"
]
diff --git a/nbs/15_timeseries_plots.ipynb b/nbs/15_timeseries_plots.ipynb
new file mode 100644
index 0000000..0351316
--- /dev/null
+++ b/nbs/15_timeseries_plots.ipynb
@@ -0,0 +1,921 @@
+{
+ "cells": [
+ {
+ "cell_type": "raw",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "output-file: timeseries_plots.html\n",
+ "title: Time series plots\n",
+ "\n",
+ "---"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#| default_exp timeseries_plots"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#| hide\n",
+ "from nbdev.showdoc import *"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#| export\n",
+ "from typing import Callable, Iterable, Optional, Union, Tuple\n",
+ "import warnings\n",
+ "\n",
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "\n",
+ "import seaborn as sns\n",
+ "import matplotlib.pyplot as plt\n",
+ "import matplotlib.dates as mdates\n",
+ "\n",
+ "from pheno_utils.config import DEFAULT_PALETTE, TIME_FORMAT, LEGEND_SHIFT"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#| export\n",
+ "class TimeSeriesFigure:\n",
+ " def __init__(self, figsize: tuple = (10, 6), padding: float = 0.05):\n",
+ " \"\"\"\n",
+ " Initialize a TimeSeriesFigure instance. This class is used to create and manage\n",
+ " a figure with multiple axes for time series data.\n",
+ " \n",
+ " Args:\n",
+ " figsize (tuple): Size of the figure (width, height) in inches.\n",
+ " \"\"\"\n",
+ " self.fig = plt.figure(figsize=figsize)\n",
+ " self.axes: Iterable[tuple] = []\n",
+ " self.axis_names: dict = {}\n",
+ " self.padding = padding\n",
+ " self.custom_paddings = {} # To store custom padding for specific axes\n",
+ " self.shared_x_groups = [] # To keep track of shared x-axis groups\n",
+ "\n",
+ " def plot(\n",
+ " self, \n",
+ " plot_function: Callable, \n",
+ " *args, \n",
+ " n_axes: int = 1, \n",
+ " height: float = 1, \n",
+ " sharex: Union[str, int, plt.Axes] = None, \n",
+ " second_y: bool = False,\n",
+ " name: str = None, \n",
+ " ax: Union[str, int, plt.Axes] = None, \n",
+ " adjust_time: Optional[str] = 'union',\n",
+ " adjust_by_axis: Union[str, int, plt.Axes, Iterable[Union[str, int, plt.Axes]]] = None,\n",
+ " **kwargs\n",
+ " ) -> Union[plt.Axes, Iterable[plt.Axes]]:\n",
+ " \"\"\"\n",
+ " Plot using a dataset-specific function, creating a new axis if needed.\n",
+ " The plot function should accept the axis object as the argument `ax`, or\n",
+ " a list of axes if multiple axes are used.\n",
+ " \n",
+ " Args:\n",
+ " plot_function (Callable): The dataset-specific function to plot the data.\n",
+ " *args: Arguments to pass to the plot function.\n",
+ " n_axes (int): The number of axes required. Default is 1.\n",
+ " height (float): The proportional height of the axes relative to a single unit axis.\n",
+ " sharex (str, int, or plt.Axes): Index or name of the axis to share the x-axis with. If None, the x-axis is independent.\n",
+ " second_y (bool): If True, plot will be done on a secondary y-axis in the plot. Default is False.s\n",
+ " name (str): Name or ID to assign to the axis.\n",
+ " ax (plt.Axes, str, int): Pre-existing axis (object, name, or index) or list of axes to plot on.\n",
+ " adjust_time (str, None): Method to adjust the time limits of all axes to match the data.\n",
+ " adjust_by_axis (str, int, plt.Axes): Axes (single or multiple) to use as a reference for adjusting the time limits.\n",
+ " **kwargs: Keyword arguments to pass to the plot function.\n",
+ " \n",
+ " Returns:\n",
+ " Union[plt.Axes, Iterable[plt.Axes]]: A single axis object or a list of axis objects if multiple axes are used.\n",
+ " \"\"\"\n",
+ " if ax is None:\n",
+ " ax = self.add_axes(height=height, n_axes=n_axes, sharex=sharex, name=name)\n",
+ " else:\n",
+ " ax = self.get_axes(ax, squeeze=True)\n",
+ "\n",
+ " if second_y:\n",
+ " ax.yaxis.grid(False)\n",
+ " ax = ax.twinx()\n",
+ "\n",
+ " plot_function(*args, ax=ax, **kwargs)\n",
+ " if adjust_time:\n",
+ " self.set_time_limits(None, None, method=adjust_time, reference_axis=adjust_by_axis)\n",
+ " if second_y:\n",
+ " ax.yaxis.grid(False)\n",
+ " ax.yaxis.label.set_rotation(90)\n",
+ " ax.yaxis.label.set_ha('center')\n",
+ "\n",
+ " return ax\n",
+ "\n",
+ " def add_axes(\n",
+ " self, \n",
+ " height: float = 1, \n",
+ " n_axes: int = 1, \n",
+ " sharex: Optional[Union[str, int, plt.Axes]] = None, \n",
+ " name: Optional[str] = None,\n",
+ " ) -> Union[plt.Axes, Iterable[plt.Axes]]:\n",
+ " \"\"\"\n",
+ " Add one or more axes with a specific proportional height to the figure.\n",
+ " \n",
+ " Args:\n",
+ " height (float): The proportional height of each new axis relative to a single unit axis.\n",
+ " n_axes (int): The number of axes to create.\n",
+ " sharex (str, int, or plt.Axes): Index or name of the axis to share the x-axis with. If None, the x-axis is independent.\n",
+ " name (Optional[str]): Name or ID to assign to the axis (only valid if num_axes=1).\n",
+ " \n",
+ " Returns:\n",
+ " Union[plt.Axes, Iterable[plt.Axes]]: A single axis object or a list of axis objects if multiple axes are created.\n",
+ " \"\"\"\n",
+ " new_axes = []\n",
+ " shared_group = []\n",
+ " \n",
+ " if sharex is not None:\n",
+ " sharex = self.get_axes(sharex)[0]\n",
+ " shared_group.append(sharex)\n",
+ "\n",
+ " for _ in range(n_axes):\n",
+ " ax = self.fig.add_subplot(len(self.axes) + 1, 1, len(self.axes) + 1, sharex=sharex)\n",
+ " new_axes.append(ax)\n",
+ " self.axes.append((ax, height))\n",
+ " shared_group.append(ax)\n",
+ " # When creating mulitple axes, always share their x-axis with the first one\n",
+ " if sharex is None:\n",
+ " sharex = ax\n",
+ " \n",
+ " if shared_group:\n",
+ " self.shared_x_groups.append(shared_group)\n",
+ "\n",
+ " if name is not None:\n",
+ " self.axis_names[name] = new_axes\n",
+ " \n",
+ " self._adjust_axes()\n",
+ "\n",
+ " return new_axes if n_axes > 1 else new_axes[0]\n",
+ "\n",
+ " def _adjust_axes(self) -> None:\n",
+ " \"\"\"\n",
+ " Adjust the positions and sizes of all axes based on their proportional height and apply padding.\n",
+ " \"\"\"\n",
+ " total_height = sum(height for _, height in self.axes)\n",
+ " total_padding = self.padding * (len(self.axes) - 1)\n",
+ " bottom = 1 - total_padding # Start from the top of the figure\n",
+ "\n",
+ " for i, (ax, height) in enumerate(self.axes):\n",
+ " ax_height = height / total_height * (1 - total_padding)\n",
+ " # Adjust for any custom padding before this axis\n",
+ " custom_pad = self.custom_paddings.get(i, 0)\n",
+ " ax.set_position([0.1, bottom - ax_height, 0.8, ax_height])\n",
+ " bottom -= ax_height + self.padding + custom_pad # Move down, considering padding\n",
+ "\n",
+ " def _get_axis_by_name(self, name: str) -> Optional[plt.Axes]:\n",
+ " \"\"\"\n",
+ " Retrieve an axis by its name or ID.\n",
+ " \n",
+ " Args:\n",
+ " name (str): The name or ID of the axis to retrieve.\n",
+ " \n",
+ " Returns:\n",
+ " Optional[plt.Axes]: The corresponding axis object if found, otherwise None.\n",
+ " \"\"\"\n",
+ " return self.axis_names.get(name, [])\n",
+ "\n",
+ " def get_axes(self, ax: Union[str, int, plt.Axes, Iterable[Union[str, int, plt.Axes]]]=None, squeeze=False) -> Iterable[plt.Axes]:\n",
+ " \"\"\"\n",
+ " Retrieve the axis object(s) based on the input type.\n",
+ "\n",
+ " Args:\n",
+ " ax: The axis object, index, name, or list of those to retrieve.\n",
+ " squeeze (bool): Whether to return a single axis object if only one is found.\n",
+ " \n",
+ " Returns:\n",
+ " Iterable[plt.Axes]: A list of axis objects.\n",
+ " \"\"\"\n",
+ " if ax is None:\n",
+ " return [a for a, _ in self.axes]\n",
+ " elif not isinstance(ax, list):\n",
+ " ax = [ax]\n",
+ " \n",
+ " ax_list = []\n",
+ " for a in ax:\n",
+ " if isinstance(a, str):\n",
+ " by_name = self._get_axis_by_name(a)\n",
+ " if len(by_name) == 0:\n",
+ " warnings.warn(f\"No axis found with name '{a}'\")\n",
+ " ax_list.extend(by_name)\n",
+ " elif isinstance(a, int):\n",
+ " ax_list.append(self.axes[a][0])\n",
+ "\n",
+ " if squeeze and len(ax_list) == 1:\n",
+ " return ax_list[0]\n",
+ " else:\n",
+ " return ax_list\n",
+ "\n",
+ " def print_shared_axes(self):\n",
+ " \"\"\"\n",
+ " Print which axes in the figure share their x-axis.\n",
+ "\n",
+ " Returns:\n",
+ " None\n",
+ " \"\"\"\n",
+ " shared_groups = {}\n",
+ " for i, (ax, _) in enumerate(self.axes):\n",
+ " for j, (other_ax, _) in enumerate(self.axes):\n",
+ " if i != j and ax.get_shared_x_axes().joined(ax, other_ax):\n",
+ " if i not in shared_groups:\n",
+ " shared_groups[i] = []\n",
+ " shared_groups[i].append(j)\n",
+ "\n",
+ " for ax_idx, shared_with in shared_groups.items():\n",
+ " print(f\"Axis {ax_idx} shares its x-axis with: {shared_with}\")\n",
+ "\n",
+ " def get_axis_properties(self, ax: Union[str, int, plt.Axes, Iterable[Union[str, int, plt.Axes]]]=None) -> dict:\n",
+ " \"\"\"\n",
+ " Get the properties of a specific axis or axes.\n",
+ " \n",
+ " Args:\n",
