-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtest.py
346 lines (301 loc) · 13.4 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
# -*- coding:utf-8 -*-
# Created Time: Tue 02 May 2017 09:42:27 PM CST
# $Author: Taihong Xiao <xiaotaihong@126.com>
import tensorflow as tf
import numpy as np
from model import Model
from dataset import Dataset
import os
# import cv2
from scipy import misc
import argparse
def swap_attribute(src_img, att_img, swap_list, model_dir, model, gpu):
'''
Input
src_img: the source image that you want to change its attribute
att_img: the attribute image that has certain attribute
swap_list: the swap id list
model_dir: the directory that contains the checkpoint, ckpt.* files
model: the DNA_GAN network that defined in train.py
gpu: for example, '0,1'. Use '' for cpu mode
Output
out1: src_img with attributes
out2: att_img without attributes
'''
os.environ["CUDA_VISIBLE_DEVICES"] = gpu
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
ckpt = tf.train.get_checkpoint_state(model_dir)
# print(ckpt)
# print(ckpt.model_checkpoint_path)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
Ax = tf.placeholder(tf.float32, [model.batch_size,model.height,model.width,model.channel],name='Ax')
Be = tf.placeholder(tf.float32, [model.batch_size,model.height,model.width,model.channel],name='Be')
enc_Ax = model.splitter('encoder', Ax)
enc_Be = model.splitter('encoder', Be)
enc_Ae, enc_Bx = model.swap_attribute(enc_Ax, enc_Be, swap_list)
Ae = model.joiner('decoder', enc_Ae)
Bx = model.joiner('decoder', enc_Bx)
out2, out1 = sess.run([Ae, Bx], feed_dict={Ax: att_img, Be:src_img})
swap = np.concatenate((src_img[0], att_img[0], out1[0], out2[0]), 1)
misc.imsave('swap.jpg', swap)
# misc.imsave('out1.jpg', out1[0])
# misc.imsave('out2.jpg', out2[0])
def interpolation(src_img, att_img, swap_id, inter_num, model_dir, model, gpu):
'''
Input
src_img: the source image that you want to change its attribute
att_img: the attribute image that has certain attribute
swap_id: the attribute id
inter_num: number of interpolation points
model_dir: the directory that contains the checkpoint, ckpt.* files
model: the DNA_GAN network that defined in train.py
gpu: for example, '0,1'. Use '' for cpu mode
Output
out: [src_img, inter1, inter2, ..., inter_{inter_num}]
'''
os.environ["CUDA_VISIBLE_DEVICES"] = gpu
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
ckpt = tf.train.get_checkpoint_state(model_dir)
# print(ckpt)
# print(ckpt.model_checkpoint_path)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
Ax = tf.placeholder(tf.float32, [model.batch_size,model.height,model.width,model.channel],name='Ax')
Be = tf.placeholder(tf.float32, [model.batch_size,model.height,model.width,model.channel],name='Be')
enc_Ax = model.splitter('encoder', Ax)
enc_Be = model.splitter('encoder', Be)
out = src_img[0]
for i in range(1, inter_num + 1):
lambda_i = i / float(inter_num)
enc_Bx_i = [tf.identity(enc) for enc in enc_Be]
enc_Bx_i[swap_id] = enc_Ax[swap_id] * lambda_i
Bx_i = model.joiner('decoder', enc_Bx_i)
out_i = sess.run(Bx_i, feed_dict={Ax: att_img, Be: src_img})
out = np.concatenate((out, out_i[0]), axis=1)
return out
def interpolation2(src_img, att_imgs, swap_list, size, model_dir, model, gpu):
'''
Input
src_img: the source image that you want to change its attribute
att_imgs: the attribute images that has certain attribute
swap_list: the attributes list
size: size of output matrix
model_dir: the directory that contains the checkpoint, ckpt.* files
model: the DNA_GAN network that defined in train.py
gpu: for example, '0,1'. Use '' for cpu mode
Output
out: [src_img, inter1, inter2, ..., inter_{inter_num}]
'''
os.environ["CUDA_VISIBLE_DEVICES"] = gpu
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
ckpt = tf.train.get_checkpoint_state(model_dir)
# print(ckpt)
# print(ckpt.model_checkpoint_path)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
m, n = size
h, w = model.height, model.width
Ax1 = tf.placeholder(tf.float32, [model.batch_size,model.height,model.width,model.channel],name='Ax1')
Ax2 = tf.placeholder(tf.float32, [model.batch_size,model.height,model.width,model.channel],name='Ax2')
Be = tf.placeholder(tf.float32, [model.batch_size,model.height,model.width,model.channel],name='Be')
enc_Ax1 = model.splitter('encoder', Ax1)
