-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrandom_seed.py
44 lines (37 loc) · 1.51 KB
/
random_seed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from builtins import * # NOQA
import os
import random
import chainer
import numpy as np
def set_random_seed(seed, gpus=()):
"""Set a given random seed to ChainerRL's random sources.
This function sets a given random seed to random sources that ChainerRL
depends on so that ChainerRL can be deterministic. It is not responsible
for setting a random seed to environments ChainerRL is applied to.
Note that there's no guaranteed way to make all the computations done by
Chainer deterministic. See https://github.com/chainer/chainer/issues/4134.
Args:
seed (int): Random seed [0, 2 ** 32).
gpus (tuple of ints): GPU device IDs to use. Negative values are ignored.
"""
# ChainerRL depends on random
random.seed(seed)
# ChainerRL depends on numpy.random
np.random.seed(seed)
# ChainerRL depends on cupy.random for GPU computation
for gpu in gpus:
if gpu >= 0:
with chainer.cuda.get_device_from_id(gpu):
chainer.cuda.cupy.random.seed(seed)
# chainer.functions.n_step_rnn directly depends on CHAINER_SEED
os.environ['CHAINER_SEED'] = str(seed)
if __name__ == '__main__':
import sys
random_seed, gpu = int(sys.argv[1]), int(sys.argv[2])
if gpu >= 0:
chainer.cuda.check_cuda_available()
chainer.cuda.get_device(gpu).use()
set_random_seed(random_seed, (gpu,))
if gpu >= 0:
print([chainer.cuda.cupy.random.randint(1000) for i in range(10)])
print([np.random.randint(1000) for i in range(10)])