+ " ax (str, int, plt.Axes, or a list of those): The axis or axes to get the properties for.\n",
+ " \n",
+ " Returns:\n",
+ " dict: A dictionary of properties for the axis or axes.\n",
+ " \"\"\"\n",
+ " ax_list = self.get_axes(ax)\n",
+ " properties = {}\n",
+ " for a in ax_list:\n",
+ " properties = {key: properties.get(key, []) + [value] for key, value in a.properties().items()}\n",
+ "\n",
+ " for k, v in properties.items():\n",
+ " if len(v) == 1:\n",
+ " properties[k] = v[0]\n",
+ "\n",
+ " return properties\n",
+ "\n",
+ " def set_axis_properties(self, ax: Union[str, int, plt.Axes, Iterable[Union[str, int, plt.Axes]]]=None, **kwargs) -> None:\n",
+ " \"\"\"\n",
+ " Set properties for a specific axis or axes.\n",
+ " \n",
+ " Args:\n",
+ " ax (str, int, plt.Axes, or a list of those): The axis or axes to set the properties for.\n",
+ " **kwargs: Additional keyword arguments to pass to the axis object.\n",
+ " \"\"\"\n",
+ " ax_list = self.get_axes(ax)\n",
+ " for a in ax_list:\n",
+ " a.set(**kwargs)\n",
+ "\n",
+ " def set_axis_padding(self, padding: float, ax: Union[str, int, plt.Axes, Iterable[Union[str, int, plt.Axes]]]=None, above: bool = True) -> None:\n",
+ " \"\"\"\n",
+ " Set custom padding for a specific axis.\n",
+ " \n",
+ " Args:\n",
+ " padding (float): The amount of padding to add as a fraction of the figure height.\n",
+ " \n",
+ " above (bool): Whether to add padding above the axis (default) or below.\n",
+ " \"\"\"\n",
+ " ax_list = self.get_axes(ax)\n",
+ " all_axes = [a for a, _ in self.axes]\n",
+ "\n",
+ " for ax in ax_list:\n",
+ " axis_index = all_axes.index(ax)\n",
+ " if axis_index < 0:\n",
+ " warnings.warn(\"Axis not found in the figure.\")\n",
+ " continue\n",
+ " if above:\n",
+ " self.custom_paddings[axis_index] = padding\n",
+ " elif axis_index == len(self.axes) - 1:\n",
+ " continue\n",
+ " else:\n",
+ " self.custom_paddings[axis_index + 1] = padding\n",
+ " self._adjust_axes()\n",
+ "\n",
+ " def set_time_limits(\n",
+ " self, start_time: Union[float, str, pd.Timestamp, None],\n",
+ " end_time: Union[float, str, pd.Timestamp, None],\n",
+ " method: str='union',\n",
+ " reference_axis: Union[str, int, plt.Axes, Iterable[Union[str, int, plt.Axes]]] = None\n",
+ " ) -> None:\n",
+ " \"\"\"\n",
+ " Set the time limits for all axes in the figure. Calling with None will adjust the limits to the data.\n",
+ "\n",
+ " Args:\n",
+ " start_time (Union[float, str, pd.Timestamp, None]): The start time for the x-axis.\n",
+ " end_time (Union[float, str, pd.Timestamp, None]): The end time for the x-axis.\n",
+ " \"\"\"\n",
+ " # Default values\n",
+ " xlim = np.array(self.get_axis_properties(reference_axis)['xlim']).reshape((-1, 2))\n",
+ " if method == 'union':\n",
+ " xlim = xlim[:, 0].min(), xlim[:, 1].max()\n",
+ " elif method == 'intersect':\n",
+ " xlim = xlim[:, 0].max(), xlim[:, 1].min()\n",
+ " else:\n",
+ " raise ValueError(f\"Invalid method: {method} not in ['union', 'intersect']\")\n",
+ "\n",
+ " # Convert string inputs to pandas Timestamp objects\n",
+ " if start_time is not None:\n",
+ " start_time = pd.to_datetime(start_time)\n",
+ " else:\n",
+ " start_time = xlim[0]\n",
+ " if end_time is not None:\n",
+ " end_time = pd.to_datetime(end_time)\n",
+ " else:\n",
+ " end_time = xlim[1]\n",
+ "\n",
+ " self.set_axis_properties(xlim=(start_time, end_time))\n",
+ "\n",
+ " def set_periodic_ticks(\n",
+ " self, \n",
+ " interval: Union[str, pd.Timedelta], \n",
+ " start_time: str = '2018-01-01 00:00',\n",
+ " end_time: str = None,\n",
+ " fmt=TIME_FORMAT,\n",
+ " ax: Union[str, int, plt.Axes, Iterable[Union[str, int, plt.Axes]]] = None\n",
+ " ) -> None:\n",
+ " \"\"\"\n",
+ " Set periodic x-ticks at a regular interval throughout the day.\n",
+ "\n",
+ " Args:\n",
+ " interval (Union[str, pd.Timedelta]): The interval between ticks (e.g., '1H' for hourly ticks, '30T' for 30 minutes).\n",
+ " start_time (str): The time of day to start the ticks from (default is '00:00').\n",
+ " end_time (str): The time of day to end the ticks at (default is None).\n",
+ " fmt (str): The date format string to be used for the tick labels.\n",
+ " ax (str, int, plt.Axes, or a list of those): The axis (or axes) to apply the ticks to. \n",
+ " Can be an axis object, a list of axes, an index, or a name. If None, applies to all axes.\n",
+ " \"\"\"\n",
+ " # Convert interval to pandas Timedelta if it's a string\n",
+ " if isinstance(interval, str):\n",
+ " interval = pd.to_timedelta(interval)\n",
+ "\n",
+ " # Convert start_time to a datetime object with today's date\n",
+ " if start_time is not None:\n",
+ " start_time = pd.to_datetime(start_time).tz_localize(None)\n",
+ " if end_time is not None:\n",
+ " end_time = pd.to_datetime(end_time).tz_localize(None)\n",
+ "\n",
+ " # Determine which axes to apply this to\n",
+ " axes = self.get_axes(ax)\n",
+ "\n",
+ " for a in axes:\n",
+ " if a is not None:\n",
+ " # Get the x-axis limits\n",
+ " min_x, max_x = a.get_xlim()\n",
+ "\n",
+ " # Convert limits to datetime if they are in float format\n",
+ " if isinstance(min_x, (float, int)):\n",
+ " min_x = mdates.num2date(min_x).replace(tzinfo=None)\n",
+ " if isinstance(max_x, (float, int)):\n",
+ " max_x = mdates.num2date(max_x).replace(tzinfo=None)\n",
+ "\n",
+ " # Set the ticks to align with the start_datetime\n",
+ " ticks = pd.date_range(start=start_time if start_time else min_x,\n",
+ " end=end_time if end_time else max_x,\n",
+ " freq=interval)\n",
+ "\n",
+ " # Make sure ticks are within the limits\n",
+ " ticks = [tick for tick in ticks if min_x <= tick and tick <= max_x]\n",
+ "\n",
+ " # Set the locator and formatter\n",
+ " format_xticks(a, ticks, fmt)\n",
+ "\n",
+ " plt.setp(a.get_xticklabels(), rotation=0, ha='center')\n",
+ "\n",
+ " def add_legend(self, ax: Union[str, int, plt.Axes, Iterable[Union[str, int, plt.Axes]]], **kwargs) -> None:\n",
+ " \"\"\"\n",
+ " Add a legend to a specific axis.\n",
+ " \n",
+ " Args:\n",
+ " axis (str, int, plt.Axes, or a list of those): The axis to add the legend to.\n",
+ " \"\"\"\n",
+ " ax_list = self.get_axes(ax)\n",
+ " for a in ax_list:\n",
+ " a.legend(**kwargs)\n",
+ "\n",
+ " def set_legend(self, ax: Union[str, int, plt.Axes, Iterable[Union[str, int, plt.Axes]]]=None, bbox_to_anchor: tuple=None, **kwargs):\n",
+ " \"\"\"\n",
+ " Update the legend properties for all axes in the figure, or a subset of them, if the legend exists.\n",
+ "\n",
+ " Args:\n",
+ " axis (str, int, plt.Axes, or a list of those): The name or list of names of axes to update the legend for.\n",
+ " bbox_to_anchor (tuple, optional): The bounding box coordinates for the legend.\n",
+ " **kwargs: Additional keyword arguments passed to the legend object.\n",
+ " \"\"\"\n",
+ " ax_list = self.get_axes(ax)\n",
+ "\n",
+ " for a in ax_list:\n",
+ " legend = a.get_legend()\n",
+ " if legend is None:\n",
+ " continue\n",
+ " if bbox_to_anchor is not None:\n",
+ " legend.set_bbox_to_anchor(bbox_to_anchor)\n",
+ " legend.set(**kwargs)\n",
+ "\n",
+ " def show(self) -> None:\n",
+ " \"\"\"\n",
+ " Display the figure.\n",
+ " \"\"\"\n",
+ " plt.show()\n",
+ "\n",
+ "\n",
+ "def format_xticks(ax: plt.Axes, xticks: Iterable=None, format: str=TIME_FORMAT, **kwargs):\n",
+ " \"\"\" format datestrings on x axis \"\"\"\n",
+ " if xticks is None:\n",
+ " xticks = ax.get_xticks()\n",
+ " ax.set_xticks(xticks)\n",
+ " ax.set_xticklabels(xticks, **kwargs)\n",
+ " xfmt = mdates.DateFormatter(format)\n",
+ " ax.xaxis.set_major_formatter(xfmt)\n",
+ "\n",
+ "\n",
+ "def format_timeseries(\n",
+ " df: pd.DataFrame,\n",
+ " participant_id: int=None,\n",
+ " array_index: int=None,\n",
+ " time_range: Tuple[str, str]=None,\n",
+ " x_start: str='collection_timestamp',\n",
+ " x_end: str='collection_timestamp',\n",
+ " unique: bool=False,\n",
+ ") -> pd.DataFrame:\n",
+ " \"\"\"\n",
+ " Reformat and filter a time series DataFrame based on participant ID, array index, and date range.\n",
+ "\n",
+ " Args:\n",
+ " df (pd.DataFrame): The DataFrame to filter.\n",
+ " participant_id (int): The participant ID to filter by.\n",
+ " array_index (int): The array index to filter by.\n",
+ " time_range: The date range to filter by. Can be a tuple of two dates / times or two strings.\n",
+ " x_start (str): The name of the column containing the start time.\n",
+ " x_end (str): The name of the column containing the end time.\n",
+ "\n",
+ " Returns:\n",
+ " pd.DataFrame: The filtered DataFrame\n",
+ " \"\"\"\n",
+ " if participant_id is not None:\n",
+ " df = df.query('participant_id == @participant_id')\n",
+ " if array_index is not None:\n",
+ " df = df.query('array_index == @array_index')\n",
+ "\n",
+ " # Reset index to avoid issues with slicing and indexing\n",
+ " x_ind = np.unique([c for c in [x_start, x_end] if c in df.index.names])\n",
+ " if len(x_ind):\n",
+ " if np.isin(x_ind, df.index.names).any():\n",
+ " df = df.reset_index(x_ind)\n",
+ " df[x_start] = df[x_start].dt.tz_localize(None)\n",
