-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain.py
133 lines (100 loc) · 4.98 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# -*- coding:utf-8 -*-
# Created Time: Oct 13 Apr 2017 04:07:50 PM CST
# Author: Taihong Xiao <xiaotaihong@126.com>
import tensorflow as tf
import os
from model import Model
from dataset import config, Dataset
import numpy as np
from scipy import misc
import argparse
def run(config, dataset, model, gpu):
os.environ["CUDA_VISIBLE_DEVICES"] = gpu
batchs, labels = dataset.input()
saver = tf.train.Saver()
# image summary
image_summry_op = []
image_summry_op += [tf.summary.image('Ax_{}'.format(i), model.Axs[i], max_outputs=30) for i in range(model.n_feat)]
image_summry_op += [tf.summary.image('Be_{}'.format(i), model.Bes[i], max_outputs=30) for i in range(model.n_feat)]
image_summry_op += [tf.summary.image('Ax2_{}'.format(i), model.Axs2[i], max_outputs=30) for i in range(model.n_feat)]
image_summry_op += [tf.summary.image('Be2_{}'.format(i), model.Bes2[i], max_outputs=30) for i in range(model.n_feat)]
image_summry_op += [tf.summary.image('Ae_{}'.format(i), model.Aes[i], max_outputs=30) for i in range(model.n_feat)]
image_summry_op += [tf.summary.image('Bx_{}'.format(i), model.Bxs[i], max_outputs=30) for i in range(model.n_feat)]
# G loss summary
for key in model.G_loss.keys():
tf.summary.scalar(key, model.G_loss[key])
loss_G_nodecay_op = tf.summary.scalar('loss_G_nodecay', model.loss_G_nodecay)
loss_G_decay_op = tf.summary.scalar('loss_G_decay', model.loss_G_decay)
loss_G_op = tf.summary.scalar('loss_G', model.loss_G)
# D loss summary
for key in model.D_loss.keys():
tf.summary.scalar(key, model.D_loss[key])
loss_D_op = tf.summary.scalar('loss_D', model.loss_D)
# learning rate summary
g_lr_op = tf.summary.scalar('g_learning_rate', model.g_lr)
d_lr_op = tf.summary.scalar('d_learning_rate', model.d_lr)
# merged_op = tf.contrib.deprecated.merge_all_summaries()
merged_op = tf.summary.merge_all()
# start training
sess = tf.Session()
sess.run(tf.global_variables_initializer())
ckpt = tf.train.get_checkpoint_state(config.model_dir)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
writer = tf.summary.FileWriter(config.log_dir, sess.graph)
writer.add_graph(sess.graph)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
for i in range(config.max_iter):
d_num = 100 if i % 500 == 0 else 1
batch_images, batch_labels = sess.run([batchs, labels])
feed_dict = {model.g_lr: config.g_lr(epoch=i),
model.d_lr: config.d_lr(epoch=i),
}
for j in range(model.n_feat):
feed_dict[model.Axs[j]] = batch_images[2*j]
feed_dict[model.Bes[j]] = batch_images[2*j+1]
feed_dict[model.label_Axs[j]] = batch_labels[2*j]
feed_dict[model.label_Bes[j]] = batch_labels[2*j+1]
# from IPython import embed; embed();exit()
# update D with clipping
for j in range(d_num):
_, loss_D_sum, _ = sess.run([model.d_opt, model.loss_D, model.clip_d],feed_dict=feed_dict)
# update G
_, loss_G_sum = sess.run([model.g_opt, model.loss_G], feed_dict=feed_dict)
print('iter: {:06d}, g_loss: {} d_loss: {}'.format(i, loss_D_sum, loss_G_sum))
if i % 20 == 0:
merged_summary = sess.run(merged_op, feed_dict=feed_dict)
writer.add_summary(merged_summary, i)
if i % 500 == 0:
saver.save(sess, os.path.join(config.model_dir, 'model_{:06d}.ckpt'.format(i)))
img_Axs, img_Bes, img_Aes, img_Bxs, img_Axs2, img_Bes2 = sess.run([model.Axs, model.Bes, model.Aes, model.Bxs, model.Axs2, model.Bes2],
feed_dict=feed_dict)
for k in range(model.n_feat):
for j in range(5):
img = np.concatenate((img_Axs[k][j], img_Bes[k][j], img_Aes[k][j], img_Bxs[k][j], img_Axs2[k][j], img_Bes2[k][j]), axis=1)
misc.imsave(os.path.join(config.sample_img_dir, 'iter_{:06d}_{}_{}.jpg'.format(i,j, model.feature_list[k])), img)
writer.close()
saver.save(sess, os.path.join(config.model_dir, 'model.ckpt'))
coord.request_stop()
coord.join(threads)
def main():
parser = argparse.ArgumentParser(description='test', formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument(
'-a', '--attributes',
nargs='+',
type=str,
help='Specify attribute name for training. \nAll attributes can be found in list_attr_celeba.txt'
)
parser.add_argument(
'-g', '--gpu',
default='0',
type=str,
help='Specify GPU id. \ndefault: %(default)s. \nUse comma to seperate several ids, for example: 0,1'
)
args = parser.parse_args()
celebA = Dataset(args.attributes)
DNA_GAN = Model(args.attributes, is_train=True)
run(config, celebA, DNA_GAN, gpu=args.gpu)
if __name__ == "__main__":
main()