diff --git a/monai/metrics/fid.py b/monai/metrics/fid.py index d655ac1bee..596f9aef7c 100644 --- a/monai/metrics/fid.py +++ b/monai/metrics/fid.py @@ -82,7 +82,7 @@ def _cov(input_data: torch.Tensor, rowvar: bool = True) -> torch.Tensor: def _sqrtm(input_data: torch.Tensor) -> torch.Tensor: """Compute the square root of a matrix.""" - scipy_res, _ = scipy.linalg.sqrtm(input_data.detach().cpu().numpy().astype(np.float_), disp=False) + scipy_res, _ = scipy.linalg.sqrtm(input_data.detach().cpu().numpy().astype(np.float64), disp=False) return torch.from_numpy(scipy_res) diff --git a/monai/transforms/utils_pytorch_numpy_unification.py b/monai/transforms/utils_pytorch_numpy_unification.py index 98b75cff76..365bd1eab5 100644 --- a/monai/transforms/utils_pytorch_numpy_unification.py +++ b/monai/transforms/utils_pytorch_numpy_unification.py @@ -88,7 +88,7 @@ def moveaxis(x: NdarrayOrTensor, src: int | Sequence[int], dst: int | Sequence[i def in1d(x, y): """`np.in1d` with equivalent implementation for torch.""" if isinstance(x, np.ndarray): - return np.in1d(x, y) + return np.isin(x, y) return (x[..., None] == torch.tensor(y, device=x.device)).any(-1).view(-1) diff --git a/pyproject.toml b/pyproject.toml index c2ab92a43d..9dc9cf619b 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -39,7 +39,18 @@ exclude = "monai/bundle/__main__.py" [tool.ruff] line-length = 133 -lint.ignore = ["F401", "E741"] +target-version = "py39" + +[tool.ruff.lint] +select = [ + "E", "F", "W", # flake8 + "NPY", # NumPy specific rules +] +extend-ignore = [ + "E741", # ambiguous variable name + "F401", # unused import + "NPY002", # numpy-legacy-random +] [tool.pytype] # Space-separated list of files or directories to exclude. diff --git a/tests/test_compute_f_beta.py b/tests/test_compute_f_beta.py index 43ebb6a6d5..be2a7fc176 100644 --- a/tests/test_compute_f_beta.py +++ b/tests/test_compute_f_beta.py @@ -59,7 +59,7 @@ def test_with_nan_values(self): metric = FBetaScore(get_not_nans=True) metric( y_pred=torch.Tensor([[1, 1, 1], [1, 1, 1], [1, 1, 1]]), - y=torch.Tensor([[1, 0, 1], [np.NaN, np.NaN, np.NaN], [1, 0, 1]]), + y=torch.Tensor([[1, 0, 1], [np.nan, np.nan, np.nan], [1, 0, 1]]), ) assert_allclose(metric.aggregate()[0][0], torch.Tensor([0.727273]), atol=1e-6, rtol=1e-6)