+ " if x_start != x_end:\n",
+ " df[x_end] = df[x_end].dt.tz_localize(None)\n",
+ " if time_range is not None:\n",
+ " time_range = pd.to_datetime(time_range)\n",
+ " df = df.loc[(time_range[0] <= df[x_start]) & (df[x_end] <= time_range[1])]\n",
+ " if unique:\n",
+ " df = df.drop_duplicates()\n",
+ "\n",
+ " return df.sort_values(x_start)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#| export\n",
+ "def plot_events_bars(\n",
+ " events: pd.DataFrame,\n",
+ " x_start: str = 'collection_timestamp',\n",
+ " x_end: str = 'event_end',\n",
+ " y: str = 'event',\n",
+ " hue: str = 'channel',\n",
+ " participant_id: Optional[int] = None,\n",
+ " array_index: Optional[int] = None,\n",
+ " time_range: Optional[Tuple[str, str]] = None,\n",
+ " y_include: Optional[Iterable[str]] = None,\n",
+ " y_exclude: Optional[Iterable[str]] = None,\n",
+ " legend: bool = True,\n",
+ " palette: str = DEFAULT_PALETTE,\n",
+ " alpha: Optional[float] = 0.7,\n",
+ " ax: Optional[plt.Axes] = None,\n",
+ " figsize: Tuple[float, float] = (12, 6),\n",
+ ") -> plt.Axes:\n",
+ " \"\"\"\n",
+ " Plot events as bars on a time series plot.\n",
+ "\n",
+ " Args:\n",
+ " events (pd.DataFrame): The events dataframe.\n",
+ " x_start (str): The column name for the start time of the event.\n",
+ " x_end (str): The column name for the end time of the event.\n",
+ " y (str): The column name for the y-axis values.\n",
+ " hue (str): The column name for the color of the event.\n",
+ " participant_id (int): The participant ID to filter events by.\n",
+ " array_index (int): The array index to filter events by.\n",
+ " time_range (Tuple[str, str]): The time range to filter events by.\n",
+ " y_include (Iterable[str]): The list of values to include in the plot.\n",
+ " y_exclude (Iterable[str]): The list of values to exclude from the plot.\n",
+ " legend (bool): Whether to show the legend.\n",
+ " palette (str): The name of the colormap to use for coloring events.\n",
+ " alpha (float): The transparency of the bars. Default is 0.7.\n",
+ " ax (plt.Axes): The axis to plot on. If None, a new figure is created.\n",
+ " figsize (Tuple[float, float]): The size of the figure (width, height) in inches.\n",
+ " \"\"\"\n",
+ " events, color_map = prep_to_plot_timeseries(\n",
+ " events, x_start, x_end,\n",
+ " hue, y,\n",
+ " participant_id, array_index, time_range,\n",
+ " y_include, y_exclude,\n",
+ " palette=palette)\n",
+ " if hue is None:\n",
+ " hue = 'hue'\n",
+ "\n",
+ " if ax is None:\n",
+ " fig, ax = plt.subplots(figsize=figsize)\n",
+ "\n",
+ " # Plot events\n",
+ " events = events.assign(diff=lambda x: x[x_end] - x[x_start]).sort_values([hue, y])\n",
+ " y_labels = []\n",
+ " legend_dicts = []\n",
+ " for i, (y_label, events) in enumerate(events.groupby(y, observed=True, sort=False)):\n",
+ " if len(y) == 0:\n",
+ " continue\n",
+ " y_labels.append(y_label)\n",
+ " for c, r in events.groupby(hue, observed=True):\n",
+ " data = r[[x_start, 'diff']]\n",
+ " if not len(data):\n",
+ " continue\n",
+ " h = ax.broken_barh(data.values, (i-0.4,0.8), color=color_map[c], alpha=alpha)\n",
+ " legend_dicts.append({'label': c, 'handle': h})\n",
+ "\n",
+ " # format plot\n",
+ " if legend:\n",
+ " legend_df = pd.DataFrame.from_dict(legend_dicts).drop_duplicates(subset='label')\n",
+ " ax.legend(\n",
+ " legend_df['handle'],\n",
+ " legend_df['label'],\n",
+ " loc='upper left', \n",
+ " bbox_to_anchor=LEGEND_SHIFT)\n",
+ "\n",
+ " ax.set_yticks(np.arange(len(y_labels)), y_labels)\n",
+ " format_xticks(ax)\n",
+ " ax.invert_yaxis() # Invert y-axis to match the order of the legend\n",
+ "\n",
+ " return ax\n",
+ "\n",
+ "\n",
+ "def plot_events_fill(\n",
+ " events: pd.DataFrame,\n",
+ " x_start: str = 'collection_timestamp',\n",
+ " x_end: str = 'event_end',\n",
+ " hue: str = 'channel',\n",
+ " label: str = None,\n",
+ " participant_id: Optional[int] = None,\n",
+ " array_index: Optional[int] = None,\n",
+ " time_range: Optional[Tuple[str, str]] = None,\n",
+ " y_include: Optional[Iterable[str]] = None,\n",
+ " y_exclude: Optional[Iterable[str]] = None,\n",
+ " legend: bool = True,\n",
+ " palette: str = DEFAULT_PALETTE,\n",
+ " alpha: Optional[float] = 0.5,\n",
+ " ax: Optional[plt.Axes] = None,\n",
+ " figsize: Iterable[float] = [12, 6],\n",
+ ") -> plt.Axes:\n",
+ " \"\"\"\n",
+ " Plot events as filled regions on a time series plot.\n",
+ "\n",
+ " Args:\n",
+ " events (pd.DataFrame): The events dataframe.\n",
+ " x_start (str): The column name for the start time of the event.\n",
+ " x_end (str): The column name for the end time of the event.\n",
+ " hue (str): The column name for the color of the event.\n",
+ " label (str): The column name for the label of the event.\n",
+ " participant_id (int): The participant ID to filter events by.\n",
+ " array_index (int): The array index to filter events by.\n",
+ " time_range (Iterable[str]): The time range to filter events by.\n",
+ " y_include (Iterable[str]): The list of values to include in the plot.\n",
+ " y_exclude (Iterable[str]): The list of values to exclude from the plot.\n",
+ " legend (bool): Whether to show the legend.\n",
+ " palette (str): The name of the palette to use for coloring events.\n",
+ " alpha (float): The transparency of the filled regions.\n",
+ " ax (plt.Axes): The axis to plot on. If None, a new figure is created.\n",
+ " figsize (Tuple[float, float]): The size of the figure (width, height) in inches.\n",
+ " \"\"\"\n",
+ " events, color_map = prep_to_plot_timeseries(\n",
+ " events, x_start, x_end,\n",
+ " hue, label,\n",
+ " participant_id, array_index, time_range,\n",
+ " y_include, y_exclude,\n",
+ " palette=palette)\n",
+ " if hue is None:\n",
+ " hue = 'hue'\n",
+ "\n",
+ " if ax is None:\n",
+ " fig, ax = plt.subplots(figsize=figsize)\n",
+ " if type(ax) is not list:\n",
+ " ax = [ax]\n",
+ "\n",
+ " for a in ax:\n",
+ " # Plotting events\n",
+ " this_color = hue if hue is not None else '#4c72b0'\n",
+ " for _, row in events.iterrows():\n",
+ " if color_map is not None:\n",
+ " this_color = color_map[row[hue]]\n",
+ " # Plot the event as a filled region, with zorder to ensure it's behind other elements\n",
+ " a.axvspan(\n",
+ " row[x_start], row[x_end], 0, 1,\n",
+ " color=this_color, alpha=alpha, zorder=0,\n",
+ " transform=a.get_xaxis_transform())\n",
+ "\n",
+ " # Add labels as xticks on the top secondary x-axis\n",
+ " if label:\n",
+ " secax = a.secondary_xaxis('top')\n",
+ " secax.set_xticks(events[x_start])\n",
+ " secax.set_xticklabels(events[label], rotation=0, ha='center')\n",
+ "\n",
+ " # Add legend\n",
+ " if legend:\n",
+ " # Get existing handles from existing legends in the axes\n",
+ " handles, labels = a.get_legend_handles_labels()\n",
+ " if color_map is not None:\n",
+ " handles += [plt.Rectangle((0, 0), 1, 1, color=c, alpha=alpha) for c in color_map]\n",
+ " labels += color_map.index.tolist()\n",
+ " else:\n",
+ " handles += [plt.Rectangle((0, 0), 1, 1, color=this_color, alpha=alpha)]\n",
+ " labels += ['events']\n",
+ " a.legend(handles, labels, loc='upper left', bbox_to_anchor=LEGEND_SHIFT)\n",
+ "\n",
+ " format_xticks(a)\n",
+ "\n",
+ " return ax\n",
+ "\n",
+ "\n",
+ "def prep_to_plot_timeseries(\n",
+ " data: pd.DataFrame,\n",
+ " x_start: str,\n",
+ " x_end: str,\n",
+ " hue: str,\n",
+ " label: str,\n",
+ " participant_id: int,\n",
+ " array_index: int,\n",
+ " time_range: Tuple[str, str],\n",
+ " y_include: Iterable[str],\n",
+ " y_exclude: Iterable[str],\n",
+ " add_columns: Iterable[str]=None,\n",
+ " palette=DEFAULT_PALETTE,\n",
+ ") -> Tuple[pd.DataFrame, pd.DataFrame]:\n",
+ " \"\"\"\n",
+ " Prepare timeseries / events data for plotting.\n",
+ "\n",
+ " Args:\n",
+ " events (pd.DataFrame): The timeseries / events dataframe.\n",
+ " x_start (str): The column name for the start time of the event.\n",
+ " x_end (str): The column name for the end time of the event.\n",
+ " hue (str): The column name for the color of the event.\n",
+ " label (str): The column name for the label of the event.\n",
+ " participant_id (int): The participant ID to filter events by.\n",
+ " array_index (int): The array index to filter events by.\n",
+ " time_range (Iterable[str]): The time range to filter events by.\n",
+ " y_include (Iterable[str]): The list of values to include in the plot.\n",
+ " y_exclude (Iterable[str]): The list of values to exclude from the plot.\n",
+ " add_columns (Iterable[str]): Additional columns to include in the plot.\n",
+ " palette (str): The name of the colormap to use for coloring events.\n",
+ "\n",
+ " Returns:\n",
+ " Tuple[pd.DataFrame, pd.DataFrame]: The filtered events dataframe and the color map.\n",
+ " \"\"\"\n",
+ " if type(add_columns) is str:\n",
+ " add_columns = [add_columns]\n",
+ "\n",
+ " data = format_timeseries(data, participant_id, array_index, time_range, x_start, x_end)\n",
+ "\n",
+ " # Filter events based on y_include and y_exclude\n",
+ " data = data.dropna(subset=[x_start, x_end])\n",
