_cm2_diff = np.append(np.diff(self.sigma_cm2), 0.)
# A 0 is appended to give the array the correct shape
flag_log = False
ndec_round_x = 8
x_interp = self.energy_eV
diff_x_interp = np.round(np.diff(x_interp), ndec_round_x)
delta_x_interp = diff_x_interp[0]
x_interp_min = self.energy_eV_min
if np.any(diff_x_interp != delta_x_interp):
# Step not linear, check if logarithmic
x_interp = np.log10(self.energy_eV)
diff_x_interp = np.round(np.diff(x_interp), ndec_round_x)
delta_x_interp = diff_x_interp[0]
x_interp_min = np.log10(self.energy_eV_min)
if np.any(diff_x_interp != delta_x_interp):
# Step neither linear nor logarithmic
raise ValueError('Energy in cross section file must be equally spaced in linear or log scale.')
else:
flag_log = True
self.delta_x_interp = delta_x_interp
self.x_interp_min = x_interp_min
self.flag_log = flag_log
def generate(self, Dt, cloud_dict, mass_proj, N_proj, nel_mp_proj,
x_proj, y_proj, z_proj, v_mp_proj, flag_generate=True):
E_eV_mp_proj = 0.5 * mass_proj / qe * v_mp_proj * v_mp_proj
# Get sigma
sigma_mp_proj = self.get_sigma(energy_eV_proj=E_eV_mp_proj)
DN_per_proj = sigma_mp_proj * self.target_dens * v_mp_proj * Dt * nel_mp_proj
N_proj = len(nel_mp_proj)
# Calculate remaining density
if flag_generate:
DN_target = np.sum(DN_per_proj)
self.N_target = np.round(self.N_target - DN_target, 3)
self.target_dens = self.N_target / self.target_area
if self.target_dens < 0.1 * self.last_reported_target_dens:
print(('Cross-ionization process %s target density = %.2e' %(self.name, self.target_dens)))
self.last_reported_target_dens = self.target_dens
new_mp_info = {}
if self.generate_equally:
# Calculate average product nel_mp_ref
nel_mp_ref_products = 0.
N_products = len(self.products)
for product in self.products:
thiscloud_gen = cloud_dict[product]
MP_e_gen = thiscloud_gen.MP_e
nel_mp_ref_products += MP_e_gen.nel_mp_ref / N_products
# Compute N_mp to add (the same for all products)
N_mp_per_proj_float = DN_per_proj / nel_mp_ref_products
N_mp_per_proj_int = np.floor(N_mp_per_proj_float)
rest = N_mp_per_proj_float - N_mp_per_proj_int
N_mp_per_proj_int = np.atleast_1d(np.int_(N_mp_per_proj_int))
N_mp_per_proj_int += np.atleast_1d(np.int_(rand(N_proj) < rest))
N_new_MPs = np.sum(N_mp_per_proj_int)
for product in self.products:
new_mp_info[product] = {}
thiscloud_gen = cloud_dict[product]
MP_e_gen = thiscloud_gen.MP_e
mass_gen = MP_e_gen.mass
# Initialize generated MPs with energy defined by user
v0_gen = np.sqrt(2 * (self.E_eV_init / 3.) * qe / mass_gen)
if self.generate_equally:
nel_mp_ref_gen = nel_mp_ref_products
else:
nel_mp_ref_gen = MP_e_gen.nel_mp_ref
# Compute N_mp to add (different for each product)
N_mp_per_proj_float = DN_per_proj / nel_mp_ref_gen
N_mp_per_proj_int = np.floor(N_mp_per_proj_float)
rest = N_mp_per_proj_float - N_mp_per_proj_int
N_mp_per_proj_int = np.atleast_1d(np.int_(N_mp_per_proj_int))
N_mp_per_proj_int += np.atleast_1d(np.int_(rand(N_proj) < rest))
N_new_MPs = np.sum(N_mp_per_proj_int)
if N_new_MPs > 0:
mask_gen = N_mp_per_proj_int > 0
N_mp_per_proj_int_masked = N_mp_per_proj_int[mask_gen]
nel_new_MPs_masked = np.ones(np.sum(mask_gen)) * nel_mp_ref_gen
nel_new_MPs = np.repeat(nel_new_MPs_masked, N_mp_per_proj_int_masked)
x_masked = x_proj[mask_gen]
y_masked = y_proj[mask_gen]
z_masked = z_proj[mask_gen]
x_new_MPs = np.repeat(x_masked, N_mp_per_proj_int_masked)
y_new_MPs = np.repeat(y_masked, N_mp_per_proj_int_masked)
z_new_MPs = np.repeat(z_masked, N_mp_per_proj_int_masked)
vx_new_MPs = np.zeros(N_new_MPs)
vy_new_MPs = np.zeros(N_new_MPs)
vz_new_MPs = np.zeros(N_new_MPs)
vx_new_MPs = v0_gen * (rand(N_new_MPs) - 0.5)
vy_new_MPs = v0_gen * (rand(N_new_MPs) - 0.5)
vz_new_MPs = v0_gen * (rand(N_new_MPs) - 0.5)
else:
nel_new_MPs = np.array([])
x_new_MPs = np.array([])
y_new_MPs = np.array([])
z_new_MPs = np.array([])
vx_new_MPs = np.array([])
vy_new_MPs = np.array([])
vz_new_MPs = np.array([])
new_mp_info[product]['N_new_MPs'] = N_new_MPs
new_mp_info[product]['nel_new_MPs'] = nel_new_MPs
new_mp_info[product]['x_new_MPs'] = x_new_MPs
new_mp_info[product]['y_new_MPs'] = y_new_MPs
new_mp_info[product]['z_new_MPs'] = z_new_MPs
new_mp_info[product]['vx_new_MPs'] = vx_new_MPs
new_mp_info[product]['vy_new_MPs'] = vy_new_MPs
new_mp_info[product]['vz_new_MPs'] = vz_new_MPs
return new_mp_info, np.sum(DN_per_proj)
def get_sigma(self, energy_eV_proj):
sigma_cm2_proj = energy_eV_proj * 0.