enc_Ax2 = model.splitter('encoder', Ax2)
enc_Be = model.splitter('encoder', Be)
out = np.zeros((h * m, w * n, model.channel))
canvas = np.ones((h * m, w * (n+2), model.channel)) * 255
for i in range(m):
for j in range(n):
lambda_i = i / float(m-1)
lambda_j = j / float(n-1)
enc_Bx_i = [tf.identity(enc) for enc in enc_Be]
enc_Bx_i[0] = enc_Ax1[0] * lambda_i + enc_Be[0] * (1 - lambda_i)
enc_Bx_i[1] = enc_Ax2[1] * lambda_j + enc_Be[1] * (1 - lambda_j)
Bx_i_j = model.joiner('decoder', enc_Bx_i)
out_i_j = sess.run(Bx_i_j, feed_dict={Ax1: att_imgs[:1], Ax2: att_imgs[1:], Be: src_img})
out[i*h:(i+1)*h, j*w:(j+1)*w, :] = out_i_j[0]
canvas[:h,:w,:] = src_img
canvas[:h*m, w:w*(n+1),:] = out
canvas[:h,w*(n+1):w*(n+2),:] = att_imgs[1]
canvas[-h:,:w,:] = att_imgs[0]
return out, canvas
def interpolation1_(src_img, att_img, inter_num, model_dir, model, gpu):
'''
Input
src_img: the source image that you want to change its attribute
att_img: the attribute image that has certain attribute
inter_num: number of interpolation points
model_dir: the directory that contains the checkpoint, ckpt.* files
model: the DNA_GAN network that defined in train.py
gpu: for example, '0,1'. Use '' for cpu mode
Output
out: [src_img, inter1, inter2, ..., inter_{inter_num}]
'''
os.environ["CUDA_VISIBLE_DEVICES"] = gpu
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
ckpt = tf.train.get_checkpoint_state(model_dir)
# print(ckpt)
# print(ckpt.model_checkpoint_path)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
B, src_feat = sess.run([model.B, model.e], feed_dict={model.Be: src_img})
att_feat = sess.run(model.x, feed_dict={model.Ax: att_img})
out = src_img[0]
for i in range(1, inter_num + 1):
lambda_i = i / float(inter_num)
out_i = sess.run(model.joiner('G_joiner', B, src_feat + (att_feat - src_feat) * lambda_i) )
out = np.concatenate((out, out_i[0]), axis=1)
# print(out.shape)
misc.imsave('interpolation2.jpg', out)
def interpolation_matrix(src_img, att_imgs, swap_id, size, model_dir, model, gpu):
'''
Input
src_img: the source image that you want to change its attribute [1, h, w, c]
att_imgs: four attribute images that has certain attribute [4, h, w, c]
swap_id: the attribute id
size: the size of output matrix
model_dir: the directory that contains the checkpoint, ckpt.* files
model: the DNA_GAN network that defined in train.py
gpu: for example, '0,1'. Use '' for cpu mode
Output
out: image matrix
'''
os.environ["CUDA_VISIBLE_DEVICES"] = gpu
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
ckpt = tf.train.get_checkpoint_state(model_dir)
# print(ckpt)
# print(ckpt.model_checkpoint_path)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
m, n = size
h, w = model.height, model.width
rows = [[1 - i/float(m-1), i/float(m-1)] for i in range(m)]
cols = [[1 - i/float(n-1), i/float(n-1)] for i in range(n)]
four_tuple = []
for row in rows:
for col in cols:
four_tuple.append([row[0]*col[0], row[0]*col[1], row[1]*col[0], row[1]*col[1]])
Axs = [tf.placeholder(tf.float32, [model.batch_size,model.height,model.width,model.channel]) for i in range(4)]
Be = tf.placeholder(tf.float32, [model.batch_size,model.height,model.width,model.channel],name='Be')
feed_dict = {Be: src_img}
for i in range(4):
feed_dict[Axs[i]] = att_imgs[i:i+1]
enc_Axs = [model.splitter('encoder', Ax) for Ax in Axs]
enc_Be = model.splitter('encoder', Be)
out = np.zeros((h * m, w * n, model.channel))
canvas = np.ones((h * m, w * (n+2), model.channel)) * 255
cnt = 0
for i in range(m):
for j in range(n):
four = four_tuple[cnt]
cnt += 1
enc_Bx_i_j = [tf.identity(enc) for enc in enc_Be]
enc_Bx_i_j[swap_id] = sum([four[k] * enc_Axs[k][swap_id] for k in range(4)])
Bx_i_j = model.joiner('decoder', enc_Bx_i_j)
out_i_j = sess.run(Bx_i_j, feed_dict=feed_dict)
out[i*h:(i+1)*h, j*w:(j+1)*w, :] = out_i_j[0]
# misc.imsave('out_{:02d}.jpg'.format(cnt), out_i_j[0])
canvas[:h,:w,:] = att_imgs[0]
canvas[:h,-w:,:] = att_imgs[1]
canvas[-h:,:w,:] = att_imgs[2]
canvas[-h:,-w:,:] = att_imgs[3]
canvas[:,w:-w,:] = out
return out, canvas
def main():
parser = argparse.ArgumentParser(description='test', formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument(
'-m', '--mode',
default='swap',
type=str,
choices=['swap', 'interpolation', 'interpolation2', 'matrix'],
help='Specify mode.'