+ " if hue is not None and hue in data.index.names:\n",
+ " data = data.reset_index(hue)\n",
+ " if label is not None and label in data.index.names:\n",
+ " data = data.reset_index(label)\n",
+ " if y_include is not None:\n",
+ " ind = pd.Series(False, index=data.index)\n",
+ " if hue is not None:\n",
+ " ind |= data[hue].isin(y_include)\n",
+ " if label is not None:\n",
+ " ind |= data[label].isin(y_include)\n",
+ " data = data.loc[ind]\n",
+ " if y_exclude is not None:\n",
+ " ind = pd.Series(False, index=data.index)\n",
+ " if hue is not None:\n",
+ " ind |= data[hue].isin(y_exclude)\n",
+ " if label is not None:\n",
+ " ind |= data[label].isin(y_exclude)\n",
+ " data = data.loc[~ind]\n",
+ " if hue is None:\n",
+ " hue = 'hue'\n",
+ " data[hue] = 'events'\n",
+ "\n",
+ " col_list = [x_start, x_end, hue, label]\n",
+ " if add_columns is not None:\n",
+ " col_list += list(add_columns)\n",
+ " col_list = pd.Series(col_list).dropna().drop_duplicates()\n",
+ "\n",
+ " # Set colors\n",
+ " if hue in data.columns:\n",
+ " colors = get_color_map(data, hue, palette)\n",
+ " else:\n",
+ " colors = None\n",
+ "\n",
+ " return data[col_list], colors\n",
+ "\n",
+ "\n",
+ "def get_events_period(\n",
+ " events_filtered: pd.DataFrame,\n",
+ " period_start: str,\n",
+ " period_end: str,\n",
+ " period_name: str,\n",
+ " col: str = 'event',\n",
+ " first_start: bool = True,\n",
+ " first_end: bool = True,\n",
+ " include_start: bool = True,\n",
+ " include_end: bool = True,\n",
+ " x_start: str = 'collection_timestamp',\n",
+ " x_end: str = 'event_end',\n",
+ ") -> pd.DataFrame:\n",
+ " \"\"\"\n",
+ " Get the period of time between the start and end events.\n",
+ "\n",
+ " Args:\n",
+ " events_filtered (pd.DataFrame): The events DataFrame.\n",
+ " period_start (str): The label of the start event.\n",
+ " period_end (str): The label of the end event.\n",
+ " period_name (str): The label to assign to the period.\n",
+ " col (str): The column name for the event labels. Default is 'event'.\n",
+ " first_start (bool): If True, get the first start event. Default is True.\n",
+ " first_end (bool): If True, get the first end event. Default is True.\n",
+ " include_start (bool): If True, include the start event in the period. Default is True.\n",
+ " include_end (bool): If True, include the end event in the period. Default is True.\n",
+ " x_start (str): The column name for the start time of the event. Default is 'collection_timestamp'.\n",
+ " x_end (str): The column name for the end time of the event. Default is 'event_end'.\n",
+ "\n",
+ " Returns:\n",
+ " pd.DataFrame: The period of events in the same format as the input DataFrame.\n",
+ " \"\"\"\n",
+ " events_filtered = format_timeseries(events_filtered, None, None, None, x_start, x_end)\n",
+ "\n",
+ " start_time = events_filtered.loc[\n",
+ " events_filtered[col] == period_start,\n",
+ " x_start if include_start else x_end]\\\n",
+ " .iloc[0 if first_start else -1]\n",
+ " end_time = events_filtered.loc[\n",
+ " events_filtered[col] == period_end,\n",
+ " x_end if include_end else x_start]\\\n",
+ " .iloc[0 if first_end else -1]\n",
+ "\n",
+ " return pd.DataFrame({\n",
+ " x_start: [start_time],\n",
+ " x_end: [end_time],\n",
+ " col: [period_name]\n",
+ " })\n",
+ "\n",
+ "\n",
+ "def get_color_map(data: pd.DataFrame, hue: str, palette: str) -> pd.DataFrame:\n",
+ " \"\"\"\n",
+ " Get a color map for a specific column in the data.\n",
+ "\n",
+ " Args:\n",
+ " data (pd.DataFrame): The data to get the color map from.\n",
+ " hue (str): The column name to use for the color map.\n",
+ " palette (str): The name of the colormap to use.\n",
+ "\n",
+ " Returns:\n",
+ " pd.DataFrame: A DataFrame with the color map.\n",
+ " \"\"\"\n",
+ " colors = sorted(data[hue].unique())\n",
+ " colors = pd.DataFrame({\n",
+ " hue: colors,\n",
+ " 'color': sns.color_palette(palette, len(colors))\n",
+ " }).set_index(hue)['color']\n",
+ "\n",
+ " return colors"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The class `TimeSeriesFigure` provides a user-friendly interface for plotting multiple channels of time series data.\n",
+ "\n",
+ "First, we will load time series DFs from the sleep monitoring dataset. The data includes sleep events, and sensor channels for heart rate, respiratory movement, and oxygen saturation."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/home/ec2-user/projects/pheno-utils/pheno_utils/pheno_loader.py:610: UserWarning: No date field found\n",
+ " warnings.warn(f'No date field found')\n"
+ ]
+ }
+ ],
+ "source": [
+ "#| eval: false\n",
+ "from pheno_utils import PhenoLoader\n",
+ "\n",
+ "pl = PhenoLoader('sleep')\n",
+ "channels_df = pl.load_bulk_data('channels_time_series', pivot='source')\n",
+ "events_df = pl.load_bulk_data('events_time_series')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Any plotting function that accepts an `ax` argument can be used with `TimeSeriesFigure`. The pheno-utils package includes a number of functions that are useful for plotting time series data, such as `plot_events_bars` and `plot_events_fill`, however standard seaborn plotting functions (and others) can also be used."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABHwAAALtCAYAAABaYnPzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wUVdfHfzNbstlUSAOS0EmAJHSIdCkCFhBQbI+AiCI+ymN/RUQe9UEBRSwgyoNi4VEBaTZEpYjSO4QWWighkN7LtrnvH5vdbJmt2c3uhvP9fNDNzJ07Z+bcuXPvmXPP4RhjDARBEARBEARBEARBEESjgfe1AARBEARBEARBEARBEIRnIYMPQRAEQRAEQRAEQRBEI4MMPgRBEARBEARBEARBEI0MMvgQBEEQBEEQBEEQBEE0MsjgQxAEQRAEQRAEQRAE0cgggw9BEARBEARBEARBEEQjgww+BEEQBEEQBEEQBEEQjQyprwUg/ANBEKDVasHzPDiO87U4BEEQBEEQBEE0YhhjEAQBUqkUPE9+CAThDcjgQwAAtFotMjIyfC0GQRAEQRAEQRA3EWlpaZDL5b4WgyAaJWTwIQDAaFVPS0uDRCLxsTSAprQU+Rs2gJfJwAcFee08QlUJpKUnENSmPSQhYVb7deBxoUka2hVnQALBa3JYUlypw+pLiVDGt4NCqXC7Hq6yBKn5P6NtQjiClMFOH1cmVOD34GsIbpYMudz6vriKUFaBuO3nEB/RFsEK9+sz1RdCIjyuG0/dd2/irk4bErHnRltejpKMbMjikyAJDQcAlOnKsSPmEsJatkOQItSlc3BVZWh77BgSwtu51EbF5HDUD7iKJ9qRt/TsbJ/m6T7Ak7ire2/gyT6D5wR0iS3A8bxoCKz+X7oDoa+whT+2P07g0LKoDa40zQLjWd12P2qPvqY+z4Oj9mqvbneenUptGXLDdyC5RRhCg+oxzhLRv6/ar6OxlqBSQdBoEDNuHGQREQ0ik06nQ0ZGhs35hWF/IHv3CIIAtVrtazGIBkYmk/nFnNkZyOBDAIBxGZdEIvGLxivwPHhBgFQmA+9Fi7+gloLXaSCRSCCVWxuWuNowV1J5UIMafCQqLXQ6BpmUR5Bc5nY9TM0DOi14iVT0+myeX1MDAVpIJVIEyepvcNNKqgGdFhKpFNJ66NNUX1zt9XhSN566797EXZ02JGLPDZPUgNdqIJVKIaltAxKNFAJzr50JvAScoAEvFX92bSEmh6N+wFU80Y68pWdn+zRP9wGexF3dewNP9hl8rT6CZDIIHgixGAh9hS38sf1xgn6cFCQLMjP4+FN79DX1eR4ctVd7dbvz7Kg4CbTQQVLPNiamf1+1X0djLUEQoFWpIOH5Bh/rO5pfBGo4CbVajaysLAhCw80RCP8hMjISzZo18/v2SwYfgiB8jlYATlZySAlhkAbuRx6CIAiCIAjiJoAxhuvXr0MikSAxMTGgvZQI12CMoaqqCnl5eQCA5s2b+1gi+5DBhyAIn7PwsgTr8iS4J1aHmW10vhaHIAiCIAiCIGyi1WpRVVWFFi1aQKlU+locooEJDtYvPc3Ly0NsbKxfrJCxBZki/RytVov3338fQ4cORZcuXTBs2DAsWbLEzHWQMYbFixdjwIAB6NKlCyZOnIhz5875UGqCsE1mJYcKrfm2dXkSs/8TjRfGgBsq/f8JgmhcqAUgr8bzru2MAUXlHq+WIAjCbXQ6/QdKCjZ982Iw9Gk0Gh9LYh8y+Pg5y5cvx6pVqzBnzhxs2rQJL730Ej7//HOsXLnSrMwXX3yBOXPmYO3atYiOjsaUKVNQUVHhQ8kJwpofCxV4+IQMQw7Ry/FmZWWhEqOPyvFpNhn3CKKxce/OMAzeFoGz5Z4dXn63ncNrX0iw55R/x0kgCOLmw9/jtxDeI1B0TwYfP+fo0aMYNmwYbr31ViQkJGDUqFEYMGAATpw4AUDv3fP1119j+vTpGDFiBJKSkrBgwQLU1NTg559/9rH0BGHOezk3dwYTb6EKoFVwS/P12bhW5JDBhyAaG+cq9M/1phzPGvV3ndAPV3/eExiDa4IgCILwFyiGj5/Ts2dPrFq1CllZWWjTpg3OnDmDQ4cOYdasWQCA7Oxs5OfnY8CAAcZj5HI5evfujSNHjuCBBx5w6XwG90RfoxMECDwPgecBL1pPBZ4HJDLoOIkxe42ZHLXbdA1sGxU4HhIJB55jxuwT7sA4BkikEDjepWsQIAEPKTjGGzOT1AeO8YDEvLvRgRNVrWBH32L68qRuPHXfvYmlTk+U8Hhgdygmtlbh5c4qX4sHQPy50XESCFIZYJK5lHE8eM69dsYxHoyXQeAkLrUBgxwCzxu/zDjqB1zFE+3I3WfXEc72aZ7uAzyJu7r3Bp7sMwzHe6rv8VYbcgYBXL3Oaav9lVRyPmuPhvNant+f2qOvqc/z4Ki92qvbnWdHwjFIIQFfzz5OTP++6j8NYy2B50XHUoZxtU4QwDfQeN8wr7A1v/CXeYcnqazRQaVuuDFkkJxHiOLm+4iWnJyMjz/+GMOHD/e1KH4PxxhFUvBnGGNYtGgRli9fDolEAp1Oh+eeew5PPPEEAODw4cN48MEH8ddffyEuLs543GuvvYacnBx8/vnnTp1Hp9Ph6NGj3rgEwk9gjPnc9fCe728Yf6+5Nw6SWnlMt6+b0KzB5Qpk/vNXEY7m6q0ogXDvSNcE0XgxPN/jO4bgH2me8+ikfoMgGjfdunXz66C3YtTU1Bg/yCsUCgB6Y8+323JRVql1cLTnCA+R4qGhcU4bfWbOnIkNGzYAAKRSKSIiIpCcnIw777wT48eP94tsY4WFhfjwww/x119/oaCgABEREejYsSOefvppdO/eHYB/GHzE2oA/Qh4+fs6mTZvw448/4r333kP79u1x+vRpzJs3D7GxsRg3bpyxnOVE3l07Xlpaml90uJrSUuRv2ABpaCj4oCCvnUeoLAaffxhBHTpDGhZptV8HHudD2qN95XlIGtDjo7hCi1XnYtCkdXsoQ9yP/M8qi9Dh2k+IbBGLR47FYky8Bk8nOfYCKdOU4Tf5RYS3SENwUITb5zegLS1Fk62nAPQ3bou/mg2psdnKjNsTrl61WY+pvriwph7Xjafuuzcx6LRt62goQkMRKihh6MqTK8/6VrhaxJ4bTWkZSo6cB3CrsVz4xZPYHnkWTVt3gjI43KVzCBXFSDx6EAlRnRAUFOn0cQY5gtqkQhKmb9uO+gFX8UQ7stSzp3C2T/N0H+BJ3NW9N/Bkn8FDQIcmuThXHAfBA54i3mpD9tE/x03URUiuvO52Ldbtr+5+5Mbl1FdIt+AEDrH5zZEXcx2Mrxtj+VN79DX1eR4ctVd7dbvz7JRrS3FFsR2pCVGIULj/7Irp31f9p2GslRDTUfSdKqhU0FZUIGbcOMgiGkYunU6HjIwMm/MLw/7GgkotoKxSC7mUg0LufcNJTe35VGrBJS+fgQMHYt68eRAEAQUFBfj777/x1ltv4bfffsMnn3wCqdS3JoIZM2ZAq9Vi/vz5SExMRGFhIfbs2YPS0lKfyhWokMHHz3nnnXcwbdo03HnnnQD01sycnBwsW7YM48aNQ0xMDACgoKAAsbGxxuMKCwsRHR3t8vkkEolfGHwEngcvCPp/3nRCEwTwOg0kTGd38iOB0KAGH54J0OkYBMbVa+DPGAfotFh5NQQ51Tw+PR+EZ5KqHZ8fOgjQgnGC2cDWbTk4AdCZf+3gBAaxjwh29W2iL65WH57Ujafuuzcx6JRn+uvmUHe/GrKNOoOpbgSmA681z2LAMQECc6