forked from natolambert/swarm-Iono-Sim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPolePlacement_DesiredState.m
251 lines (203 loc) · 7.92 KB
/
PolePlacement_DesiredState.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
%% Linearization of drone dynamics about hover & full-state feedback design
% ===============================
% AUTHOR Fabian Riether
% CREATE DATE 2013/08/25
% PURPOSE This code assists in linearizing drone dynamics and designing
% full-state feedback controls
% SPECIAL NOTES
% ===============================
% 2015/08/25 created
% ==================================
% ===============================
% 2017/02/15 Modifed by FB for ME231b class
% ==================================
% ===============================
% 2017/08/29 Modifed by Nathan Lambert for Ionocraft Flight
% ==================================
%% Load drone parameters from RoboticsToolbox
% load('parameters.mat');
%% State Variables: Equilibrium, desired, inputs
%%
% Do not change, These are the location where linearization is calculated from -------------
equil_X = 0.0; %[m], equilibrium X;
equil_Y = 0.0; %[m], equilibrium Y;
equil_Z = 0.0; %[m], equilibrium Z;
equil_yaw = 0 * pi/180; %[rad], equilibrium yaw;
% ------------------------------------------------------------------------------------------
%Ionocraft Mass and gravity
quad = struct('g',g,'M',m);
% Ionocraft Drag
% Drag = struct('Taux',Taux_drag,'Tauy',Tauy_drag,'Tauz', Tauz_drag,'Fxy',Fxy_drag,'Fz',Fz_drag);
%-----------
state_equil = [equil_X; equil_Y; equil_Z; equil_yaw; 0; 0; 0; 0; 0; 0; 0; 0]; %x_eq
input_equil = [quad.g*quad.M/cos(angle) ;0 ;0 ;0]; %u_eq
equil = [state_equil; input_equil];
% Hard codes desired states to try
state_des = [0; 0; .022; 0; .00; .00; 0; 0; 0; 0; 0; 0]; %x_eq
% NOTE: The system will not converge with a nonzero roll or pitch desired
% state. Have not tested angular or linear velocities. For now, desired
% state sould be a vector of the form [X,Y,Z,YAW] with 0's appended as need
%%
XYZ_initial_condition = [0.0; 0.0; 0.0]; %[m], initial XYZ position
%% LQR Defintions
% Remember, LQR is ~ argmin{xQx + uRu}
% So, Q penalizes states and R penalizes inputs
% higher values = stronger penalty from desires
Q = 10*...
[10 0 0 0 0 0 0 0 0 0 0 0; ... X
0 10 0 0 0 0 0 0 0 0 0 0; ... Y
0 0 100 0 0 0 0 0 0 0 0 0; ... Z
0 0 0 1 0 0 0 0 0 0 0 0; ... YAW
0 0 0 0 .1 0 0 0 0 0 0 0; ... PITCH
0 0 0 0 0 .1 0 0 0 0 0 0; ... ROLL
0 0 0 0 0 0 .001 0 0 0 0 0; ... Vx
0 0 0 0 0 0 0 .001 0 0 0 0; ... Vy
0 0 0 0 0 0 0 0 .001 0 0 0; ... Vz
0 0 0 0 0 0 0 0 0 .005 0 0; ... p
0 0 0 0 0 0 0 0 0 0 .005 0; ... q
0 0 0 0 0 0 0 0 0 0 0 .005];
R = 1e8*...
[1 0 0 0; ...
0 1 0 0; ...
0 0 1 0; ...
0 0 0 1];
%% 1.1) Simplified Dynamics
%symbolic variables
syms Pxw Pyw Pzw yaw pitch roll dpx dpy dpz p q r T tauy taup taur;
symsvector = [Pxw; Pyw; Pzw ;yaw ;pitch ;roll ;dpx ;dpy ;dpz ;p ;q ;r ;T ;tauy ;taup ;taur];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Notation used in ME231b, 3D dynamics
%symsvector = [X,Y,Z, yaw (psi) ;pitch (theta) ;roll (phi) ;
% vx ;vy ;vz ;wx ;wy ;wz ;T ;tau_z ;tau_y ;tau_x];
%Inertia
J = I_B;
%Define Rotation matrices
Ryaw = [
[ cos(yaw), -sin(yaw), 0],
[ sin(yaw), cos(yaw), 0],
[ 0, 0, 1]
];
Rpitch = [
[ cos(pitch), 0, sin(pitch)],
[ 0, 1, 0],
[ -sin(pitch), 0, cos(pitch)]
];
Rroll = [
[ 1, 0, 0],
[ 0, cos(roll), -sin(roll)],
[ 0, sin(roll), cos(roll)]
];
Body2Global = Ryaw*Rpitch*Rroll;
Global2Body = simplify(Body2Global^-1);
%Transformation from body rates p-q-r to euler rates yaw pitch roll
iW = ...
