-
Notifications
You must be signed in to change notification settings - Fork 11
/
beam_and_timing.py
398 lines (327 loc) · 17.3 KB
/
beam_and_timing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
#-Begin-preamble-------------------------------------------------------
#
# CERN
#
# European Organization for Nuclear Research
#
#
# This file is part of the code:
#
# PyECLOUD Version 8.7.1
#
#
# Main author: Giovanni IADAROLA
# BE-ABP Group
# CERN
# CH-1211 GENEVA 23
# SWITZERLAND
# giovanni.iadarola@cern.ch
#
# Contributors: Eleonora Belli
# Philipp Dijkstal
# Lorenzo Giacomel
# Lotta Mether
# Annalisa Romano
# Giovanni Rumolo
# Eric Wulff
#
#
# Copyright CERN, Geneva 2011 - Copyright and any other
# appropriate legal protection of this computer program and
# associated documentation reserved in all countries of the
# world.
#
# Organizations collaborating with CERN may receive this program
# and documentation freely and without charge.
#
# CERN undertakes no obligation for the maintenance of this
# program, nor responsibility for its correctness, and accepts
# no liability whatsoever resulting from its use.
#
# Program and documentation are provided solely for the use of
# the organization to which they are distributed.
#
# This program may not be copied or otherwise distributed
# without permission. This message must be retained on this and
# any other authorized copies.
#
# The material cannot be sold. CERN should be given credit in
# all references.
#
#-End-preamble---------------------------------------------------------
import numpy as np
import scipy.io as sio
import scipy.special as sspe
from numpy import array
from . import int_field_for as iff
def bunch_train4(t, b_spac, t_offs, ppb_vect, sigmaz_vect):
c = 299792458.
zz = c * t
N_bucket = len(ppb_vect)
val = 0. * t
for ii in range(0, N_bucket):
if np.mod(ii, N_bucket / 20) == 0:
print(('Beam profile generation %.0f'%(float(ii) / float(N_bucket) * 100) + """%"""))
ppb = ppb_vect[ii]
sigmaz = sigmaz_vect[ii]
if sigmaz > 0:
z0 = c * (t_offs + ii * b_spac)
mask_to_be_updated = (np.abs(zz - z0) < (10. * sigmaz))
val[mask_to_be_updated] = val[mask_to_be_updated] + ppb / (sigmaz * np.sqrt(2 * np.pi)) *\
np.exp(-(zz[mask_to_be_updated] - z0) * (zz[mask_to_be_updated] - z0) / (2 * sigmaz * sigmaz))
return val
class beam_and_timing:
def __init__(self, flag_bunched_beam, fact_beam, coast_dens, beam_charge, beam_field_file, lam_th_beam_field,
b_spac=None, sigmaz=None, t_offs=None, filling_pattern_file=None, Dt=None, t_end=None,
beam_long_prof_file=None, Dh_beam_field=None, f_telescope_beam=None, target_grid_beam=None,
N_nodes_discard_beam=None, N_min_Dh_main_beam=None,
chamb=None, sigmax=None, sigmay=None,
x_beam_pos=0., y_beam_pos=0., save_beam_field_file_as=None,
flag_secodary_beam=False, t_primary_beam=None,
Nx=None, Ny=None, nimag=None,
progress_mapgen_file=None):
if chamb.is_outside(np.array([x_beam_pos]), np.array([y_beam_pos])):
raise ValueError('The beam is outside the chamber!')
flag_unif_Dt = True
if flag_bunched_beam:
print('Start beam profile generation.')
if type(filling_pattern_file) is str:
if '.mat' in filling_pattern_file:
dict_fillp = sio.loadmat(filling_pattern_file)
ppb_vect = np.squeeze(dict_fillp['ppb_vect'])
if 'sigmaz_vect' in list(dict_fillp.keys()):
sigmaz_vect = np.squeeze(dict_fillp['sigmaz_vect'])
else:
raise ValueError('Input of filling scheme via txt files is discontinued!')
