-
Notifications
You must be signed in to change notification settings - Fork 1
IoT Security
PROJECT ZERO edited this page Jan 18, 2025
·
1 revision
IoT security capabilities are essential for protecting Internet of Things (IoT) devices and networks from cyber threats. These capabilities include device security, network security, and data security. By implementing robust IoT security measures, organizations can ensure the integrity, confidentiality, and availability of their IoT systems.
- Device Security: Ensuring the security of individual IoT devices through secure boot, firmware updates, and device authentication.
- Network Security: Protecting IoT networks from unauthorized access and attacks through network segmentation, encryption, and intrusion detection systems.
- Data Security: Safeguarding the data generated and transmitted by IoT devices through encryption, access controls, and data integrity checks.
Protecting against IoT-based threats involves implementing a comprehensive security strategy that addresses the unique challenges posed by IoT devices and networks. This includes securing the devices themselves, the networks they connect to, and the data they generate and transmit.
- Botnet Attacks: Implementing measures to detect and mitigate botnet attacks that target IoT devices, such as the Mirai botnet.
- Unauthorized Access: Using strong authentication and access controls to prevent unauthorized access to IoT devices and networks.
- Data Breaches: Encrypting data at rest and in transit to protect against data breaches and ensuring data integrity through regular checks and audits.
Defense Intelligence Agency • Special Access Program • Project Red Sword
TABLE OF CONTENTS
- Home
- Advanced Attack Features
- Advanced Data Loss Prevention
- Advanced Data Loss Prevention (DLP)
- Advanced Network Traffic Analysis
- Advanced Threat Intelligence
- AI Control Over Evasion
- AI Driven Attack and Defense
- AI Operating Procedures
- AI Powered Red Teaming
- AI‐Driven Attack Simulations
- AI‐Powered Defense Mechanisms
- Alerts and Notifications
- API Keys and Credentials
- Automated Actions
- Automated Incident Response
- Automated Threat Detection
- Automated Workflows
- AWS Deployment
- Azure Deployment
- C2 Dashboard and Device Details
- Clone The Repository
- Cloud Deployment
- Cloud Security
- Compliance Management
- Compliance With Local Laws
- Container Security
- Continous Authentication and Authorization
- Continuous Authentication and Authorization
- Controlled Environments
- Create a New Branch
- Custom Scripts
- Custom Themes
- Customizable Dashboards
- Custon AI Models
- Dark Mode
- Deception Technology
- Device Relationships
- Digital Ocean Deployment
- Docker Deployment
- Email Notifications
- Enhancements to Add
- Environment Variables
- Ethical and Legal Use
- Evasion Techniques
- Exploit Payload and Development
- Fork The Repository
- Future Implementations
- Google Cloud Deployment
- Handling Intruders and Compromised Systems
- Incident Response Alerts
- Industry Standards
- IoT Security
- Make Changes and Commit
- Manual Actions
- Manual Workflows
- Network Monitoring
- Network Overview
- Network Topology
- Open a Pull Request
- OpenAI Integration
- Penetration Testing Modules
- Post Exploitation Modules
- Predefined Scripts
- Predictive Analytics
- Pre‐defined Scripts
- Project Checklist
- Push Changes to Fork
- Quantum Computing‐Resistant Cryptography
- Real‐Time Alerts
- Real‐Time Threat Detection and Evasion
- Regulatory Requirements
- Role‐Based Access Control (RBAC)
- Running the Application
- Security Awareness Training
- Security Considerations
- Security Information and Event Management (SIEM)
- Security Orchestration, Automation, and Response (SOAR)
- Serverless Security
- Setup and Installation
- SIEM
- SOAR
- Table of Contents
- Vulnerability Management
- Vulnerability Scanner
- Web Scraping and ReconnaissanceHome
- Advanced Attack Features
- Advanced Data Loss Prevention
- Advanced Data Loss Prevention (DLP)
- Advanced Network Traffic Analysis
- Advanced Threat Intelligence
- AI Control Over Evasion
- AI Driven Attack and Defense
- AI Operating Procedures
- AI Powered Red Teaming
- AI‐Driven Attack Simulations
- AI‐Powered Defense Mechanisms
- Alerts and Notifications
- API Keys and Credentials
- Automated Actions
- Automated Incident Response
- Automated Threat Detection
- Automated Workflows
- AWS Deployment
- Azure Deployment
- C2 Dashboard and Device Details
- Clone The Repository
- Cloud Deployment
- Cloud Security
- Compliance Management
- Compliance With Local Laws
- Container Security
- Continous Authentication and Authorization
- Continuous Authentication and Authorization
- Controlled Environments
- Create a New Branch
- Custom Scripts
- Custom Themes
- Customizable Dashboards
- Custon AI Models
- Dark Mode
- Deception Technology
- Device Relationships
- Digital Ocean Deployment
- Docker Deployment
- Email Notifications
- Enhancements to Add
- Environment Variables
- Ethical and Legal Use
- Evasion Techniques
- Exploit Payload and Development
- Fork The Repository
- Future Implementations
- Google Cloud Deployment
- Handling Intruders and Compromised Systems
- Incident Response Alerts
- Industry Standards
- IoT Security
- Make Changes and Commit
- Manual Actions
- Manual Workflows
- Network Monitoring
- Network Overview
- Network Topology
- Open a Pull Request
- OpenAI Integration
- Penetration Testing Modules
- Post Exploitation Modules
- Predefined Scripts
- Predictive Analytics
- Pre‐defined Scripts
- Project Checklist
- Push Changes to Fork
- Quantum Computing‐Resistant Cryptography
- Real‐Time Alerts
- Real‐Time Threat Detection and Evasion
- Regulatory Requirements
- Role‐Based Access Control (RBAC)
- Running the Application
- Security Awareness Training
- Security Considerations
- Security Information and Event Management (SIEM)
- Security Orchestration, Automation, and Response (SOAR)
- Serverless Security
- Setup and Installation
- SIEM
- SOAR
- Table of Contents
- Vulnerability Management
- Vulnerability Scanner
- Web Scraping and Reconnaissance