-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
234 lines (188 loc) · 7.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import torch
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
from os import path
from loss.loss_factory import LossFactory
from optimiser.optimiser_factory import OptimiserFactory
from scheduler.scheduler_factory import SchedulerFactory
from dataset.dataset_factory import DatasetFactory
from model.model_factory import ModelFactory
from transformer.transformer_factory import TransformerFactory
from utils.experiment_utils import ExperimentHelper
from utils.custom_bar import CustomBar
from utils.seed_backend import (seed_all, seed_worker)
def train(config, device, auto_aug_policy=None):
# seed backend if not in augmentation search
(auto_aug_policy is None) and seed_all(config['seed'])
# Create pipeline objects
dataset_factory = DatasetFactory(org_data_dir='./data')
transformer_factory = TransformerFactory()
model_factory = ModelFactory()
writer = SummaryWriter(
log_dir=path.join(
'runs', config['experiment_name']
)
)
experiment_helper = ExperimentHelper(
config['experiment_name'],
config['validation_frequency'],
tb_writer=writer,
overwrite=True,
publish=config['publish'],
config=config
)
optimiser_factory = OptimiserFactory()
loss_factory = LossFactory()
scheduler_factory = SchedulerFactory()
# ==================== Model training / validation setup ========================
training_dataset = dataset_factory.get_dataset(
'train',
config['train_dataset']['name'],
transformer_factory.get_transformer(
height=config['train_dataset']['resize_dims'],
width=config['train_dataset']['resize_dims'],
pipe_type=config['train_dataset']['transform'],
auto_aug_policy=auto_aug_policy
),
config['train_dataset']['fold']
)
validation_dataset = dataset_factory.get_dataset(
'val',
config['val_dataset']['name'],
transformer_factory.get_transformer(
height=config['val_dataset']['resize_dims'],
width=config['val_dataset']['resize_dims'],
pipe_type=config['val_dataset']['transform']
),
config['val_dataset']['fold']
)
model = model_factory.get_model(
config['model']['name'],
config['num_classes'],
config['model']['pred_type'],
config['model']['hyper_params'],
config['model']['tuning_type'],
config['model']['pre_trained_path'],
config['model']['weight_type']
).to(device)
optimiser = optimiser_factory.get_optimiser(
model.parameters(),
config['optimiser']['name'],
config['optimiser']['hyper_params']
)
scheduler = None
if config['scheduler']:
scheduler = scheduler_factory.get_scheduler(
optimiser,
config['scheduler']['name'],
config['scheduler']['hyper_params'],
epochs=config["epochs"],
iter_per_epoch=len(training_dataset)/config["batch_size"]
)
loss_function = loss_factory.get_loss_function(
config['loss_function']['name'],
config['model']['pred_type'],
config['loss_function']['hyper_params']
)
batch_size = config["batch_size"]
# ===============================================================================
# =================== Model training / validation loop ==========================
with CustomBar(config["epochs"], len(training_dataset), batch_size) as progress_bar:
for i in range(config["epochs"]):
# progress bar update
progress_bar.update_epoch_info(i)
# set model to training mode
model.train()
training_loss = 0
train_output_list = []
train_target_list = []
for batch_ndx, sample in enumerate(DataLoader(
training_dataset,
batch_size=batch_size,
worker_init_fn=seed_worker,
num_workers=4,
pin_memory=True,
shuffle=True
)):
# progress bar update
progress_bar.update_batch_info(batch_ndx)
input, target = sample
input = input.to(device)
target = target.to(device)
# flush accumulators
optimiser.zero_grad()
# forward pass
output = model.forward(input)
# loss calculation
loss = loss_function(
output,
target
)
# backward pass
loss.backward()
# update
optimiser.step()
# update lr using scheduler
if scheduler:
scheduler.step()
if experiment_helper.should_trigger(i):
train_output_list.append(output.detach().cpu())
train_target_list.append(target.cpu())
training_loss += (loss.item() * input.shape[0])
# progress bar update
progress_bar.step()
# Do a loss check on val set per epoch
if experiment_helper.should_trigger(i):
# set model to evaluation mode
model.eval()
validation_loss = 0
val_output_list = []
val_target_list = []
for batch_ndx, sample in enumerate(DataLoader(
validation_dataset,
batch_size=batch_size,
num_workers=4,
worker_init_fn=seed_worker,
pin_memory=True,
shuffle=False
)):
with torch.no_grad():
input, target = sample
input = input.to(device)
target = target.to(device)
# forward
output = model.forward(input)
# loss calculation
loss = loss_function(
output,
target
)
val_output_list.append(output.detach().cpu())
val_target_list.append(target.cpu())
validation_loss += (loss.item() * input.shape[0])
train_output_list = torch.cat(train_output_list, dim=0)
train_target_list = torch.cat(train_target_list, dim=0)
training_loss /= len(training_dataset)
val_output_list = torch.cat(val_output_list, dim=0)
val_target_list = torch.cat(val_target_list, dim=0)
validation_loss /= len(validation_dataset)
# validate model
experiment_helper.validate(
config['model']['pred_type'],
config['num_classes'],
validation_loss,
training_loss,
val_output_list,
val_target_list,
train_output_list,
train_target_list,
i
)
# save model weights
experiment_helper.save_checkpoint(
model.state_dict()
)
# publish final
config['publish'] and experiment_helper.publish_final(config)
return (experiment_helper.best_val_loss, experiment_helper.best_val_kaggle_metric)
# ===============================================================================