[0 sin(roll) cos(roll);
0 cos(roll)*cos(pitch) -sin(roll)*cos(pitch);
cos(pitch) sin(roll)*sin(pitch) cos(roll)*sin(pitch)] / cos(pitch);
%% Dynamics
%----------
%P dot
P_dot = simplify(Body2Global*[dpx;dpy;dpz]);
P_dot_jacobian = jacobian(P_dot,symsvector);
P_dot_jacobian_eql = subs(P_dot_jacobian,symsvector,equil);
%O dot
O_dot = iW*[p;q;r];
O_dot_jacobian = jacobian(O_dot,symsvector);
O_dot_jacobian_eql = subs(O_dot_jacobian,symsvector,equil);
%p ddot
p_ddot = Global2Body*[0;0;-quad.g] + T/quad.M*[0;0;1] -cross(transpose([p,q,r]),transpose([dpx,dpy,dpz]));
p_ddot_jacobian = jacobian(p_ddot,symsvector);
p_ddot_jacobian_eql = subs(p_ddot_jacobian,symsvector,equil);
%o ddot
o_ddot = inv(J)*([taur; taup; tauy] - cross([p;q;r],J*[p;q;r]));
o_ddot_jacobian = jacobian(o_ddot,symsvector);
o_ddot_jacobian_eql = subs(o_ddot_jacobian,symsvector,equil);
%Dynamics matrix
%----------
matrixAB = [P_dot_jacobian_eql;O_dot_jacobian_eql;p_ddot_jacobian_eql;o_ddot_jacobian_eql];
A = double(matrixAB(1:12,1:12));
B = double(matrixAB(1:12,11:16)); %11 was a 13, 31 Aug 2017
% ############## convert thruster inputs to T, Taux, Tauy, and Tauz #########
% ionocraft inputs are F1, F2, F3, F4
% [T; Tauz; Tauy; Taux;] = M * [F4; F3; F2; F1]
%
% Top view of ionocraft
% ____ ____ ^ x
% | | | |
% | F2 | F1 | |
% |____|____| y <---(.)
% | | | z
% | F3 | F4 |
% |____|____|
% set B equal to old B times M
B = B*M2;
% ###########################################################################
% K = lqr(A,B,Q,R);
%Note x_nonlinearSys = x_eq + x_linearizedSys! Thus, x0_linearizedSys = x0_nonlinear - x_eq;
%Note u_nonlinearSys = u_eq + x_linearizedSys!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%{
%% 1.2) Linearizing Full Nonlinear Simulink Model (the model from Robotics Toolbox)
%use Simulation/controllers/controller_fullstate/Poleplacement/linearizeDrone(...).slx and Simulink's ControlDesign/Linear Analysis
%% 2.1) Designing Full-state Feedback Controllers with Simplified Dynamics Model (1.1) via Pole Placement
% %Note: We linearized about hover. This also implies: The control "policy"
% %to correct a position error was derived under a yaw-angle of zero!
% %If your drone yaw-drifts 90 deg and runs into a world-X-error, it will
% %still believe that pitch is the right answer to correct for this position error! You can compensate for this by
% %rotation the X-Y-error by the current yaw angle.
%
% % Find states to decouple
% [V,J] = jordan(A);
% Veig_nrm = diag(1./sum(V,1))*V; % decoupled system will have a new state-vector x_dec = inv(Veig_nrm)*x
%
% % System matrices of decoupled system
% A_dec = inv(Veig_nrm)*A*Veig_nrm;
% B_dec = inv(Veig_nrm)*B;
%
% % Define decoupled subsystems
% A_dec_x = ...
% B_dec_x = ...
%
% A_dec_z = ...
% B_dec_z = ...
%
% A_dec_y = ...
% B_dec_y = ...
%
% A_dec_yaw = ...
% B_dec_yaw = ...
%
%
% % Compute decoupled subsystems Transfer Function (TF)
% % TF from ... to x
% G_x = ...
%
% % TF from ... to y
% G_y = ...
%
% % TF from ... to z
% G_z = ...
%
% % TF from ... to yaw
% G_yaw = ...
%
% % Now place your own poles for the decoupled subsystems separately
%
% xpoles = [-9+6i;-9-6i;-0.18+1.8i;-0.18-1.8i];
% ypoles = [-60;-4;-0.16+2i;-0.16-2i];
% yawpoles = [-3;-3.1];
% zpoles = [-2;-2.1]; % Play around with poles here: Slow poles [-2;-2.1], Fast poles [-5;-5.1];
% %zpoles = [-5;-5.1]; % Play around with poles here: Slow poles [-2;-2.1], Fast poles [-5;-5.1];
%
% K_dec_x = ...
% K_dec_z = ...
% K_dec_y = ...
% K_dec_yaw = ...
%
% % Compute Full-state feedback for 'original' system
% K_poleplace = [K_dec_x K_dec_z K_dec_y K_dec_yaw]*inv(Veig_nrm);
% K_poleplace(abs(K_poleplace)<1e-7)=0;
%}