Replies: 5 comments 1 reply
-
I just want to do binary segmentation: background (channel 0) and whole tumor (channel 1). So, the transformation is: For BraTS 2021 Datasetimport os class ConvertToTwoChannelsd(transforms.MapTransform):
class BraTS2021Dataset(Dataset):
And the architecture is: model = SwinUNETR( |
Beta Was this translation helpful? Give feedback.
-
This is my validate script:
logits = model_inferer(data)
with the post transformations as: post_sigmoid = Activations(sigmoid=True) |
Beta Was this translation helpful? Give feedback.
-
I am using most of the code from here: "https://github.com/Project-MONAI/tutorials/blob/main/3d_segmentation/swin_unetr_brats21_segmentation_3d.ipynb" but with custom transforms for binary segmentations |
Beta Was this translation helpful? Give feedback.
-
Hi @soumbane, I would suggest you check your data after transforms first, please ensure all the data have ensure channel first. Thanks. |
Beta Was this translation helpful? Give feedback.
-
This issue is solved |
Beta Was this translation helpful? Give feedback.
-
Hi,
I am using MONAI's Swin UNETR architecture for prediction of segmentation masks using BraTS 2021 dataset. However, I get these weird segmentation maps predicted even though the dice score is very high (above 90%).
![img_GT](https://private-user-images.githubusercontent.com/15853648/353592000-a839d9a6-8129-46d1-a8ff-50b2e4e55372.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzk0MzYyMDEsIm5iZiI6MTczOTQzNTkwMSwicGF0aCI6Ii8xNTg1MzY0OC8zNTM1OTIwMDAtYTgzOWQ5YTYtODEyOS00NmQxLWE4ZmYtNTBiMmU0ZTU1MzcyLnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMTMlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjEzVDA4MzgyMVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPTlkMWE2NjZjZmFkZDJlYjc0MjA0MGM0OTAxZTFkZTA1ZTg0ODc1OWI0ODVjNmFkYjQ1N2FmNmRlYTNmNThjNjEmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.73cBj6ZGNOdUExME_ExQ27Tfbr0Cbb8-EyM9Fse5n88)
![img_pred](https://private-user-images.githubusercontent.com/15853648/353592005-02b1f027-5ea9-4680-b8c2-a3ec023b9d80.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzk0MzYyMDEsIm5iZiI6MTczOTQzNTkwMSwicGF0aCI6Ii8xNTg1MzY0OC8zNTM1OTIwMDUtMDJiMWYwMjctNWVhOS00NjgwLWI4YzItYTNlYzAyM2I5ZDgwLnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMTMlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjEzVDA4MzgyMVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPTU3NGIzYWE0OTc1MWMwMWJlMTJhMWM2NThhYWQ2NTgyOWY5MGQ1MWZhZWI5MjllNDk2YmM2MjM5YTk1ZDYxNjkmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.TtNVrgXZu8XxzGtlUthGJCsx2CdZDKvuOwLpD0eXkSU)
Beta Was this translation helpful? Give feedback.
All reactions