-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathcreate_tfrecords.py
91 lines (71 loc) · 2.93 KB
/
create_tfrecords.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# -*- coding:utf-8 -*-
# Created Time: 2017/10/07 10:31:10
# Author: Taihong Xiao <xiaotaihong@126.com>
import tensorflow as tf
from tqdm import tqdm
import os, math
from scipy import misc
from functools import partial
from multiprocessing import Pool
def int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def int64_list_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def bytes_list_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
def float_list_feature(value):
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
def create_tf_example(line, attribute_name, img_dir):
info = line.split()
img_name = os.path.join(img_dir, info[0])
img = misc.imread(img_name)
# from IPython import embed; embed();exit()
feature={
'image/id_name': bytes_feature(info[0]),
'image/height' : int64_feature(img.shape[0]),
'image/width' : int64_feature(img.shape[1]),
'image/encoded': bytes_feature(tf.compat.as_bytes(img.tostring())),
}
for j, val in enumerate(info[1:]):
feature[attribute_name[j]] = int64_feature(int(val))
example = tf.train.Example(features=tf.train.Features(feature=feature))
return example
def work(list_id):
data_dir = './datasets/celebA/'
img_dir = os.path.join(data_dir, 'align_5p')
attri_file = os.path.join(data_dir, 'list_attr_celeba.txt')
tfrecords_dir = os.path.join(data_dir, 'align_5p_tfrecords')
with open(attri_file, 'r') as f:
lines = f.read().strip().split('\n')
attribute_name = lines[1].split()
lines = lines[2:]
writer = tf.python_io.TFRecordWriter(os.path.join(tfrecords_dir, '{:02d}.tfrecords'.format(list_id)))
if (list_id + 1) * 20000 <= len(lines):
id_list = range(list_id * 20000, (list_id + 1) * 20000)
else:
id_list = range(list_id * 20000, len(lines))
for i in id_list:
example = create_tf_example(lines[i], attribute_name, img_dir)
writer.write(example.SerializeToString())
writer.close()
def main():
data_dir = './datasets/celebA/'
img_dir = os.path.join(data_dir, 'align_5p')
attri_file = os.path.join(data_dir, 'list_attr_celeba.txt')
tfrecords_dir = os.path.join(data_dir, 'align_5p_tfrecords')
if not os.path.exists(tfrecords_dir):
os.makedirs(tfrecords_dir)
with open(attri_file, 'r') as f:
lines = f.read().strip().split('\n')
attribute_name = lines[1].split()
print(len(lines))
# from IPython import embed; embed(); exit()
pool = Pool(11)
# partial_work = partial(work, lines)
pool.map(work, list(range(int(math.ceil((len(lines)-2) / 20000.)))))
pool.close()
pool.join()
if __name__ == "__main__":
main()