# Incompatible with Python3 because of the exec
# f = open(filling_pattern_file)
# exec(f.read())
# f.close()
else:
ppb_vect = np.atleast_1d(np.float64(np.array(filling_pattern_file)))
if flag_secodary_beam:
t = t_primary_beam
else:
N_bunches = len(ppb_vect)
t = np.arange(0., N_bunches * b_spac + t_end + 2 * Dt, Dt)
t_inter = t[-1]
try:
sigmaz_vect
except NameError:
if sigmaz != -1:
sigmaz_vect = 0 * ppb_vect
sigmaz_vect[ppb_vect > 0] = sigmaz
else:
raise ValueError('Bunch length is not defined!!!')
lam_t_array = bunch_train4(t, b_spac, t_offs, ppb_vect, sigmaz_vect)
print('Done beam profile generation.')
else:
print('Loading beam profile from file:')
print(beam_long_prof_file)
dict_lam = sio.loadmat(beam_long_prof_file)
t = np.squeeze(dict_lam['t'].real)
lam_t_array = np.squeeze(dict_lam['lam_t_array'].real)
t_inter = t[-1]
Dt_vect = np.diff(t)
if (np.max(np.abs(Dt_vect)) - np.mean(np.abs(Dt_vect))) > 1e-4 * np.mean(np.abs(Dt_vect)):
flag_unif_Dt = False
else:
print('Beam profile loaded from file.')
print('Uniform time step detected.')
print('The time step Dt provided in simulation_parameters.input will be ignored.')
Dt = t[1] - t[0]
print('Time step set to Dt = %.3e s.'%Dt)
if flag_secodary_beam:
if len(t) != len(t_primary_beam):
raise ValueError('Time axes provided for primary and secondary beams should be identical!')
if np.max(np.abs(t - t_primary_beam) / Dt) > 1e-4:
raise ValueError('Time axes provided for primary and secondary beams should be identical!')
Nt = len(t)
lam_t_array = fact_beam * lam_t_array
lam_t_array = lam_t_array + coast_dens
N_pass_tot = int(np.ceil(t_inter / b_spac))
flag_PyPIC_state_mode = False
if beam_field_file == -1 or beam_field_file == 'computeFD':
print('No beam field file provided -> Calculate field using Poisson solver')
if Dh_beam_field is None:
raise ValueError('Grid size Dh_beam_field MUST be provided for beam field computation!')
from . import space_charge_class as scc
from numpy import exp, pi
scb = scc.space_charge(chamb, Dh_beam_field, Dt_sc=1.)
print('Computing beam charge density')
#rho=1./(2.*pi*sigmax*sigmay)*exp(-(scb.xn-x_beam_pos)**2/(2.*sigmax**2)-(scb.yn-y_beam_pos)**2/(2.*sigmay**2))
rho = 1. / (4. * Dh_beam_field**2) * (sspe.erf((scb.xn - x_beam_pos) / (np.sqrt(2) * sigmax) + Dh_beam_field / (2 * np.sqrt(2) * sigmax))\
- sspe.erf((scb.xn - x_beam_pos) / (np.sqrt(2) * sigmax) - Dh_beam_field / (2 * np.sqrt(2) * sigmax)))\
* (sspe.erf((scb.yn - y_beam_pos) / (np.sqrt(2) * sigmay) + Dh_beam_field / (2 * np.sqrt(2) * sigmay))\
- sspe.erf((scb.yn - y_beam_pos) / (np.sqrt(2) * sigmay) - Dh_beam_field / (2 * np.sqrt(2) * sigmay)))
scb.compute_spchg_efield_from_rho(rho, flag_verbose=True)
Ex_beam = scb.efx
Ey_beam = scb.efy
xx_beam = scb.xg
yy_beam = scb.yg
#self.scb = scb #######DEBUG!!
print('Done beam field computation.')
elif beam_field_file == 'computeBE':
print('No beam field file provided -> Calculate field using Bassetti Erskine formula')
if chamb.chamb_type != 'ellip':
raise ValueError('You can only use Bassetti Erskine formula with an elliptic chamber!')
if Nx is None or Ny is None or nimag is None:
raise ValueError('Nx, Ny and nimag MUST be provided for Bassetti Erskine formula!')
if x_beam_pos != 0. or y_beam_pos != 0.:
raise ValueError('x_beam_pos, y_beam_pos and MUST be 0 for Bassetti Erskine formula!')
print("sigmax=%.3e, sigmay=%.3e, Nx=%d, Ny=%d, nimag=%d"%(sigmax, sigmay, Nx, Ny, nimag))
if progress_mapgen_file is not None:
fprog = open(progress_mapgen_file, 'w')
fprog.write('Bassetti Erskine\n')
fprog.write("sigmax=%.3e, sigmay=%.3e, Nx=%d, Ny=%d, nimag=%d\n"%(sigmax, sigmay, Nx, Ny, nimag))
fprog.close()
from . import BassErsk as BE
a = chamb.x_aper
b = chamb.y_aper
xmax = a * 1.02
ymax = b * 1.02
xx = np.linspace(-xmax, xmax, Nx)
yy = np.linspace(-ymax, ymax, Ny)
Ex = np.zeros((len(xx), len(yy)), dtype=complex)
Ey = np.zeros((len(xx), len(yy)), dtype=complex)
print('Start beam field map generation.')
