-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathLHC_Energy.py
49 lines (35 loc) · 1.76 KB
/
LHC_Energy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import numpy as np
from . import TimberManager as tm
from scipy.interpolate import interp1d
class energy:
def __init__(self, timber_variable, beam=0, t_start_fill=None, t_end_fill=None):
if type(timber_variable) is str:
if not (beam == 1 or beam == 2):
raise ValueError('You need to specify which beam! (1 or 2)')
dict_timber = tm.parse_timber_file(timber_variable, verbose=True)
timber_variable_energy = dict_timber[get_variable_dict(beam)['ENERGY']]
elif hasattr(timber_variable, '__getitem__'):
timber_variable_energy = timber_variable[get_variable_dict(beam)['ENERGY']]
self.t_stamps = timber_variable_energy.t_stamps
self.energy = np.atleast_1d(np.squeeze(timber_variable_energy.float_values()))
#self.energy = map(lambda x: float(x[0]), self.energy)
if len(self.energy) == 1 and t_start_fill is not None and t_end_fill is not None:
self.t_stamps = [t_start_fill, t_end_fill]
self.energy = 2*[self.energy[0]]
self.t_stamps = np.array(self.t_stamps)
self.energy = np.array(self.energy)
self.interp = interp1d(self.t_stamps, self.energy, bounds_error=False)
def nearest_older_sample(self, t_obs):
ind_min = np.argmin(np.abs(self.t_stamps - t_obs))
if self.t_stamps[ind_min] > t_obs:
ind_min -= 1
return self.energy[ind_min]
def get_variable_dict(beam):
var_dict = {}
var_dict['ENERGY'] = 'LHC.BSRA.US45.B%d:ABORT_GAP_ENERGY'%beam
return var_dict
def variable_list(beams = [1,2]):
var_list = []
for beam in beams:
var_list += list(get_variable_dict(beam).values())
return var_list