)
parser.add_argument(
'-a', '--attributes',
nargs='+',
type=str,
help='attributes list'
)
parser.add_argument(
'--swap_list',
nargs='+',
type=int,
help='0/1 list'
)
parser.add_argument(
'-i', '--input',
type=str,
help='Specify source image name.'
)
parser.add_argument(
'-t', '--target',
metavar='target image with attributes',
type=str,
help='Specify target image name.'
)
parser.add_argument(
'--targets',
nargs='+',
type=str,
help='Specify target image name.'
)
parser.add_argument(
'--model_dir',
default='train_log/model/',
type=str,
help='Specify model_dir. \ndefault: %(default)s.'
)
parser.add_argument(
'-n', '--num',
default='2',
type=int,
help='Specify number of interpolations.'
)
parser.add_argument(
'-s', '--size',
nargs=2,
default=[3,3],
type=int,
help='Specify number of interpolations.'
)
parser.add_argument(
'-g', '--gpu',
default='',
type=str,
help='Specify GPU id. \ndefault: %(default)s. \nUse comma to seperate several ids, for example: 0,1'
)
args = parser.parse_args()
DNA_GAN = Model(feature_list=args.attributes, is_train=False, nhwc=[1,64,64,3])
if args.mode == 'swap':
src_img = np.expand_dims(misc.imresize(misc.imread(args.input), (DNA_GAN.height, DNA_GAN.width)), axis=0)
att_img = np.expand_dims(misc.imresize(misc.imread(args.target), (DNA_GAN.height, DNA_GAN.width)), axis=0)
swap_attribute(src_img, att_img, args.swap_list, args.model_dir, DNA_GAN, args.gpu)
elif args.mode == 'interpolation':
src_img = np.expand_dims(misc.imresize(misc.imread(args.input), (DNA_GAN.height, DNA_GAN.width)), axis=0)
att_img = np.expand_dims(misc.imresize(misc.imread(args.target), (DNA_GAN.height, DNA_GAN.width)), axis=0)
out = interpolation(src_img, att_img, args.swap_list[0], args.num, args.model_dir, DNA_GAN, args.gpu)
misc.imsave('interpolation.jpg', out)
elif args.mode == 'interpolation2':
src_img = np.expand_dims(misc.imresize(misc.imread(args.input), (DNA_GAN.height, DNA_GAN.width)), axis=0)
att_imgs = np.array([misc.imresize(misc.imread(img), (DNA_GAN.height, DNA_GAN.width)) for img in args.targets])
out, canvas = interpolation2(src_img, att_imgs, args.swap_list, args.size, args.model_dir, DNA_GAN, args.gpu)
misc.imsave('interpolation2.jpg', canvas)
elif args.mode == 'matrix':
src_img = np.expand_dims(misc.imresize(misc.imread(args.input), (DNA_GAN.height, DNA_GAN.width)), axis=0)
att_imgs = np.array([misc.imresize(misc.imread(img), (DNA_GAN.height, DNA_GAN.width)) for img in args.targets])
out, canvas = interpolation_matrix(src_img, att_imgs, args.swap_list[0], args.size, args.model_dir, DNA_GAN, args.gpu)
misc.imsave('four_matrix.jpg', canvas)
else:
raise NotImplementationError()
if __name__ == "__main__":
main()