# For now we set sigma = 0. both below and above energies in file...
mask_below = (energy_eV_proj < self.energy_eV_min)
mask_above = (energy_eV_proj > self.energy_eV_max)
mask_interp = ~mask_below * ~mask_above
if self.flag_log:
x_interp_proj = np.log10(energy_eV_proj[mask_interp])
else:
x_interp_proj = energy_eV_proj[mask_interp]
sigma_cm2_proj[mask_interp] = self._interp(x_interp_proj=x_interp_proj)
# Return cross section in m2
return sigma_cm2_proj * 1e-4
def _interp(self, x_interp_proj):
"""
Linear interpolation of the energy - sigma curve.
"""
index_float = (x_interp_proj - self.x_interp_min) / self.delta_x_interp
index_remainder, index_int = np.modf(index_float)
index_int = index_int.astype(int)
return self.sigma_cm2[index_int] + index_remainder * self.sigma_cm2_diff[index_int]
class Cross_Ionization(object):
def __init__(self, pyecl_input_folder, cross_ion_definitions, cloud_list,
chamber_area, n_rep_test=10000, Dt_test=25e-11,
energy_eV_test=np.logspace(np.log10(1.), np.log10(25000.), num=5000)):
print('Initializing cross ionization.')
# Make cloud dict from list
cloud_dict = {}
for cloud in cloud_list:
cloud_dict.update({cloud.name : cloud})
self.projectiles_dict = {}
self.products = []
# Init projectiles and make list of products
for projectile in list(cross_ion_definitions.keys()):
print(('Projectile %s:' %(projectile)))
# Check that projectile name corresponds to existing cloud
assert projectile in list(cloud_dict.keys()), "Projectile name %s does not correspond to a defined cloud name."%(projectile)
self.projectiles_dict.update({projectile : []})
# Init processes
for process_name in list(cross_ion_definitions[projectile].keys()):
process_definitions = cross_ion_definitions[projectile][process_name]
process = Ionization_Process(pyecl_input_folder, process_name,
process_definitions, cloud_dict, chamber_area)
self.projectiles_dict[projectile].append(process)
for product in process.products:
if product not in self.products:
self.products.append(product)
# Extract sigma curves for consistency checks
self._extract_sigma(Dt=Dt_test, cloud_dict=cloud_dict,
n_rep=n_rep_test, energy_eV=energy_eV_test)
# Initialize dictionary for quantities to save
self.nel_cross_ion = {}
self.N_mp_cross_ion = {}
self.DN_proj = {}
for cloud in cloud_list:
self.nel_cross_ion[cloud.name] = 0.
self.N_mp_cross_ion[cloud.name] = 0
self.DN_proj[cloud.name] = 0.
def generate(self, Dt, cloud_list):
# Make cloud dict from list
cloud_dict = {}
for cloud in cloud_list:
cloud_dict.update({cloud.name : cloud})
new_mps_to_gen = self._init_new_mp_dict(self.products)
for projectile in list(self.projectiles_dict.keys()):
thiscloud = cloud_dict[projectile]
MP_e = thiscloud.MP_e
N_mp = MP_e.N_mp
mass = MP_e.mass
if N_mp > 0:
nel_mp = MP_e.nel_mp[:N_mp]
x_mp = MP_e.x_mp[:N_mp]
y_mp = MP_e.y_mp[:N_mp]
z_mp = MP_e.z_mp[:N_mp]
vx_mp = MP_e.vx_mp[:N_mp]
vy_mp = MP_e.vy_mp[:N_mp]
vz_mp = MP_e.vz_mp[:N_mp]
v_mp = np.sqrt(vx_mp * vx_mp +
vy_mp * vy_mp +
vz_mp * vz_mp)
for process in self.projectiles_dict[projectile]:
mp_info_from_proc, DN_proj = process.generate(Dt=Dt,
cloud_dict=cloud_dict,
mass_proj=mass,
N_proj=N_mp,
nel_mp_proj=nel_mp,
x_proj=x_mp,
y_proj=y_mp,
z_proj=z_mp,
v_mp_proj=v_mp)
for product in process.products:
self._add_to_mp_dict(new_mps_to_gen[product],
mp_info_from_proc[product])
self.DN_proj[product] += DN_proj
t_last_impact = -1
for thiscloud in cloud_list:
if thiscloud.name in self.products:
MP_e = thiscloud.MP_e
new_mps = new_mps_to_gen[thiscloud.name]
if new_mps['N_new_MPs'] > 0:
MP_e.add_new_MPs(new_mps['N_new_MPs'],
new_mps['nel_new_MPs'],
new_mps['x_new_MPs'],
new_mps['y_new_MPs'],
new_mps['z_new_MPs'],
new_mps['vx_new_MPs'],
new_mps['vy_new_MPs'],
new_mps['vz_new_MPs'],
t_last_impact)
# Add to saved data
self.nel_cross_ion[thiscloud.name] += np.sum(new_mps['nel_new_MPs'])
self.N_mp_cross_ion[thiscloud.name] += new_mps['N_new_MPs']
else:
self.nel_cross_ion[thiscloud.name] += 0.