for ii in range(len(xx)):
if np.mod(ii, Nx / 20) == 0:
print(('Beam field map generation %.0f'%(float(ii) / float(Nx) * 100) + """%"""))
if progress_mapgen_file is not None:
fprog = open(progress_mapgen_file, 'a')
fprog.write(('Done %.0f'%(float(ii) / float(Nx) * 100) + """%""" + '\n'))
fprog.close()
for jj in range(len(yy)):
x = xx[ii]
y = yy[jj]
Ex_imag, Ey_imag = BE.ImageTerms(x, y, a, b, 0, 0, nimag)
Ex_BE, Ey_BE = BE.BassErsk(x, y, sigmax, sigmay)
Ex[ii, jj] = Ex_BE + Ex_imag
Ey[ii, jj] = Ey_BE + Ey_imag
Ex_beam = Ex.real
Ey_beam = Ey.real
xx_beam = xx
yy_beam = yy
#to do: 1 - log progress somehow 2 - save file and check 3 - check secondary beams 4 - check the beam is centered
if progress_mapgen_file is not None:
fprog = open(progress_mapgen_file, 'a')
fprog.write('Done.\n')
fprog.close()
print('Done beam field map generation.')
elif beam_field_file == 'compute_FDSW_multigrid':
if Dh_beam_field is None:
raise ValueError('Grid size Dh_beam_field MUST be provided for beam field computation!')
if f_telescope_beam is None:
raise ValueError('Aspect ratio MUST be provided for multigrid beam field computation!')
if target_grid_beam is None:
raise ValueError('Target grid MUST be provided for multigrid beam field computation!')
if N_nodes_discard_beam is None:
raise ValueError(' N_nodes_discard_beam MUST be provided for multigrid beam field computation!')
if N_min_Dh_main_beam is None:
raise ValueError(' N_min_Dh_main_beam MUST be provided for multigrid beam field computation!')
import PyPIC.FiniteDifferences_ShortleyWeller_SquareGrid as PIC_FDSW
PyPICmain = PIC_FDSW.FiniteDifferences_ShortleyWeller_SquareGrid(chamb=chamb, Dh=Dh_beam_field, sparse_solver='PyKLU')
import PyPIC.MultiGrid as PIC_MG
PyPICobj = PIC_MG.AddTelescopicGrids(pic_main=PyPICmain, f_telescope=f_telescope_beam, target_grid=target_grid_beam,
N_nodes_discard=N_nodes_discard_beam, N_min_Dh_main=N_min_Dh_main_beam, sparse_solver='PyKLU')
# set rho
# PyPICmain.rho=1./(2.*np.pi*sigmax*sigmay)*np.exp(-(PyPICmain.xn-x_beam_pos)**2/(2.*sigmax**2)-(PyPICmain.yn-y_beam_pos)**2/(2.*sigmay**2))
PyPICmain.rho = 1. / (4. * Dh_beam_field**2) * (sspe.erf((PyPICmain.xn - x_beam_pos) / (np.sqrt(2) * sigmax) + Dh_beam_field / (2 * np.sqrt(2) * sigmax))\
- sspe.erf((PyPICmain.xn - x_beam_pos) / (np.sqrt(2) * sigmax) - Dh_beam_field / (2 * np.sqrt(2) * sigmax)))\
* (sspe.erf((PyPICmain.yn - y_beam_pos) / (np.sqrt(2) * sigmay) + Dh_beam_field / (2 * np.sqrt(2) * sigmay))\
- sspe.erf((PyPICmain.yn - y_beam_pos) / (np.sqrt(2) * sigmay) - Dh_beam_field / (2 * np.sqrt(2) * sigmay)))
for pic_dual in PyPICobj.pic_list:
pic = pic_dual.pic_internal
dh = pic_dual.pic_internal.Dh
#pic.rho=1./(2.*np.pi*sigmax*sigmay)*np.exp(-(pic.xn-x_beam_pos)**2/(2.*sigmax**2)-(pic.yn-y_beam_pos)**2/(2.*sigmay**2))
pic.rho = 1. / (4. * dh**2) * (sspe.erf((pic.xn - x_beam_pos) / (np.sqrt(2) * sigmax) + dh / (2 * np.sqrt(2) * sigmax))\
- sspe.erf((pic.xn - x_beam_pos) / (np.sqrt(2) * sigmax) - dh / (2 * np.sqrt(2) * sigmax)))\
* (sspe.erf((pic.yn - y_beam_pos) / (np.sqrt(2) * sigmay) + dh / (2 * np.sqrt(2) * sigmay))\
- sspe.erf((pic.yn - y_beam_pos) / (np.sqrt(2) * sigmay) - dh / (2 * np.sqrt(2) * sigmay)))
PyPICobj.solve()
self.PyPIC_state = PyPICobj.get_state_object()
self.get_beam_eletric_field = self._get_beam_eletric_field_PyPICstate
flag_PyPIC_state_mode = True
del(PyPICobj)
else:
print('Loading beam field map from file:')
print(beam_field_file)
dict_beam = sio.loadmat(beam_field_file)
Ex_beam = np.squeeze(dict_beam['Ex'].real)
Ey_beam = np.squeeze(dict_beam['Ey'].real)
xx_beam = np.squeeze(dict_beam['xx'].T)
yy_beam = np.squeeze(dict_beam['yy'].T)
if save_beam_field_file_as is not None:
if flag_PyPIC_state_mode:
raise ValueError('You cannot save the field maps in multigrid mode! Sorry...')