+dMU4AJ2jAO3h2LTHIYda3ONkPOIsn2pGlnj2No+fG032AJ3FX997AG32GAN4zBh8vtyEHZ6/XOe21P1+3R8YzMxn8qT36mvo8D47aqzN1u/Ls6BgHLXQQ6tnHienfV/2nYaxlc+xcO66W8HyDj/X9ZX7RUCjkPIKDGuZ61VrXl8XJ5XLjHDIuLg4pKSno2rUrHnnkEWzYsAETJkwAAJSXl+Odd97Bli1boFKpkJqailmzZqFjx47GurZt24YlS5bg3LlzRoeE6dOnG41GycnJ+Pe//41t27Zh//79iI6OxksvvYTbb79dVLaysjIcOnQIK1euRJ8+fQAA8fHx6NKli91rys3Nxbx587Br1y7wPI8ePXrg1VdfRUJCgrHMunXr8NlnnyE7Oxvx8fGYOHEi/vGPfwDQh0kZNmwYFi1ahJUrV+LkyZNo2bIl5syZg/T0dJfvsT/hnzMawkhNTY2V945EIjF68CQkJCAmJga7du0y7ler1Thw4IDR5Y0g/HEI6o8yEQ2LvywortRxeLy4H76+5pqXEdEwZOcD87/jkZHla0kCi8tlNZiZl4zjZQ2fFdFPHm2C8AvKq4CFa3jsOuFf8dAIwpS+ffuiY8eO+P333wHoV4tMmzYN+fn5+O9//4v169cjJSUFkydPRklJCQDg77//xksvvYSJEydi06ZNePPNN7F+/Xp8+umnZnV/+OGHGDlyJH744QeMGTMGL7zwAi5cuCAqh1KphFKpxJYtW6BWq0XLWFJdXY1JkyZBqVTif//7H7799lsolUo89thjxjrWrFmD999/H8899xw2bdqE559/Hh999JFxeZuBd955B1OmTMHGjRvRvXt3PPnkkyguLnblVvodZPDxc4YMGYJPP/0Uf/75J7Kzs/HHH3/giy++MK5X5DgOkyZNwrJly/DHH3/g7NmzeOWVV6BQKHDXXXf5WHrCX/CXIUa/sLrlZP4y2Q90/EW37uAvRr+1RUoc1Ubh3awoX4tCiLBmB4+r+RxW/EpDFlf47NQNXNSEYOqxGF+L4jF4P/M2Iwhn+GUfh6wbHL7dRn0Y4d+0bdsW165dAwDs3bsXZ8+exUcffYS0tDS0bt0aL7/8MsLDw/Hbb78BAD799FNMmzYN48aNQ2JiIvr3749nnnkGq1atMqt31KhRmDBhAtq0aYNnn30WqampWLlypagMUqkU8+fPx8aNG9GrVy888MADWLRoEc6cOWNT7l9++QUcx+Gtt95CcnIy2rVrh3nz5uH69evYv38/AGDp0qWYOXMmRowYgcTERIwYMQKTJ0/G6tWrzer6xz/+gZEjR6Jdu3Z4/fXXERYWhrVr17p9T/0BWtLl58yePRsffvgh3njjDRQWFiI2Nhb3338/nnrqKWOZxx9/HCqVCm+88QZKS0vRtWtXrFixAqENtma/YbhYBXx8VYppCTokh9CgLxCJldVN8UmDniGgDT5+0ghqWCDfxcbPtQL9/9Va0pM76HzRS3jp2W5D8ZqJBqakAljzJ4/BXQUkJ7pXh1rjuAxB+AOmCV5OnjyJqqoqq+VMNTU1uHLlirFMRkaGmUePTqeDSqVCdXU1goODAcBq1Um3bt1w+vRpm3KMHDkSt956Kw4ePIgjR45g586d+OyzzzB37lyMHz/eqvzJkydx5coV9OjRw2y7SqXClStXUFRUhOvXr+PVV1/Fa6+9Ztyv1WoRFmaeYMBUVqlUitTUVFy8eNGmrIEAGXz8nNDQULz66qt49dVXbZbhOA4zZszAjBkzGlCyhmdGpgx5ag57Szns6kNvT1fwl2mSYOO3KYxBNF070fjwFw8fwr/xF8Mg4Tz0bBONhW+38Th5icOxixJ8/C/3Uohz5NhDBAgXLlwwxrwRBAExMTGinjgGI4kgCJgxYwZGjBhhVSbIQdIdR5mDg4KC0L9/f/Tv3x9PP/00Xn31VSxevFjU4CMIAlJSUrBw4UKrfU2bNoVKpV9h8J///Addu3Y12+8PWcm8DRl8iIAhT63vGNT0NT5gMZ232VrSpWMwyd5FNGZcmcjrBOCH3RySEhhSW3tNJMIPYWQ9IAjCR5y7Vv86JDSmIQKAPXv24OzZs3jkkUcAACkpKSgoKIBEIjELfGxK586dkZWVhVatWtmt++jRoxg7dqzx72PHjqFTp04uyde+fXts2bJFdF9KSgp+/fVXREVFia5wCQsLQ1xcHK5evYoxY8Y4lLV3794A9B5AJ0+eNAZ2DlTI4EMQRINhOsG3NYfTMOqYbhYEF3zP9p/hsPUwj62H4fZXVlvQWNy/0ZGHT8BBMdqIxoInjDXk4XPzUaNumC8V7p5HrVYjPz/fLC37smXLMGTIEKNhpl+/fujWrRueeuopvPjii2jTpg3y8vKwY8cODB8+HGlpaXjqqacwffp0NG/eHKNGjQLP88jMzERmZiaee+454/k2b96M1NRU9OzZEz/99BOOHz+Ot956S1S24uJiPPPMM7jnnnuQnJyMkJAQnDhxAp999hmGDRsmeszo0aPx+eef48knn8QzzzyDuLg4XL9+Hb///jsee+wxNGvWDDNmzMDcuXMRGhqKQYMGQa1W48SJEygrK8OUKVOMdX377bdo3bo12rZti6+++gqlpaW455573LrP/gLNqwjiJsBflkiZvpZszQc0DAhuCGEaCf6iW3dwxcOnuNx7chD+DXn4BB6uGHMJa3JrOPyQLce9iWo0DSLrmS/xRCbxhvLwOX9DisLKeEyjJuMzguQ8wkOkKKvUupUu3R3CQ6QIkrtmVfz7778xYMAASKVShIeHo2PHjpg9ezbGjRtnXOLEcRz++9//4oMPPsCsWbNQXFyM6Oho9OrVC9HR0QCAgQMH4tNPP8XHH3+Mzz77DFKpFG3btjWmdTcwY8YMbNq0CW+88QZiYmKwcOFCtG/fXlS2kJAQdO3aFV999RWuXLkCrVaLZs2aYcKECZg+fbroMcHBwfjf//6HhQsX4umnn0ZlZSXi4uLQt29fo8fPhAkToFAo8Pnnn+Pdd9+FUqlEUlISJk+ebFbXCy+8gOXLl+PUqVNo2bIlli5diqZNm7p0f/0NMvh4mYMHD2LVqlW4evUqPvroI8TFxWHjxo1ISEhAr169fC0eQTQozGQSYOsLsIYGKjcNrszjvWnYoqmpf8NIQ8RNxtT9obhQIcHeQilWpFf6WhyinjRUiJAlf4SDsQh0LS/F0JCGOSdhTohCgoeGxkHVQB4+gN7IFKJw3jI5f/58zJ8/36myoaGhmD17NmbPnm2zzMCBAzFw4EC79cTFxWHFihVOnVMul+OFF17ACy+8YLdcZmam2d8xMTFYsGCB3WNGjx6N0aNH2y3Trl07rFmzxilZAwUy+HiR3377Df/3f/+H0aNH49SpU1Cr1QCAyspKLFu2jAw+XuZaDXCigsdtUQL4m3y+4C+Xn6OqG/XYXNJFX/NvGlzx8PG0wSdXw+NYgb5/IBsjQQQGDbFUrFoFHL3AoWtbBqXC++cT40KFfvK2p1DmGwGIOgLoBcFqY1xeUXvALYlwmxCFxCUDDEF4GzL4eJFPPvkEb7zxBsaOHYtffvnFuL1Hjx5YunSpDyW7ORh7TA4AqBG0uDv25rYicH4yYinU1r0AbU32K3QcAmqE5WP8xZjnDq4s+/D0dd53IQoqxqFYo/VwzQRBBHIMn5/3cvjzGI9LaQIeHBLAF0J4BE+0gIZeeh3Izx9BEJ6Hwoh5kaysLFEvntDQUJSVlflAopuTA2WBPCVuXERI6gxvtkxw7qZgzq3hsLtAetOlcA7k1u3LQamq9kvo3lI+oO8hQfgjgdwN/3lMPzTemXFzD5GPl0iQV0O9oydocINPw56OIOySmZmJ4cOH+1oMhyQkJCAzM9Pl7GGBwM39NvMyMTExuHLlitX2Q4cOITEx0QcSBTa8m68wyvDiP0YB0/B1tgwz7vpiTd0fiqn7Q7E1l1zgAwVXwhl6a8DsL88GQTQm6LUb2Jwp43H/7jAM3hbha1F8jic+TDT0e+bm9mknCMISMvh4kfvvvx9vvfUWjh07Bo7jkJubix9//BELFizAQw895GvxAo5AzkZE6NGyOiXaMsS5a6AzxDzYV3hzrVQN5OfCH7yxAvn+EYS/QktKAptDRTfXe9QetKSLIIhAh3p0L/L444+joqICkyZNgkqlwsMPPwy5XI5HH30UDz/8sK/FCzjcfV/SfM5/MDXmeHpJl9g5bg4C94L9QXLqHwjC8/jDs00Q/kLDe/jQm40giDrI4ONlnnvuOUyfPh3nz58HYwzt2rVDSAjlSnQHckerB37y7jc1xtgyzNTXFbkBM2H6BX6iWrcQWCBLTxBEQ0OeCw0D3WYTPLGki2L4EAThQ2gO7UVeeeUVVFRUIDg4GGlpaejSpQtCQkJQVVWFV155xdfiBRzuvjBpyYb/oDMxT9jy5NHWc6SyPjuofhUEGIHcvG8+byyCuDmgRzuw8Yfltv4CLekiCCLQIYOPF9m4cSNUKpXV9pqaGvzwww8+kCiwcbexBtKE2JMvacEP3/jmS7rENePKQJP54TUSzkPaI4jGCXXNgQ0tCTKBPHwIgghwyODjBSoqKlBeXg7GGCorK1FRUWH8V1pair/++gtNmzb1tZgBR2NvrDOPKTFyRxiqtPWvK7u0Em/vOIZ9N8rqX5kH8eSSrrdPBmHaL/koUXM39eQikD3YXDHuees6d5bw4Gh4TBAEYaRYHcAvFg/jEQ8fD9ThCjfZyna/g9VUQqgoarB/rKbSo/InJydjy5YtTpfft28fkpOTUVbWMHOOoUOH4ssvv2yQczUWKIaPF+jVqxc4jgPHcRg5cqTVfo7jMGPGDB9IFuC4u6TLs1J4jR+uyQEAW3JlGBBeP6vPr+eyUaPV4edLRZgU7z/3wGxJl8n2JlKGYq1+n7PLfL69HARAwOorMjzW1pUE34S/oPOblkkQhCchE2pgo5SQBg3Qki7CFVhNJap3fgehuuE+uPLB4Qge8CA4hXMxYmfOnImysjIsXbpUdP/OnTsRERHhSRGxePFibNmyxeEKl6qqKnz88cfYvHkz8vLyEBISgg4dOuDRRx/FkCFDPCrTzQQZfLzA119/DcYYJk+ejMWLF5s9NDKZDC1atEBcXJwPJfR/fj1TgP9cisODsRpMbKnfZurhU60D/nlain6RAh5PsP8tY3OhBP9pHzgGAU94MlWpzQ1GG2/4R6BwsyVdJr8Nxh7L7c4gMEBr0QQYC2zPF2d5+1Qwfr8hd/m4Ly8G4accGT7vU4lIue9GhjQmJYjGCT3bgQ3pz7M09HiEPHx8B9OqIFSXgZPKwckU3j+fpgZCdRmYVgUOnhnrx8TEeKQed/j3v/+N48ePY86cOWjXrh1KSkpw5MgRlJSU+EymxkBjXyXjE/r06YP09HRs3boVw4YNQ58+fYz/unfvTsYeJ1j452Xk6yT46HpdZ8mbvDB/KeBxopLHf681PpulNwYGRRqJ5yt1A2eWdLlqmhMYB61FtqebJRjwykvuBahecCYYp8qkWHHRtwGu/WFJF0EQnsdbHgbkudAwUNBmEwLwXjDynvU5nEwBTh7s/X9eMCpZLuk6fPgw7r77bqSlpWH8+PHYsmULkpOTcfr0abPjTp48ifHjx6Nr16544IEHcPHiRQDA+vXrsWTJEpw5cwbJyclITk7G+vXrRc+9fft2TJ8+HYMHD0ZCQgJSU1MxceJEjBs3zqa85eXleO2119C3b1/06NEDkyZNwpkzZ8zKbNu2DePHj0daWhqGDRuGJUuWQKut+zienJyMb7/9Fo899hi6dOmCoUOH4tdff3X53vkrZPDxIvHx8eB5HtXV1bhw4QLOnDlj9o+wTXG1xu5+RxN6y0xP9c381JDw9XhPM8aw7uQl5FfVGLdVCvUz9mw/yuHzXznoPPDJSMfEl3SZ8uJZGbYWOn8TGKw9fG4Wg48lrk6GagTfDgqdnVQcPMthw86611V9Jn0aAZij6eJ+BQRBOMRbXfBN2rU3OHSf6wjIJV0NezqiEVNRUYEnn3wSSUlJ2LBhA5555hm8++67omXff/99zJw5E+vWrYNEIsGsWbMAAHfccQceffRRdOjQATt37sTOnTtxxx13iNYRHR2NHTt2oKKiwin5GGOYNm0a8vPz8d///hfr169HSkoKJk+ebPQK+vvvv/HSSy9h4sSJ2LRpE958802sX78en376qVldH374IUaOHIkffvgBY8aMwQsvvIALFy44eaf8m8bnHuFHFBUV4ZVXXsFff/0lut/SMkrYx9Q66cgosq3I3JapEQCpfzi5OKQ+VtjssiocuV5otm1DebN6ybP2L71E3doJ6JlUv2GEqfeOPaPMzPMyHIhSO1cnEzfw3VzJ2fVcqODRPsy/nbkjJQJKdPo25aykX2w2fyrq0wo3FYRgB4uuRw0EQRDETUMAWk/IQ4vwFD/99BMAYO7cuQgKCkL79u2Rl5eH2bNnW5V97rnn0KdPHwDAtGnTMG3aNKhUKigUCiiVSkgkEofLxf7zn//gxRdfxC233ILk5GT07NkTI0eORM+ePUXL7927F2fPnsWePXsgl+tDHLz88svYsmULfvvtN9x///349NNPMW3aNKOXUGJiotFw9fTTTxvrGjVqFCZMmAAAePbZZ7F7926sXLkSr7/+ums3zQ8hg48Xeeutt1BaWorVq1dj8uTJWLJkCQoKCvDJJ59g5syZvhYv4DD9QuLIKJJVHbhLfOrzJUgj4oZTZuHhY1jG82hblUt11zhnf7GLrRg+9UFggMaiLr0nUQAp3UO46snmi+xU/UJV2FQaDEC/HM8dmOB+IPIKHTm2GrhYwePzi0F4op0KLUP821BIuIZg4gbXJcy1vt4TBOqSrmON42NuvWFu9s2NkUDM0nXzjX4Ib5GVlYXk5GQEBdV9Rk1LSxMtm5ycbPxtMOwUFhaiRYsWTp+vd+/e2LJlC44dO4bDhw9j7969+PrrrzFjxgw89dRTVuVPnjyJqqoqpKenm22vqanBlStXjGUyMjLMPHp0Oh1UKhWqq6sRHKwfk3bv3t2sjm7dujUa5wwy+HiRffv2YenSpejSpQs4jkOLFi3Qv39/hIaGYtmyZbj11lt9LaLfIvayMp2mOTKKFFusCPP3JV2mxg9PT0ctb9W7Z/Qd24REFcJkztdTXwONwADBRpauetULQGuxNMlyidfNgqttx9dDenfVJDDAXYc9X1+zPzFpbygK1TwOFUmx+dZyX4tDeBBTw0h9lgnfbPz3lwBxBfYyfj5kalg8cDMaPGgzKZDwEIwxcE42YKm0zqxgOEYQXB/pyWQy9OrVC7169cK0adOwdOlSLF26FI8//rjRi8eAIAiIiYnBypUrreoJCwszlpkxYwZGjBhhVcbUkCWGs9fu75DBx4tUVVWhadOmAIDIyEgUFRWhTZs2SEpKwqlTp3wsXeBhOpl1NCSTW8x8fWXw+eaSHC2CBQyJs59mXWs2OHdf2P3X8q222apN28BeMILFVLvGQ0YZgQE1FpGe/d3A5wnEBnSG99LBIgmOFEsxta3K7mTPF+8xU7HdHZTWR72WlyyzeN72FUqRHmX/eW0sFKr1HeXlKprkNjZMPXwkPnnOG8cg+WblJniFOg3dC+Jmpm3btvjpp5+gVquNxpaMjAyX65HJZG4ZfwCgffv20Gq1ZjIYSElJQUFBASQSCRISEkSP79y5M7KystCqVSu75zl69CjGjh1r/PvYsWPo1KmTWzL7G2Tw8SJt2rRBVlYWEhIS0LFjR6xevRoJCQlYtWqVT1PeBSpmS7pMfuuY9YDW0tPBF0u6TpdJMPeUUv/7jhK7ZXUe+BqbW1GNE7nFTpdv6OG4zuKM5Vq9wam+LvoCAy5UmE9YA2kJn7uIXaOh7Uzcq/+qEacQMCbedgB0X0zJTJcKuJqRzYCbYwYA1svY5BY34ZF9oQ6fV4Lwd0wNPr5YuuktJ0vK0tUw0G0ObG5SJ2e/gmlqHBfy4XnKy8utlitFRERYLb8aPXo0PvjgA7z22muYNm0acnJysGLFCgCueb/Ex8cjOzsbp0+fRlxcHEJDQ62MNwAwceJE3HnnnUhNTUVkZCQuXLiARYsWIT09HaGhoVbl+/Xrh27duuGpp57Ciy++iDZt2iAvLw87duzA8OHDkZaWhqeeegrTp09H8+bNMWrUKPA8j8zMTGRmZuK5554z1rV582akpqaiZ8+e+Omnn3D8+HG89dZbTl+jP0MGHy8yefJk5OfrPS6efvppTJ06FT/99BNkMhnmz5/vY+kCh1wVEBdkPjk1NehoTQw+O4s5yETWtXjb4+PvfCmCeKCPiWdAfo3zHaHpEiR3l3SVq2xN7D03rT90lkNMJEPLWPvlGAP2n+HQMpaheZR+m2W8Flntn/UdmIgdf7JUiubB9jO9BTJqxmHd9RCr7ZaazqqUANDfh83XZUhUCkiJ0Nks70kYY/j5mhQdw7RIDq/TkrmHj3sSFJcDcdbjBJsIDPjxmgxpkTpYmploYuMbMi4CSgXQzvml/YQLmBp8fLGkq0JDHj6BDBnW6qAsXYQrcNIg8MHhEKrLwLQeCH7pBHxwODipa6lK9u/fb+bNAgDjxo2zmp+Ghobik08+weuvv467774bSUlJeOqpp/DCCy+IGmxsMXLkSPzxxx+YNGkSysrKMG/ePIwfP96q3IABA7Bx40a8//77qK6uRmxsLG699VbR+D2A3uj03//+Fx988AFmzZqF4uJiREdHo1evXoiO1ifoGDhwID799FN8/PHH+OyzzyCVStG2bVtjgGYDM2bMwKZNm/DGG28gJiYGCxcuRPv27Z2+Rn+GDD5eZMyYMcbfnTt3xrZt23Dx4kU0b97cuNSLEMd0sDH5pAybe2jMBq2mL0+NAATxQKkWeO6sPijNA83MJ3XuehI4Q7Gaw7QDeqvzydtLjHK68oLXmkx8PT0wOFQTIbrd1QHBpRvA3tN6c9TH/7J/R4+cB77+w7yspYePwQhX/9hAnJW3y4zDIY3aS2NdWXNsyGlitd3yPhieo+MlEjx3RG8gMr0v3hyEHs1VY+4xaw83Tyzpmvcdjw8mO19+U44MrxzXX/+rbc2z2NHAuOEpLAM+/VnvleeoLyHcw8zg44Pzb8tzIUCcA85m1/0mQ0TDYHqbGfPN8l+/IQBj+FDQbd/BKUIQPOBBMG3DBcvnpEHgFNYfAW0xf/58u44HmZmZZn/36NEDP/74o/HvH3/8ETKZzOgNlJ6ebnVMp06dzLbJ5XJ89NFHDmV74okn8MQTT9gts23bNrO/Q0NDMXv2bNHMYQYGDhyIgQMH2q03Li7O6L3U2CCDj5fQaDQYNWoUli1bZrQOBgcHIyUlxceSBR6FtV8K7Xn4AEClybxBY+H24c0gviVqk0DEzL2vqd5cglQuiD/mzgycs27UHZuRVXdheSVAbKTt4y7lWt8ES4PP9mIezYKY1ZIaU/mcGSQJTPz+7S6Qon2oDuVaDlVarta7o3FwVBUuut3SgMIAnCnj8et18cmXwIDtuVJ0idQhKsizjfBSiWMPK8NjWVjGI6cEUGuAxBggTGn/OJ1FkO4CFYfMMgn6RWtF28zxUpNAghb7/Gn+eKO8CgxAc0c3wM+4nAsEyYBmTn7HKK4w//tKHiCVAC2iPC/bzYppX+BPbdwdrhXUPbWBfi2Bgun4QID7QfIbA4HY5mhJl2/hFCHg4LwBxt/ZuHEjEhISEBcXh8zMTCxcuBCjRo2CQqHwtWiEk5DBx0vIZDKo1epGE93bHzA18pi+zAwGH9MBimVAYL2xwfuvbXfPYGqwaKgvmI4GBPnlSnz6V513UKXJErU3vpa4/GXecvnOjmIeO4ptf3v+q4TD4CaOb4Y+Lbv1czZ1v/la353DSj1u1PA3LANjV2k5jNspbhwCgO+vBuGLLAUGRGuwvE+lR2VxpucztPv5ayKN20IUDO9Mc224OmpHOCq1HBZ1r8Ttza0NTfZimDAnZfU2WkHAkn369fRzhnSD5/wjvEt5FfDOave9dapVwIJV+uMXz9BRRikPoTN5kVDGHsJVTHtg5i+dpK/whIdP/atwCXrkCU+Sn5+Pjz76CPn5+YiJicGoUaPMYt8Q/o8vPH1vGiZOnIjly5dDq705Mr54G9OJgKkHj6b2zWY61VBZzBfPVdp/3V6okqHKTTVZuj47+i2GaYyhhgo47GgScKMszOU6tTrg5CWgsNSxh48j9pY41z0JAHRO2AeuVzee7s6W6ix1erDI2qZ/vbpODxVa/e+dBfbNC4zpPYU84SlnKmKFjkdhZbDZ/koXYl8Zj6m9jh21y0gYAzLLeKh0+uDpphmDLGtXCf4xk9GaKK9Go+/NtAw4WynzihHYU3UW1TObe3l13W/mQvvSMSCzXE7GDBuYLunyxS3qGOYdj0pa0tUwmC299ZkU/oEnMs5RDB8ikHn88cexbds2ZGRkYNu2bZg1axaCg4MdHxhAZGZmYvjw4b4Ww2uQh48XOXbsGPbs2YOdO3ciOTnZ6uFYsmSJjyQLTEzfl7tMjAGVOr33jqmhpMZiEvfvi1JEyDToH2n9GjykjsL0wwloE6LDpsH1m72YDnEtB0z2XKJNl6i4+6J29ThH5d0Zn2zcxWH7UXHDiqsBep0dIOmYc0G5G9MAyNa1WBoLz5Rbt7qh28VjOtnjs4tBWJQZjDHxaizoWuXy8aaYirjoShhwpZfd8s4Y8yxZmy3HnAzxZVFizcrf2oZBng+K2mB/ThO82rkKD7f2bPBHbxiWBQHgnbGr2ji3wJxfOrLsWio2F8XjiXY1eDa5YbKhBBLmBp+GN2rGKm52M0GAw2z8JgICMoQTBGFK4/nk7YeEh4dj5MiRGDhwIGJjYxEWFmb2j7BNpdr66yDH1b3BtpssBTJM9k0DH1su6QKAXwv0x6gEfbyf4tqVH7+r9EHH9BmNnJBNC6hsfLys1HKoqd1n+r7VCfrgzrYwnXzZMoyotDqobcx+BcZQUOnapEdgQLkGUJtUWabhrOIf2cIwn2AMKKmNyWHL2AO47uGjY4ATYWBQqOLMdG+Lm2H8U67hkK9yb3JXYedef3Jev077x2supMaygatf6DU2PO/EktIVqDhUaoGvs2xnqxAzJOZrfR+hgpml0dazv0YfmPv9zGDR+6Zj5jHEXMEbEwJbdZZb2AhtGiyd6HuqVYBGB2wuag0AWHbB+zEEyjWAyCvJrxF8vKTLk6d0xVuW8Azk4UMQBNF4IA8fLzJv3jynyh06dAhpaWkupbdrzGhtjPptmRIMBgtTo4nlki5T7jwiQ2ntEpBn4pTgUW27sAU1OqDX75FQShgOjSy12j9wawRkHMPRUaVmA9OnD4fg73wZVvUrR1eR4MFaM4OP9Xm1goAP9pyEhOPwfP9U8Baz1rd3HEON1rUZSYmGx9DtYWiuELBtaBnyajgM3haBtiE6fNuv1OGAfdWfHB4cwrBpH4dN+3ncf6v9YaFlfBlHrM+T4Id8Ht930SDRYk63rbDOe+PvfBnOiniyWHIzzBMeOxDquJANbvszHFuHlEHpqbeCh3zYbU1WX/omGutTzc+xq0CGXr9HopXS9rMgJtXGYt8HSTa7Tgshq3Qc5p9W4JXO5kbdKftCcaBIip8HlaFdqGvTss8ueuZ9Y6pmQcSV8e8MDqu287jrFgG397H/FIrp2nKC/+IyCUIVDRfduUzDIf2PCMQGCdgxrKzBzltfGlPQ5sZ0LYECOfh4loZe0uXqBzaCIBo35OHjBzz++OPIzc21uT83Nxcvvvgi0tPT0bVrV9x99904ceKEcT9jDIsXL8aAAQPQpUsXTJw4EefOnWsI0b1CjY1AIbZeX4YYPqZGnkob8z0tg9HYAwAf5oZDYuI5ZG+Zg1ao8wKq0tXVYbmcSMM4VOvMB0l/5+tji/zvkrjngZmHj+H/jBm/+pepNChXaVBSozZ6+ehqR8E6gbls7AGAg0X6a7leo+8GdtTKeNFJT6edGfrjNu3X/3/DLvsDDJ0baUJ1jMOWQt7K6+iDS+YpyXNrHHdljHk3W1tD4o2hXImGx/kK53RvKzOaKZYyGoOruyiXzkbTZoxDhU489lC+qn6vNp0P2gpz4Lrw9SVrT5YDtTGaNmQ7b7wxXNfSc573jBGz1a/artfFz3tNdGLjUg23wLQeMSNQhRPPu6c4XqJ/JvLq2aYaGsHkxvliwu41TxwP1SsI5C1kD9PnjpYHicOY80uOTQ0+nmx3ts5v6xzOLH8nCKLxEVgjmEaKvYF+aWkpHnzwQchkMixfvhy//PILZs6cifDwusw7y5cvxxdffIE5c+Zg7dq1iI6OxpQpU1BRUWGzXn9GKbOedF6psT3OUwvA21kSPHaqbvJ3USRA7x+FPAYfsJ4gmk5M79gRJrqk6dccKXr8HoGtN+qOZ0y/DObuv62zIA3cGoGXjlqnZLSlalNjiMD0S8a+LWRYk5kNADhbUOdNpBME/HYuG2/vOIptF3Pw722HxSt1wNunzL0a6jsIUWvsmyFc9fAxsDRbiuGHZDhfVT8zx8pLQejzRwQOFPl++Y6/YusOm31hZ8CDe0Ix+q8wp40iq6/I0WdvSxwWmrhu8LFzDmeDV5tiL2OXgVeOKTFgaziK3Fwe5w5mMVdcvEnOFr9SyaPvH2FYedw6Vtnugvq7djk7+THzHrBoW9n5wPOf8Ph1P+dSnYQ5vl7S5Um1mbURD9Sn1QGvf83jw/U0BLaFadwnMoyJs2Izh9kreFS5+J7w1O0sLgf+bxmPNX9an1/sHJ9clWD4iTBcUdMYiCBuNuht5+csX74czZo1w7x589ClSxckJCSgb9++aNmyJQC9sejrr7/G9OnTMWLECCQlJWHBggWoqanBzz//7GPp3YPnOYxKNnfZX3VDYjO2jZoBG/Icv8AEcFCL1MGbvBqvVEmQWWZd10tHldAIHD4+X/dVnAHYfEP8y3q1jjPzAnKEqZGJAThUKkOFAFwo0afK3nwu27hfKzD8fTkXKp2AbRevO30OX1MfF+MqgcPa3Pp1V5uuy1Gt4/DO6caVWcCT2NKQ6eBRy4DjJVJkVUpwpco5nbx+Qgkt4/CGtovLg117k1VbExF77vPOtMKfcuQo1fBYe7XhltmapUF29WAnD1hyToFqHYeNmZVW+549bG2gdhWnjTM2YrIwBqz9i4dWxxk9ggQfG3wCdWGEr7N0eRJPGxwu5wKFZRzOXQtU7TYsgd5+vMXhczzKqjhkXHH8njBraR66oduOcKjRcNhx3Po9LHaKFTkSVAsclhdZf6QkCKJxQzF8/Jxt27ZhwIAB+Ne//oUDBw4gLi4ODz30EO677z4AQHZ2NvLz8zFgwADjMXK5HL1798aRI0fwwAMPuHQ+na31Ew3MB3cnoeM7e4x/V+k4ZNlI17y/rJ52S878+Am7w7DntjKEyQCdHZuohvEue638cl2OX67L0b2JFpcqeRSrrevXMB6cyXn3Xsk1S9nMBM/r6LY/w5FkkkZ3/M54REQUOzyOcyKlNSdw4BgPHV+/7mZdngTHyqJwteYOqJzO5WNNkZq3qVeB4yGRcOA5Bt5PQ1UyjoHz0jRU4DjRe2NqdLleU3fvtYyHWGvUgReVUJ9Pz7k2Yzy3jaDNAKDj5BA419oC45zvLwRwmJ2hxMUKHl+kV0Hq5KFutSNWdyc5JoDnrIfsNtstxPVmdQo7+8q1HC5XSZCgZLV1SsBDCo7xdp9zE7HBdBw4AahSAe+t49CjPQMHZtS5oR7T9OvMxDDOLIzknMDZ1b8BZ67dXUwN1aLPhh1dZ+QW47fzOXgorQ1ahDuOE2U43hN9DzO5yc62D08isPqd07T9mbUX5tx7xx6mj5ajukz3G35bHsMxHoyXQeAkLl2zjgFT9ykRHyzgra7iSRc4sAbXHWC+ZFcD8X5ejPq8QxnHAIkUAif+jrZXtzvPjoRjkEIC3kEfZ4pYOSaif8v+06w7FzzzBt9/xrptGk8BDoKNLx86cNAJAvgGGu8b5hW25hf+Mu/wJNW6KqgFz2bWtIeclyNY4vtYhIT/QgYfP+fq1av47rvvMGXKFEyfPh3Hjx/H3LlzIZfLMXbsWOTn5wMAoqLMPWKio6ORk5Pj8vkyMjI8IrenCYoOAwqsv0oDwOYiKerzyaQyMRWw+OK9+HoL3NPJfgDcMyEdkBtUDcD1QJ5Him0/ejnyZggN5QCUAAB+Pptttj8xLM/l8zkiu4pHtom3Rk61FDnVMQ6Pi8ttAeCGE2VaoCS1HfBnUb3kPF8jHrPFFTScFJkhSeI7Q4ChcQBQWvvPD2kC4HQYUOLETNhFrgS3gjTE+h4zEx2/dTEGgH5ycjG4FbQi5QEAnPXzyhQKVIXJgHKVXTn0bUaPpkwLoEC0nKr1vbgUIoVlG1TbGbznN2kDZ3VbII/GurP6pbEbq1shLdZ29i8z3GhH12V1+mwTkYu4EOs+wrrd6q+7SNYEmSGOv9qWSUtg0J0Yr52Nxsz+dfGxuqCXoRuySUmhGoD+uW6aF4vYSinWnqrA9aIK/LJfb7o29M4Gvd4oVgHQG5SbFMQAKAQAROXHQaEpBaA2li+p0QHItyuDzefZA1wtr5NV9Dx2dD1ri14/60+dx+LbHfenBjo0sR3Tz1nUmrpnTCVVIjOkZb3rdA79NVdKlMgMSahXTYb2d7CiAoD+OZRopYjLdf5eilFcVNdmTfsaPeZ9ifV+IDa/ucWWFtB2SMElF+U4V6TGwaIiHAQwqZ+lfvRycOC82r5tUSwrA6BPr3dO2R5hcieNTvV5hzYBkDACl+tRt6vPTi+kOyFqXZswbw/67eGqFtB2mGylf9P+M7y8CoaxYmxuc0j5+pt8KmrE5NJvqwmLQHZipPkBe/X7qiIicDIrq97ndxV/nV94mmpdFX7N+QUVWuul094iVBqG21vc6bTRZ+bMmdiwYQMAQCKRIDY2FoMHD8bzzz+PiIgIAMDQoUNx7do1q2NfeOEFTJs2DdnZ2Rg2bBgkEgm2b9+OuLg4Y5m8vDzceuut0Ol02Lp1KxIS6vcuIOoPGXz8AM7O+gPGGFJTU/H8888DADp37ozz58/ju+++w9ixY23W4SgAqC3S0tIgkfh+fa+mtBSmL9n1Z8SNPQBQpq6ff+wPIssbIlUFSK7MgQ48zoe0Fz0uqeIczqpkADy7RCis8gbePmC7zmd+E5/8+oLcuBw4WhmaG5cDbWkpqjKuAUhtELnskV8lYNH2bLzfo8oqI1VxhRarzsWgSev2UIa4/rWkQq3BqoxL6NkiCt2bN3X5eK0g4JvjWShXaZBTrs8e17ZJKOJCg1Gu0kCl0yExmAcqy+HpdgcALasvI1lu/YWUsTAYnNL/ulJnMGhTfRntpdbl9V85LSdFgERVjaDyagD2DSf6dgV8s41DXilga2FN6blf0KdlcwDmkyV7AaVjSrIAOKebNafKjedOqM5Gsq1o8Ba4047yK2tgMGxdKIlFcbF1v5RcedZii97I8/PZSrzd3r7hFQBCNcEAbBtND+SojOco05ThN/lFhLdIQ3BQhM1jCnSAoQ/4z958dGkLcErAqDOOAbVLaQ16LVbVHVPQNN/4Oy8qF2o5Zzz2IJ+D5Tvq/raF9X2pHzeqObxyLBgPtVYjngcAvQ6TKs5aLRe0r+vaCZaWR2ax9fNgCQ8BHZrk4lxxHIR6enVcLiuDwVB1oViLeVuz8WLHGqRGettzUd8mg3VVSK50/11l2v4uaCJhaANaidbYjtylSAAMbc66LvP7brqfEzjE5jdHXsx1MN4kRlJFMRKPHkRCVCcEBUU6LUd1lQSAfimlrWcbYHbb99snFdAIwL/TbBtyTdlwVYZfcmRY1KMK4Xa+n+QXKWGYIrSrvIAmGufGWfV5h7LKInS49hPato6GItT6g5u9up15dkpq1Pj+5GUMaBmLTjERKNeW4opiO1ITohChsCdrXX3m7UW/vVSeA+m5XWb6t+w/y/PryufGXofUI8NsMbn02+TlpUi4amlw0Cv8QI4KKW3aQBZhu1/3JDqdDhkZGTbnF4b9jQW1oEaFthwyXg457/1l4YbzqQW1S14+AwcOxLx586DT6XD+/HnMmjUL5eXlWLRokbHMv/71L+OKEgMhIebLv2NjY7Fx40Y88cQTxm0bN25EXFycW44HhHcgg48fYM84ExMTg3bt2plta9u2LX777TfjfgAoKChAbGyssUxhYSGio6NdlkUikfiFwUfgeXQOUuOUyjep6nkwSBy4BvMQIPHC6vZvLvnmmt3BdNBrrwzjBOj8KPrqrgIpVl+W4bF25p4mPBOg0zEIjHNrwrXjUj4uFlfgYnEFujZ3/fk7V1SOzAJzjzFDfcYyANrIvBRVgYm3e1tn0z8DzuuVYwzMiWxtjGcoqQB2nbKvg++ut8XIRNeC03MuBIXRmHgKSTnHfYIBd9qR1uS+6MCJxiyzdX4BnFOyMSf6K4lxaYQOArRgnGD3OTc1geUUccgpAm7vI6DO4ANjAzLUY3ppOhOZBI6Zfbz4+CcOZU4Ea3elDTrDvFNKHCiS4kCRFJ/2qmtfvIg2ndO1a/2JIHom19BatJ+DRVJM3huCo6MaxnORc+Idag/T9rc/02TZH5x77zio3Ii+zdXWLVKt2LkYz8y2M04AJ2jAM51L12y68NXWcRxne1+lFvj2sn68MCOpGjFBju/Laxn6DwUrLsjxQkfbRqIWwXXn5JjzY536vEMZ4wCdFjwTf684U7e9Z2fD6avIKq5AVnEF5g7vCR3joIUOgoM+zkxGsXIcs9K/Vf9p0q8JHAPz8Co9S7kEAeDtzC0kPN/gY31/mV80FHJeDoXE89kwxdC4sXxMLpcb55DNmjXDHXfcYfT6MRASEmIsY4uxY8di/fr1Zgaf9evXY+zYsVi6dKnLchHegYI2e5FJkyahrMx6uU9FRQUmTZpk/PvIkSNITEwUraNHjx7IsnC9vHTpEuLj4wEACQkJiImJwa5du4z71Wo1Dhw4gO7du3viMnzG4haFPjv3knPBqNICRSoOH+4rES2jZcCbJz3vZXG5qnG9EH/Zy+GPDIXbWbpc4fbmzr/03ssMxh07wvDZBSeX6ThArROw60qdO/naE1lm2dXEYIzh17NXsedKHhbvOYmVR887da4sjXfWatvyjHEm7o6BxWcVSN0Ujs3nq6z2cXAuAOvZbMCZeOTHKlxf2uFuO3Qmu1d9YPXI0uX8ORyXefGIEkeKne+DxOxnv+6vG1qY3u1vtnDQ6cwNiJYZ4M5crTvCGWOPJbk1HF46qsRRF67BkkKTFOy2ZHUFe0HEvYUgomyVaPwRYN4pBVZd9uyHBnfasI4Br58IxsZsO64n9Xg2th3h8MMuC29o09826r6aD7z3PY93vudwoVjjvgBuYK/pWGb3NHCsRIKXjirxyjElvrgo/n4rd5BV09OZ0fyBCpV3dOfM/TFLy+4VKczZX1H/5e/EzcPVq1fx999/Qyp13Q9k6NChKC0txcGDBwEABw8eRGlpKYYMGeJpMYl6QB4+XmT//v3QaKxfMCqVCocOHXKqjsmTJ+PBBx/Ep59+ittvvx3Hjx/HmjVr8OabbwLQL+WaNGkSli1bhtatW6NVq1ZYtmwZFAoF7rrrLo9eT0Oj4BkS5AKyRQIbNwSfXVTgcqUEf10X/wq2JVcmOoAmzNm0nwcQglYR3jdkuaqNrEoJ3ssMxqTWKsjrKd7uK+axA47eKMLRG0WYO7ynzWNyyquw64rnYzK5i72lUM6QV8NhaW0mu1yR5U88mFMGl8828V7LzuTuJXp70m5m+PDSlMCZWg2B5ffe5ly8LUdGENPbtvsUj5ZxApqGiRu3LCfcpgGfnWXWcSV2F8jwc44cp+8ocelYA2YZ05j