-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmore_plots_one_chat.py
53 lines (41 loc) · 1.48 KB
/
more_plots_one_chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import sys
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from tensorboardX import SummaryWriter
from util import *
EPOCHS_TO_TRAIN = 5000 #50000
net = Net()
writer_train = SummaryWriter('runs/train_0')
writer_test = SummaryWriter('runs/test_0')
writer = SummaryWriter('runs/net_0')
writer.add_graph(net, torch.Tensor([[1,0]]), True)
criterion = nn.MSELoss()
optimizer = optim.SGD(net.parameters(), lr=0.01)
print("Training loop:")
for idx in range(0, EPOCHS_TO_TRAIN):
for input, target in zip(inputs, targets):
optimizer.zero_grad()
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step() # Does the update
#########################################
#ADD TRAINING LOSS TO SummaryWriter
writer_train.add_scalar('LOSS', loss.data.item(), idx)
for input, target in zip(inputs_test, targets_test):
output = net(input)
loss_test = criterion(output, target)
#########################################
#ADD TEST LOSS TO SummaryWriter
writer_test.add_scalar('LOSS', loss_test.data.item(), idx)
#check progress
if idx%100==0:
sys.stdout.write("Iterations: %d \r" % (idx) )
sys.stdout.flush()
print("Final results:")
test(inputs_test, targets_test, net)
print("Saving model")
net = torch.save(net, '.log/model.pth')