sio.savemat(save_beam_field_file_as, {'xx': xx_beam, 'yy': yy_beam, 'Ex': Ex_beam, 'Ey': Ey_beam,\
'sigmax': sigmax, 'sigmay': sigmay,\
'x_aper': chamb.x_aper, 'y_aper': chamb.y_aper}, oned_as='row')
if not flag_PyPIC_state_mode:
xmin_beam = np.min(xx_beam)
ymin_beam = np.min(yy_beam)
dx_beam = xx_beam[1] - xx_beam[0]
dy_beam = yy_beam[1] - yy_beam[0]
self.Ex_beam = Ex_beam
self.Ey_beam = Ey_beam
self.xmin_beam = xmin_beam
self.ymin_beam = ymin_beam
self.dx_beam = dx_beam
self.dy_beam = dy_beam
self.xx_beam = xx_beam
self.yy_beam = yy_beam
if not(flag_unif_Dt):
print('Cloud simulation in non-uniform Dt mode.')
print('Dt provided in input will be used only as reference for savings and substeps.')
self.flag_unif_Dt = flag_unif_Dt
self.Nt = Nt
self.b_spac = b_spac
self.lam_t_array = lam_t_array
self.beam_charge = beam_charge
self.t = t
self.Dt = Dt
self.N_pass_tot = N_pass_tot
self.lam_th_beam_field = lam_th_beam_field
self.ii_curr = -1
self.tt_curr = None
self.lam_t_curr = None
self.pass_numb = None
self._pass_numb_old = -1
self.sigmax = sigmax
self.sigmay = sigmay
self.x_beam_pos = x_beam_pos
self.y_beam_pos = y_beam_pos
self.flag_secodary_beam = flag_secodary_beam
def next_time_step(self):
self.ii_curr += 1
self.tt_curr = self.t[self.ii_curr]
self.Dt_curr = self.t[self.ii_curr + 1] - self.t[self.ii_curr]
self.lam_t_curr = self.lam_t_array[self.ii_curr]
self.pass_numb = int(np.floor(self.tt_curr / self.b_spac))
self.flag_new_bunch_pass = (self.pass_numb > self._pass_numb_old)
if self.flag_new_bunch_pass:
self._pass_numb_old = self.pass_numb
def end_simulation(self):
return ((self.ii_curr + 2) >= self.Nt) # I need the last point to compute Dt
def get_beam_eletric_field(self, MP_e):
if (self.lam_t_curr > self.lam_th_beam_field) and (MP_e.N_mp > 0):
## compute beam electric field
Ex_n_beam, Ey_n_beam = iff.int_field(MP_e.x_mp[0:MP_e.N_mp], MP_e.y_mp[0:MP_e.N_mp],
self.xmin_beam, self.ymin_beam, self.dx_beam, self.dy_beam, self.Ex_beam, self.Ey_beam)
Ex_n_beam = self.beam_charge * self.lam_t_curr * Ex_n_beam
Ey_n_beam = self.beam_charge * self.lam_t_curr * Ey_n_beam
else:
Ex_n_beam = 0.
Ey_n_beam = 0.
return Ex_n_beam, Ey_n_beam
def _get_beam_eletric_field_PyPICstate(self, MP_e):
if (self.lam_t_curr > self.lam_th_beam_field) and (MP_e.N_mp > 0):
## compute beam electric field
Ex_n_beam, Ey_n_beam = self.PyPIC_state.gather(MP_e.x_mp[0:MP_e.N_mp], MP_e.y_mp[0:MP_e.N_mp])
Ex_n_beam = self.beam_charge * self.lam_t_curr * Ex_n_beam
Ey_n_beam = self.beam_charge * self.lam_t_curr * Ey_n_beam
else:
Ex_n_beam = 0.
Ey_n_beam = 0.
return Ex_n_beam, Ey_n_beam