self.N_mp_cross_ion[thiscloud.name] += 0
def save_cross_ion_data(self, cloud_name):
thiscloud_nel_cross_ion = self.nel_cross_ion[cloud_name]
thiscloud_N_mp_cross_ion = self.N_mp_cross_ion[cloud_name]
thiscloud_DN_proj = self.DN_proj[cloud_name]
self.nel_cross_ion[cloud_name] = 0.
self.N_mp_cross_ion[cloud_name] = 0.
self.DN_proj[cloud_name] = 0.
return thiscloud_nel_cross_ion, thiscloud_N_mp_cross_ion, thiscloud_DN_proj
def _extract_sigma(self, Dt, cloud_dict, n_rep, energy_eV):
v0 = 0.
N_ene = len(energy_eV)
N_mp = n_rep
x_mp = np.zeros(n_rep)
y_mp = np.zeros(n_rep)
z_mp = np.zeros(n_rep)
for projectile in list(self.projectiles_dict.keys()):
thiscloud = cloud_dict[projectile]
mass = thiscloud.MP_e.mass
nel_mp = np.ones(n_rep) * thiscloud.MP_e.nel_mp_ref
v_test = np.sqrt(2 * energy_eV * qe / mass)
for process in self.projectiles_dict[projectile]:
if process.extract_sigma:
print(('Extracting cross section for process %s' %process.name ))
save_dict = {}
save_dict['energy_eV'] = energy_eV
save_dict['sigma_cm2_interp'] = np.zeros(len(energy_eV))
for product in process.products:
this_sigma_name = 'sigma_cm2_sampled_%s' %(product)
save_dict[this_sigma_name] = np.zeros(len(energy_eV))
for i_ene, energy in enumerate(energy_eV):
if np.mod(i_ene, N_ene / 10) == 0:
print(('Extracting sigma %.0f'%(float(i_ene) / float(N_ene) * 100) + """%"""))
# Test process.get_sigma()
sigma_m2 = process.get_sigma(np.array([energy]))
save_dict['sigma_cm2_interp'][i_ene] = sigma_m2 * 1e4
# Test process.generate()
v_ene = v_test[i_ene]
v_mp = v_ene * np.ones(n_rep)
mp_info_from_proc, _ = process.generate(Dt, cloud_dict=cloud_dict,
mass_proj=mass, N_proj=N_mp,
nel_mp_proj=nel_mp, x_proj=x_mp,
y_proj=y_mp, z_proj=z_mp,
v_mp_proj=v_mp, flag_generate=False)
for product in list(mp_info_from_proc.keys()):
DN_gen = np.sum(mp_info_from_proc[product]['nel_new_MPs'])
if v_ene > 0:
sigma_m2_est = DN_gen / process.target_dens / v_ene / Dt / np.sum(nel_mp)
else:
sigma_m2_est = 0.
this_sigma_name = 'sigma_cm2_sampled_%s' %(product)
save_dict[this_sigma_name][i_ene] = sigma_m2_est * 1e4
sio.savemat(process.extract_sigma_path, save_dict, oned_as='row')
print(('Saved extracted cross section as %s' %process.extract_sigma_path))
def _init_new_mp_dict(self, products):
# Init new MP dictionary for products
new_mp_dict = {}
mp_dict_keys = ['N_new_MPs', 'nel_new_MPs', 'x_new_MPs', 'y_new_MPs',
'z_new_MPs', 'vx_new_MPs', 'vy_new_MPs', 'vz_new_MPs']
for product in products:
new_mp_dict[product] = {}
for key in mp_dict_keys:
if key == 'N_new_MPs':
new_mp_dict[product][key] = 0
else:
new_mp_dict[product][key] = np.array([])
return new_mp_dict
def _add_to_mp_dict(self, mp_dict, dict_to_add):
#sum_dict = {}
for key in list(mp_dict.keys()):
if key == 'N_new_MPs':
mp_dict[key] += dict_to_add['N_new_MPs']
else:
mp_dict[key] = np.append(mp_dict[key], dict_to_add[key])