4dlcQD2HuXcQMPmIcKpbg60v6Z/aBVp4LMqpzwpPPkq03ZFh9JQirrwRh72365WDVKtsGGldZ97d+LBFjuqyNwdhIbbXld1fz0NW+6/8vtxBLO9ZDCBswJt7H2LuLtoxVD+wOMys3pa11zDRHbdk0c6i7hk5/w5eX4Y0sXfaoFuh7PmGfP//8E927d4dOp4NKpe8jXnnlFbMyCxcuxIcffmi27dNPP0V6errxb5lMhjFjxmDdunXo1asX1q1bhzFjxkAmI6OjP0EGHy9w5swZ4+/z588bAysDgCAI+Pvvv82CW9mjS5cuWLJkCRYtWoSPP/4YCQkJmDVrFsaMGWMs8/jjj0OlUuGNN95AaWkpunbtihUrViBUZA10oLEyqQJDTogHI50ar8Pn17xnRPjkvAIpEbZjdsw8Vv80xoHO3xnOD+orBH3n3y1MwJ3RAt7K8nz34+60qlTLIUZSNwq7VFqJnNxSDG3bHDzHoaCyBl8dPYekqAjIJTxaRoQiLEiGTw/on/V+ibHYfVXccDN7yyE0Dw3G9YpqdIgKx7lCvdff6OREHM91nAmtIdExDttzpThVJsE/26scGjk+PBuM97tXggPw8XkF4oPtTyM4AHsrHXtUVdrIyCfGjGPO9aUG9pa452Jt6GkOFkmwM1+GpzrUQGZjTH20VIr9FQJuc2GmZGrk8ZaHj6cmbjVq4Jd9HNo2Z5C52AWXVgJNTOajgsXc2xRXjT0AcLmyfhOdr7KCcLxEvG9yVy/+4uEjhiNPD0vWX5VDy4DUCB1+vS7D9PY1EIkv7hYlIrJ4aiWw6e1Qm8S7d+Ths/kAZzT2GMgvBaKbWJe1pFILLDuvwMjmGrtjCUBvgBF7lDR2DGemz7O9GMACs94v1jrePhWMH6/JsHVImd3zBiqmXpTrT17CkPaOY9j8ecz8Pvywi0P3DgwtY8XLMwZ8djEIzRTBgI04tY3EfkYEOOnp6Xj99ddRXV2NtWvXIisrCw8//LBZmalTp2L8+PFm28Tmr/feey/uv/9+PP/889i8eTNWr17dKLOvBTJk8PECY8eOBcdx4DgOkydPttqvUCgwe/Zsp+sbMmSIXdc4juMwY8YMzJgxwy15/RmlxQhIyjFoGYc7o3W4P867Bh8AyKlufIMeT7Jqu/OTqyqm11WxhkO3MP+J5wMAp0olGBxbNwv49vRVAECTYDl6tojGsgNnUK3VYV+2wXibi7Cguq8Xtow9Bq5X6AMwG4w9APBT5lUPSe85dAz45yG9obhbpA79Y+xnAtuaq/ekqNEBn553bEjxxrKonYWuLW/7rdA9Q61h0j5xr95a0VQuYFIbcY+Ip45H6svkFuPWcOcM7w3xFd1TT93+Mxy2HeGx7QjwxF0OBnUWXahOME/LbnrdnvDqqk+PnVnGY/5p28t03RXPXmIGb+Fse3JFNJUOeDXD/Hmr0XF4NaXa+vzOV9sg2LJ/mXlwiZT5aY/1O+69dRzmPeb4Bi8+q8BXlxRYflHh0NtMxwCJi81E66SOtQyQWxp8LI5V64CVl/TG+DkZykbv4XP4eiGahHCIFs/JAQDILwG+32Gu/98P8fj9EPDxv8T7vYPFEizKDAYQjNdsGXwayf0kApvg4GC0atUKADB79mxMnDgRS5YswbPPPmss06RJE2MZeyQlJaFt27Z4/vnn0a5dOyQlJeH06dPeEp1wAzL4eIGtW7eCMYbhw4fj+++/R9OmdRlhZDIZoqKibqrAZZ7kjx4a7Czh0TdSQIQU6BQi4HQ9v+jao9hHy8ncoU9CDPZn209f7EsM402lhFkNIBclaaCUANNP188FlOOA7/qW48E9YY4Lm7DknAJPHZJgeIwKTU1G0RtOXcahawWo1loP7sq9FA/AlxwuqnslPHYgFN0itThdZr+vOlQkQYjUuRFsIJtPv70chNyaOp1nVYrfl3KTZlFUo8aRnEJEKYPQMjIUFSoN9mbngQOHWxJjECKva++V6roDGWNeuVnOBMx2hjKT8EyOjDRWZ2TmE0jTj4DuToRWXZajexMtksOFennTFKjs9/dux/Bx77B6IdgQtkTNIVJet88V2TQiuv7f5SDc1kyDPlHmxmEdA9ZckSMlQoeUCB0yy3gcKZbivpZqm94ozuiusMx5iRkDdp/kkBjL0CLK5DwWZcR+26OsikNpJRDhwHZ8ptx+32kqhzttS+ekUebpQyHoF6XFIyZLuyzvtWkSriPFUrQOqXswG6t9orhKDXupFaqsV8I5JK9GvA9x1LaPnAeC5UDHlvbLuUu2c0nciJuYp59+Go8//jgefPBBp1ehmHLPPffgjTfewOuvv+554Yh6QwYfLxAfHw+NRoOxY8ciMjLSGGCZqD+hUmBUdN0op3MIw2nbGdv9nrHxamy85n6wzLs7tsQPZ64gWhmEMR1b+rXBR1ObliJODoRb9DwDmzBUiDiTtAkWkFXtmtGtWxPX3UhPlOoF+i1PAcvh7ZXSAG5gLvKxhZfOURtLW0wp13I3hcHn5xw5fs5x/Ky+fqLOAyKnohqHc0sAAHOH98T/jp1Hdq215GJxOR7vlWwsu+VCXfpSb02wPOV1YTp5sVzuYq8soL8208np3yfEAyS7whsn9ff89B0l9fp67uj+uGvw4X3i4SMu7MxjSnzau65Pc0UyW/G3Ju8LtfJgOV4iNS6NO31HCcburE3XLmW4O17cWO6MLDznvBKOXQS+3aZvX+//s+69YCuAriv6XbyBx+yH6/dEmT1HbhiedDZ+W/J3vgx/58swIMa5jxQM5kvJ/M1bq6Fw9rF1Rl9mbc6ifHE58NkmvXHQludQfXnjIk33Ghq1G5mzfHme9PR0tG/fHsuWLcOcOXMAAJWVlWZhSQC9Z5BYyJD77rsPo0aNQni4eBgOwrcEjvtCgCGTybB161Zfi9HoyVfbfyMnKf17qPJ/naxd4V2he4so3JGUgAe6tPOQRN5DXWvwkXIM0SLz5lAp8HSiFp1CBKxOU+OZllp81lmL++NcHwB92KMSCcE6fJXuWspuwnUKVTx25jvnmXUdns9q5w/U6IAPMhXYkSfFput1jftGZd0n4jP5JUZjDwBcLqnA+dolfiqtDjcq6vqCkmo11p+3b7zdkSc+gK/RAV9nybHuqhxai+7PU0sJTD00RJzfzBHpok3lyLouvt0XiAUtr9KZTnzdzfAmzrnCUlwvt85m5wiNTsCJ3GJUafRWcp3AcDKv2CwLkS2Dz458GX6/LkOphsPWXClyTTOSObj/9oK6O5vZ7VRp/bybBcbhyHkn2h2A7HwT3Zk8C6cu122vNvHicKX9XS9y3BYc1Wdaw/ZcGa7VLiF3dtRiamx1xnsvt0Y8e54Y5p5PgWyqdx97+rO1z5bRsMZkTm5ZpNxkGGio91oBsHEXh6Jy8fqybjgnj4Gj5ebTPebrzrYRI+flCJWGQSOoUamt8Po/jaBGqDQMcr7+mRanTJmCNWvW4Pp1/Yv5o48+woABA8z+vfPOO6LHSqVSNG3a1K1MX4T3Ia14keHDh2PLli2YMmWKr0UJaNJCBWRU8BgZZT3Ck9oZh7QNFpCkZDjr+ni6wWhi4lrfSqlzOSW7lOfRr2Wd62WEQo7Smob5quAq6toYPgaddQ8TcKScx5AmdcPbyS0ETG6h/7ttrbHuoeY6rM517r5U1zaREc00GNFMP/lpG6LDRRvLb4j6c6jY+deIrQlzUoIaZ7M9mxa6IfkiKwjLLtiPYfS/Yxestn155BzmDu+J5QczzbZ/c9y6rCmHiySYflA8NtB7Z4Lxv8v6WBwSjmFsgokRwG6tzmP6tVrjWggfMKaftBtwdlmKs9SnCrE50ItH69btuJ+W3brd51ZU46sj58FzwJvDbGfyE2PP1Tz8fv4aujVrintT2+Dw9QL8cPoKkqMjMLFb+1pZbQv7zBHxtUi2AgcbEFvSZeChPWHYe1upQ9ndCcRtyWebJLhvsIDBXZ1XiKnuMrLqZNiwk8MjI/U7vZUZ0Bamd+Kl2iQQp+8osTKs2crgZVrOmbZpz2PFsrmYZapzXHVA4MnrsBkTykb5c9ds52U31YtQG8vp7W/1T+IfIvGCatTAwjXmT6rhOGc5mVuJ7k2ciDxOuEywRInbW9zZYB4+gN7IFCxxPp7h/PnzRbePHj0ao0ePBgBs27bNbh0JCQnIzMy0ub9Tp0529xMNCxl8vEjLli2xdOlSHDlyBCkpKQgONv+6PWnSJB9JFljMaqPDxjyGSS1EDD687Vf4m+10kHLAzwX+Odn/d4q5JeqJ9iqsuBiE8xXW8naOiUSUMggKmRRhchkKq2rQKtJ6wvdAWlssO3DGars/UCzoJ/QGg8+sNlqszZXg4eb2Z4wtgoBp8Vr895rj7kosa9JXt1Rg4FbH2Tj8gSFtmiOzoBQ5bnz1D2TCggNvSsEYsDNfCjkPfHTWfc+lYzeKzLx77HGxgsfBIil+FFkGeqhIgrPlEqOxBwAWnA6GUgJ0b6qFTgAuiPQtjlBpgLxSoGWs3qsiOx8wTS6ndrBKRMzgc+Fa3d+mGdnq+9H5VKkE16qtr1GlA46XStAtUmfsI/JqOFRoObQNrZvaFjmI2ebMpJoxhmtlVYgNrWsTYhPtotoAIQID8iqrERtSV/5GRTXyK9VIio6ATKKXSaXVIae8ChqdgN/P62/g0RtF6NcyDltrlwNmFpSiUq3BjYpqnMwrcSysyPVJOL0eTpRK0DZUZ5aBy56HDwBklDhuX2L38FIlD4WNd7mtU+48wWFgF4Yj5zjERzM0qwuViLwSWGWPs2XMOZDJ45GROrvncoYb6mBIqqVo60ISQFvzc8t7xGyUNQ3a7IytyrR1m9anY8ARk+W7N2p4xCrqamwsQZtdxR0PH8vNhv4zOKhOi4Yy5VVAcYX95V5iVIvEFtIJgESk+8pTAwUinvBNgylltjcJlihdMsAQhLchg48X+f777xEWFoYTJ07gxIkTZvs4jiODj5O0VzK82FrcKBBvkuE5TMJQbuJ+nxzCUGo/yZDP+FdSNR5oZW79T1Tq8J+0KtGAww91dW7JVqKjKJI+5KAqBgCQWaXXUetg2NSrJY8nCHg8QY0PzmvwjZ0sS61DrIe90UEMp+8owVdZQXYz8HiKucN7YvaWQ2bbxnVuhd2Xc5FbWRc5sX3TcMSHK7Hj0g3jcQAwrF0LfH3kHM6aZPQyRco5n53Fn4mVM+SpOch4HZrZibs0boCArOscjl7wr2UFv92QYfVVxynmHfH9iSyny975l+218Q/vte43SjQ8njkSgpggAYwBBW4EoV/yQwSuF0nw6CgBxy4Ah86Z16F2sY/df4ZDuY3sh/U1+NyzSzxY+ztngvHt5SA8m1SNJ9rrZ0uDt+mNwDuGliJWoT/x7Az7A3RnJtWHcwqx4fRltDTpi8Vi+Jhe6kd7TmHWoK4IlfPIr9Lho716o32v+GiM7aTPkLLh1GWcyCu2qmfpfvNMKPP+Ou6ElOIYJva/5Mjw0rEQdArXYv2AumWxWgdLex4/4DgjnaXxoETN4fYd+nb9nzQRQ7edNrHtCIcNO/Xt8cOndJBK9JPhN77WW3tu71OnMWfalrsePhotMOPMMADAsVElkPMG0e3fL1siWRrWxNKqG7Yb63Li+mzFP1p6ToGlFvHbzpoE628Erxu3sHfdtoxglnow9J9SCbMq88E6HjeKOUy8zTXjmlgRW233kRMy5GusG49SThE9COJmggw+XsSROxxRfx5pocMXORK0DRawMEmLRZeluKYCHovXv/0ipMDj8TpwYPi5QIIclf7FFytnAAPyRF6EDYHpWWd3rkJWpQQ9aye9D7ZUIUaqwZeXQlHm3yGI3OJclfsDjQeiKu0afB5razsVxbgENd7LVEDjIMisLZqHBhvTq9uid7w+58c9nVtj3alLAAApz6FLXFPEhQRjx6XrOJ1fatzev2UciqpVSItralbP2E6t8HPmVZzKL7E6h6Ov7IHCh8lafHJVh/ZJJ9G+cxscPh9sFhejX4oAjRYY1IVh+xH/MvYAemNKoJDvIPuUGPsKFWDNgOu1mdsOZHJmS2EMaBwZfCwOsWXsATzvSVClBbKreXxb6/X08XkFprVT4YaJV9G5cglkvM6p5RCWk7mcag5XKiQo1DKECQJKa9Q4cE0fe8k02HtJjRqM6bMTVqo1KKpR40xBiVldl0rK0SJUgdO5dX3MwWsFuLVNc2h1gqixx9MY+pYNtR5kp8vMh4iWMaHcwVLF1xwE5bfXJDYfqFOaSgNIJTCLeWKqL50TshfbiJfiiCoTQ2q1joPcjuexKbZEsnwOLP/WCECJhjMzwDnl4WPSxk2bu6WxBwBqzOIDOVF5Y8Seh4/N7eYdiaH/1OqsO5gbxfpt50w8Hh3da61O7xlkiZjBhzGIGnsAQCENnPcXQRD1hww+RECjlAAH0us8Zd5Ptp59TEvQG1IeT7B+Iz6RARyuavjYIUqTrz3/aG3u6TMntRpF5VocygvDroqbdaQlTqxMwOzQo5hb0Q0AsGJMLB79Mc+4P8ROjxYuYzgyshSpv0aabY+SC9g5vAxHiyU207nPHd4TjDG8tvWwXflGdkgAAEQG17WpWYO7QibhkRARgn90bW/0/mkWFgylXIr709pay6qQm3l1mXoMxSnluFHln3GaXKFdMMOctuXYEloFmRR2M97Iyfu8wXnmcByCpHWGSFuptEscJLFzxVTn6YnlyD/DzbyadAKw7EIQPjRZgqcWgFF/hsGZD96mxtaTpRLca/QoYsD+szaPK1dpsOVCDq6VVeF8kbjn3rfHL4puX7gzw7FgHsJwebb04Aljs2UVpufammv9oNuShePM26TYhNfUyOOobf15jMP3O9ybBGeZBFDnTa7Q9JTlGiDM4vJsGTh1Fp5U/zocYpZZ7R97QpFRKsUbqXUzf2eMpWZGzdrfJ50Iot1YvjtpnLH6mWDvlroatNmZYwF9O7a3/53VPK4VWPeqYpe2Ic92ew4igw9B3FSQwcfL3LhxA1u3bsX169eh0ZgHO3jllVd8JBVh4NX4UtxzLqZBzxktFzChpeMJu7uDrFEd4rHZ9JNRI2OU4hq2SZPQtxlvNoCdkCiysN0CCQdMbK1CiZrDyOZqLD4bjH8l6b+op0XqMChKhZ2FQWiikIPneeRX1WBQ62YA9MswB7SKQ2mNGs3ClDiSU4CCqrpz9oqPhkKqHzybDizlEvEBtbupmh9MisFnxy+hXAhcK4gEzOmUtwAQptTH5fAk7YK0uKCiV6A9VNq6NmZr6VZ5lQNFuqBnTxt8LJewCeDMjD0AkFkuQZnWucmPAH1geB7A91dd+1BgWLrpz9ToOCglzGyiqzMJBlvmCY9YOzr+M6+uvdW1BfFzarQWac1ru1yzbSYrRe1NxDVauG3sAYBdmSbxmgCodYDcots/VSZFepT5Q+Ss0WBHvgxVtdcrAZBRqu+3NprE8nIqaLPItvVOBMtXiXinNBRi99JdSjyY0MI8i5nJb2eOtfjb9O4yZr8fFDP2AOIGn/mXxG/cfREVooHkCYJovNBo14vs2bMHTz75JBISEpCVlYUOHTrg2rVrYIyhc+fOvhaPAJAg1+FAzE/4LqQ/Fl1q6vgAD/B5nwoEOzGAcXf4OaBVs0Zt8AniBCxLzQUXHgXTSDlPd7C9nMuUWZ3rlkwMi6vz4ZdwwLzO5ViZGYymbdtCGWq9dGxUrQcPAAxu3czM88YQawNwzpgTZMMQZI9bEmLQVCHDv5pcwluFHVw+3l9wdaxpKz7B5x23YOqZ4S7VNadtIYZlH0ZQ26645XSsa4LcxJy+Iq60k5fsK9OXHj7OYGkAssdXWQqsvFT/uE3+yoCtEbglyvzD1KS9ofimbwUWnlHg84suRCS2gZWHj41y5ypkQJDtNpFXYt6yjAYfk22mS9Dsxed5/tP6eTuYGlvOVUjw0J4wPNjS/APEI/tCsXt4qVlmTlsirRMxwvT8PdJqm1mWLieeNEdxgGxxz64wbB9SimYNHFz/zzwpnjwYilc6VWFSG897tTq6mvqmZbdVJvMqh97J4jsF5t7SVrFjLJeXvd5Wi9vDqqCtqLAuTBBEo4Z8+rzIe++9hylTpuDnn3+GXC7H4sWL8eeff6J3794YNWqUr8UjTGhIl2WxTApiJCuA6GA5BraKc1w4gOA8GAIyRMZhUIwGA2M0iAnyn+VvbZqEISE8BD1aRFntG9gqDtHKINF9tritfTyigoMwuE1zAEBKUDlSw9S4J0GFu+PVHr2nDYGj4K+WiH29jArVIUrmnJHPFNNJz+JkDZrJGRScd3uA8CAZkqMjoJBKoJRJkZ5g7lXYKSYS0crGa0hwFn+PFdKYjT0G9haaew4eLpaCMXjE2AM4HwB4+YVIl8qLefhonfTwEdyM62bAtE/5pDYezndXgqza86/Xze+tLZkWZTpnhDQ93t34V84+c997IEC9q7x0VP/RZd5p32Q7cidoszPHb9rH2c7y5cDDxxY6J/JfhEn9vIMlCMJrkIePF7lw4QIWLVoEAJBKpaipqUFISAieeeYZ/POf/8RDDz3kYwkJA2Iv7zX9ysFxHCbsEs88YprxpdOmSKfPJXVybCnnOUzrKu5pEsh4MjkEx3FY2rsaEh9HGbBUqYTnML1PR9GyIzskGGP9OMvg1s0wuHZpGdPo29DX3fIQHKZvmw+1kuD+3eLxh+xxZGQJuv8WabW9S6QWq/uZfwV0pY17GpnIm2pIShX4auDI0Cx039bGbN8dzdXYdF18qYLEJFPNLZEMP3XXQKgoQvrJZvWS8fQdJQDq7lN3JXB7l442n9992frgvsPbtcCttYY8y+xuI0Py8FtlYHshuTIR/W47fYPyByxV5slA8YaqPshUYOM1Of6vo/1A+M5Oft/4WoKEaIZskyUvppNgrXMJIQEAyiCGKpXzRiCZyUTatL1bZlO0vpb6GZq0LgZWNpXNcKQrb87tuVLMOaHEW2lVGBTrvRSoAgMm7g1FhdZzy462Xsix2nYkpww1QU3QJdG6fF4J8P5a2164znn4iMufV8Lh6cUmWdBMjvn6Dx6P3+H6eMaZfralggw+BHGzQqMrL6JUKqFW691QY2NjceXKFeO+4mLvZ9wgnGdcXLlZIGUASA7XWQ10H2lT51Fg+lVvdAtrd+NImfVLu3WIDvHBjSUEons0bURm5nGdW4HngH+YBFj2BZbtVMoxTGpt7v3yQrL1xCqIB9IitJDxzBhsVMYzvNbZuuyHPRxE5/Uid90iQCphUJp4cfVqV7dkwvLa7C3vs5WNaYziivgOF5mQqEKwREBKsP3JSvfmUZBLePRqEW2zzFWN88uN/BVXvlbnFlNcCX/AUmeWhgtP1L3sggK5NTz+d1ncc8RQzpX2k20R38TUyHPphvNti3dxZJySUPf+N514OzKU1TcrnalenBlViJ3OWREYgFeOK1Gg4vFqhnc9bq5WS3GwyLMDhe1Z10W3n85qIrp97V8OssfZ8tBxoowlpu3g1GXOrXbhTDzqIJrxEcRNSyOaevkfXbt2xeHDh9G+fXsMHjwYCxYswNmzZ/HHH3+ga9euvhaPMCFaLmDvbaWQ8fqsLTwAKW/+8j4+qgQyHvgyS++ybWrwWdBVny3jpxy9V8H09jX4Z/sadNkcaXaenweVO5X+11N0jw7Bi/KdaN06Fv13xzfcie3QkNfvbXq2iEa3ZlGQ2Eph1ECoLZYkHB6pb8tfX9K31QmJqtq09OYGBI4DVvWrME5MpJx+EiETGRiOaKbB0ZEl4AB0FfEKssXMTtWYf7p+houkBGDhEwJk0rqv9lxV3dP5WDsVNl6T40KF/qtpm1Dbo1/exhTntbBj+L9uDAP2thLd7yxvplXj6Zbl+O6cfc+c8Z1bYWynVnbbjqk3EgC8llKF+xLV0DJ9H9V3SwSqTAKqHh1ZAjkPZJQ67/E1J6UKb5703gRO5YlAvyJwYFYxKgKJOUO6gec4vL7tiNW+R3u0x4rD50WP+/eQ7gDqli4xBpzILca6U5c8Jtv+IvOlR2JegO5i+fRV2GgfzOL/7nDonHszXFdjjP12rO75sQx4bcrcU0o81EptrF+sl7Jc9mWP8xV1XiKrLstx/277y65EPXxcuMGlGv39LFDxeO6wEtFBDK+m2PfQsqSgqgZrT2RhUOvm6BwbKVrGWWesrRdykFVcjpIaNUpq1JjZPxJHc3Ox+by1N489Lt2QoFsbIKcQeOsb/T1NSrB/YyyX063K7YDjl5pjkEm372z/ZKkDS0PRsQuAo29KBoMPzzEINjyLgng4f3OJeqGrqoKgbrhsqrxcDonSN0sfAWDfvn2YNGkSDhw4gPDwcJ/JQdiGDD5e5JVXXkFlpf6r+IwZM1BVVYVNmzahVatWlKHLDzFMck2XHLWrnTgqJcxqEmz6J8fpvSoMSDl9+Y5hOpwp1w8gJiSqGt7YwXGQcQzBEuvBS6JSh6tVzgUObteC4UKOZ4R/KtF7ruC+wNfGHgDQWMwcLNuqjAciZOIDWN4ivbHMzuUEuZEtZa2L2YxsYVjWZYh1bTlZej65Gk8dCsXDrfSeP6kRWpwotX7F2XsGwyQCZByDxk6Mobe7VGHWcfOB1cTW5gFancl4y3GcfVlkEoTw5qNzpYRByte9uPV9jr6SR9vWGPXTIcz5UX2gZOcNljNUq+tu2BPxJ/DptTSP1f9k+xpj/JWGwFb2PgCIC7Eth0wkCJypgSJELgXPcUiNbYI9V/PqJWNDYGtabTT4eMi7yBUjjqtdenFlnS5NU6pbplcHgIuVvHFcIXZtzx9xbwn3hmuOY+yIGZjc8UIBgM039P36rM7VLt3bDacuI7usCt8ev4C5w3uKlnFWJkuvnfm7SgCUOC9MLct/CsHH/9Lhh111z5Yjm5Fllq5vc5MBAIVqQbSM3bosFGN5rz//lcdHT9t34bEVlDxEwlClA6JkQLgEZPBpAHRVVSj48Udoy8sdF/YQ0rAwRI8Z45TR57vvvsM777yDAwcOQCrVjyYqKyvRp08fdO3aFd9++62x7MGDB/GPf/wDmzdvRps2bWxVSQQAZPDxIomJdQuDg4OD8frrr/tOGMItlFLg67tj0bnG+murvUGhYd+a/uWo0HLQMiBK7qGRqwf4YUAZOoQJ6PxrpMOyb0/VIVwJszXn7iLnGIZH+c99aCxYGnzEkPLAwREl6FWb7eWf7V0PeGyLDqE6nKuwbh+dw3Uo1Ygc4AWGxmnx59BSY/Du7/pWYFGmAl9kmU+eHT23e28rFc2IY2BcghpdIrWICWKo0eknktEefrbbNQ3Dg+2aYMuJArPtll+MTSdaLybX6TNYor+Ocg2HP/OkeOuU7UFgINh7Zj2kwx+HOBzI1F/wf+4rRNczl502+GwfUooh2yNE9+0YWgoNA1oomNMGn4mtVXiyfQ2CJQyHcoHHjkYa9z3SvQNaRoaisKoGH+877VR9pjybHoGwIBleGdQF1VodOADv7z5p9xjTFMvP9UsFB0Au4dE9UoqlGa55O3iDErXth+68SL8B6I0lPx7rhNAIzxjh1C58Z3DWgJFTCFjG3ne0pKu81qPpZKkETx1q2Ph8F03uteEadfX0ktMx67iEF2oYtp/Nxj2p7aCUm08zLpc4zhC1Osc6buLs48FYlx0EQADyztRHZJvkldT9dhTI29SYk5Vf55VVadLOymqca7uWGRA1Fm1VJ3BYvIEXjWVn4J3VEky93dqak6xkmNtei2BePwa4uQMKNAyCWg1teTl4mQx8kPeDnQsqFbTl5RDUaqcMPunp6aiqqsKJEyfQrVs3AHrDTnR0NDIyMlBdXY3gYL1X9r59+xAbG0vGnkZAIIz1ApqysjJ8//33eO+991BSUgIAOHnyJHJzc30rGOE0IXIeCpExqeVyC9PJmGGJjYwHmsgZYoKYy18NPQFn9rtO3qRwwelBbUSIfnCYnFj/SW2MjD4veYNO4XX3dWhsnYWlRW28qJHN9K7FIVIgoja21JBY9y0xLZXmehQz9gCAlGe4J7Hh3JrjFHXPmZQHoi0yt0k4hrRQlciRdSid+AzSLlRAuIwhVqF/tl1dAuKIYKkUQRLeykOgRxPbs1ZLGSJkDAlKwSwNtOhxbkvZcDQNM59gRYY4P23pEKqzmU76gZYqxCoY4oP1OnysrXNG0PtbqtBEzqCQAJ3C6nTCc0D7qHDIJTyahykhsdEwEiNsT/STovSTxxC5DNFKBaKUjieNpvUppBIESSXgOA5Ngvzjm95nF+smPQLjnAoCva8wGMeym2PXSc/EsVK70N05+67+aANv5Y1h2jLFrnNprVHxvl2hUNUzO5irvH7CejLoroePAY3I9j/KGDKLKrD7qnvj3LU3rA0+emNPw+Eo86Xp/ThkksHO9JH/6bh44gZLLA08ln8DwJmrHDKy7LeXz3+VWEkt44AYORDqH13BTQUfFAReofD+PxeNSm3btkVsbCz2799v3LZ//34MGzYMLVu2xJEjR8y2p6en44cffsD48ePRvXt39O/fHy+88AIKCwttnqOmpgbTpk3DfffdZ5z7rlu3DrfffjvS0tIwatQofPPNN67dUKJeUBfgRc6cOYMpU6YgLCwM165dw3333YfIyEj88ccfyMnJwTvvvONrEYl6YPnqNX3RNhEJ2Oxr3u1WhRePuv9F8cnRAp5dWj8vH2czlBGu0SyYYdOgMuRU8+jdtG60+OPAMlyr4pEUXtce/7i1DDdqeHQIc7+Nrh9Qjvt2heFipf32IOX0sX8+Ouub4MOmz+RPA8sg4YBmWh38PWS+YZmg5df3Vi4YOgyYTjqDJQzVOvM6PW2s8gYSif1YLrFBAvJU1t+vBkRr8E63KrNtfaM0+LRXJc5VSJBssfTtX0k1+MyJ9OPtbMSI4iz0FROiwI0KfYyTwa2boXNsJHQCQ4yNJVsz0pMRF1KKEhdtpE2Dg/Bs3xQoLVwARFZ/+YRNOXXLOjdekyNR2fCG/7Iqx2UMcJzes3XW5/b7t/IqDt9uNdf5keI6HYgZSXKq9UoRfGxq/fZyEL61ETBbjOU2nosvLgbhULEUbUIEtA3V4XhhXZ1/Zt0w+3/rSHNDzuwth9AsNBgPdGmLvVfy0CdKhmRXL8RD5JeYBz7mOPvGMFv7TLVaVOlcTBWNRZ+87m/3H1zLzGCB0L8TDU+fPn2wb98+TJs2DYDek+exxx6DIAjYt28f+vXrB7VajaNHj2L27NnQaDR45pln0LZtWxQWFmLevHmYOXMmli9fblV3eXk5nnjiCQQFBeHLL7+EUqnEmjVr8NFHH2HOnDno1KkTTp8+jddeew1KpRLjxo1r6Mu/KfGT4UDjZP78+Rg3bhx+//13yOV1A55Bgwbh4MGDPpSM8AT24m90beJbTxbDl+UOkXUT7c7h9ZNJJgVCbXwpdxYy+HiPNqEC+sdoITeZo4RIYWbsAYAwGepl7DHU2znCcXu6K14Dhchbpld4wxhEu0XWGb/ahwl2gzmbYmo0a0jktTP0pGj98qNeihK75Z15nEy9hD7tZb2conO49bV2jfT+9Tdv6nxfIuGBrm31v9s2rzuujVJvGZnURoWEYOv2+Fg7ldHDqalcr/vXUqohlwApETqr+EViwcot6SniZdWxdi48qHUzs+1dmjU1/k6Na4L48BC0jAxFsIlhplOMXte3d0hA8zDxCWJ6QgwAvdHIFtEhCqvlM7yfzPYs02svPtfwBmAnVhIZ4Tm9Z2uXtvq2owyy3Vb3nHJtGN3LR32Lt1h8Lhi7C2T45nIQ/nNSiR9umOvWYOwBgEsiSrhRUY0Pdp/E3ux8LD9xw278NG+yeCNvZfCxh9bG68/0OJ2bHlyOPHlcYW8pTfMIa9LT03H48GFotVpUVFTg9OnT6N27t9EQBADHjh1DTU0NbrnlFtx7770YPHgwEhMT0a1bN7z66qv466+/jHFqDRQUFODhhx9GVFQUli1bBmXtErOlS5di5syZGDFiBBITEzFixAhMnjwZq1evbvBrv1khDx8vkpGRgTfffNNqe1xcHPLz830gEeFJ7Ll9d430rcHnhQGpuFFejfZBGqD2y2abUAFf31Lu8XgjlrSMZbiSJ35zPJnel/AtlsY7Hszqq/W4BA3K1OZKfyehBL3jGiabRM+mOnzepwKtlK4ZmJb2rMDa7CB0CNXhsQPWywu8xXP9UpFTXoWkqHCgsghDlYVIiQ+BVhaMLh7oU3qYGKL7R2vxfHI1kkWMbytvqcCTB+XYVeA9PbmSHYjngO7tGabfpUNiLIzuPit6XsfpqigMjNFifIIaR4sl6NFUh/87qsSgGA36mEyu/3dLBfJVvNNGPwMfdK/Es7WBdJUShkXdK63K9A3l0LllC6TFm2dm698yDhyASIXcpjFnbKdW6Na8AsnR4jGGAOC29vFo2zQMHaJslxHD01O9j3pU4l+HXfcSLdf6h+HJWSpqV/ZNHiEg8yrQqSXw3Ceue7deEUmKsPpKkFliCKKOap2Adwvbun18UwWPopq65zspKhwhchlSYiNxvrAMe7Ntj7sLyziEKes6JUct1lYadNPjVFrnM655CylHgy7CGkMcn4yMDJSVlaF169aIiopC79698X//93+oqqrCvn370KJFCyQmJuLUqVNYvHgxzpw5g5KSErBaF7fr16+jffv2xnqnTJmCtLQ0fPDBB5DUJiYoKirC9evX8eqrr+K1114zltVqtQgLcy6bKFF/yODjRYKCglBRYf1FIysrC02bNhU5gggkLL8A+dNrNTxIjvAgOViF+Rrb3k3rOWl04iKldsbFl1VSAA0X04XwHt2baLHxWp3nooS3zhQi44EQqXmjGRSmhkTacOlD+0W7/kU9VAY80sZ+rB9vEBYkQ3KQflLPoDd0DGxag+Aw8Vf1hEQ1ll9U2I3H1Cak7pk39Up8s0s1Wij0+8bEq/FjrS6fS6qGjAcSlI7vW4d4hiAZcOKSaxP6nh0EhIcAucXOHcdx+n9ptXNBoTb5SaRMwJA4vZxN5Mz4e1lva6NMm1DnPbxMGdlcg5hTAvJVPBZ1r0SswroTDOI5dGwaZpVBS8JzGGjHKwdA7YS0Se1f4vIppBKTMs7Duenh07OJFoeKzdvcfYkq3NZMg1tjNfgzz/cTWVfRuGB0qlbpyyrkjtNhu8PKSw0bjyaQOKqyb9SMkwK5Nrqm5aNjMX+3BgeuFSJSIcek7h3M9tsz+ABAk1CgvPYDmS2DjgGbHj72D2twHmnhf+EFCN/TqlUrNGvWDPv27UNpaSl69+4NAIiJiUF8fDwOHz6Mffv24ZZbbkFVVRUeffRR9O/fH++++y6aNGmC69evY+rUqdBozMcegwcPxu+//47z588jOVm/QFOoHRj+5z//QdeuXc3K8zxZvxsKMvh4kWHDhuHjjz/GBx98YNyWk5OD9957DyNGjPCdYIRHsIrh408WHy9hL9jmtDt1UAYBP+6hDvxm4J5ENf5dGwSUA4MEgJjZIUSq9wxYn8VhesUhwGdRGhofT7SvQbNgAcPibBt8ujXRYWG3SiQq9YHaP+9TiUxpPOIUZcYyc1KqjAYfwzInBe9ch/bAEAGzv3De+6FdC4b7bmWQS/UDQZ4Hjl3gUFTub1OlOpb1rsSpUgkGxTSu5Ti2aBuqszL4PFubBe7fKVVIbyrH2mw5LtgI1u6PuGqU9De6RGrRPlSH9Q0cvNifCJMKGBouwZXgpth1rRDx4UqkxjYBx3FoE6kEUIY7OsSjWViIcamkgaToCIzu2BI/nblis/4qExu/ZUZESxatFR/n+IsX84SoKuToFJjcnBJlEOKkp6dj//79KC0txdSpU43b+/Tpg507d+LYsWO45557cPHiRRQXF+PFF19E8+bNAQAnTpwQrfPFF19ESEgIHnnkEaxcuRLt27dHdHQ04uLicPXqVYwZM6ZBro2whgw+XuTll1/G448/jn79+kGlUmHixIkoKChA165d8dxzz/laPIJwmbbNgZOXxPcZvoT6SdgIwstIOKBftAa7C2S4q4UGJRoOf5ukp+3QtO73bc00uFVRiuKDnksF7wtCpX4ymq8lRAo81Mqxx9ydLeoMQunROkSGKAATJ5gQk5FAy9rlb2Ua5wy3TcKAHh0EHD7nXPl/jhGgqHUMu+9W/f08f41DUbl4+bgmDXvPg3hmlT2pU7jOLBNeY0esnRtiITULZnikrQpf+9BLZWCagL8zfPNhoWkwj6LqhveaeCapBoeKbu4he0qYFhFSKQYnxuD2Tq3N9vEQAJQhSCoxxrwy289xSE+IsWvwKSh1fvCi1YmXVdnYbgueZw5TwLvDP2KrEB9+c7cXXyOoGsZL2N3zpKen480334RWq0WfPn2M23v37o3XX38dKpUK6enpCAoKgkwmw8qVK/Hggw/i7NmzWLp0qc16X375Zeh0OkyePBlff/012rVrhxkzZmDu3LkIDQ3FoEGDoFarceLECZSVlWHKlCluyU+4BvUGXiQ0NBTfffcd9u7di5MnT0IQBKSkpKBfv36+Fo3wAPaydAUasUECPupZiUIVh6tVEsw/LR5Uc+JwAWt2cDh8jkdkCENJpfVAxTS20e19BBw+xzm9dIMILF5Prcb3V3R4uLUKUg54ZF8oQmUMXSJ16J8SAwi203YGCmv6lWNDthxBEob7Wzbe5Yif96nAiRKJ0VtILnHco7nj1SgW+8yfjMTLelfiYJEEIRKgZcjNY+QxxXLZWneRQNVSGx5gMp7hpY7VOFEqNXqNeZJ+nQWM7c+QeZUhr6ThGs4rD+pw9ByPBxOi8dHJXBw817CNtm+UFsdK7HtUdQrX4nSZ88P6vlEa7Cn0z+V5kTIBJRZGZ2e9Dn1JjYvGm3+OEbBkY/085RRyhhq1H3WiNzm8XA5pWBi05eUQNLa9bz2JNCwMvNy1/jY9PR01NTVo27YtoqOjjdv79OmDyspKtGzZ0ujRM3/+fCxatAgrV65ESkoKXn75ZTz55JM26541axYEQcDkyZOxcuVKTJgwAQqFAp9//jneffddKJVKJCUlYfLkye5dMOEyZPDxMnv27MGePXtQWFgIQRBw8eJF/PTTTwCAefPm+Vg6oj40kZt/5WsRHLhrpV9LqTYJNK3F0nNylGmtByFhSmDq7QxTb9eXfeoj+wOVu25hOHWZBiKNlUSlgOc71nnt/DhI76ahA4/MYImZF0mgkhapQ1pkta/F8Dr9orVm8Y5igxwvXzJMv6LCnT+PmHHHnww+6VFapEfdHEu3bNFcYf4uG9XM2tCptjGxHRuvxsTWalTr1F4x+NzVl0EhBwZ1YVj7V8M1nIQYIDGKISSXx5i+rEENPrc3V4PjgGiRbGGJSh2uVkkg5RimtlXhxaPOD+tXpFfiWIkED+x2PXBqi2DBmGLeG/wrqQY1Og7vnKn7+NRcoRNfNxzAdGpZ/zqeuEvAh+sDZ3llY0eiVCJ6zBgI6ob7QMTL5ZAoXYuNmJCQgMzMTKvtzZo1s9p+11134a677jLbZlomPT3d6pjZs2dj9uzZxr9Hjx6N0aNHuyQj4TnI4ONFlixZgo8//hipqamIiYlxO4Ai4V8s6FqJE6VS3BprPimY1q4GhSoOtzcPnBGJ4VqGWsQAqc93NMtmfjmX2j1BBBoTWpZj8Tn7yQUM3jqjejP8cch8X5+OAsoqOZy5av78O3oNdmvHECRn2HeaYoE1FAu7VeJwsRQdQnXIruYxopkGT3eoxv5CKVqHCHhAxLNNbeP7xgu1BmBva69/CsPav7x8EhtIG7hpGh6ZsfFqnCyVoF+UFhoG7C2U4rmkGryXqcCo5hr0i9bim8taHCmWOu290yVCJ5ph0RGf9KrA9Woe0w/WZTF8r1slXjhqO4tbx+gInCkodar+u+PV+OZy3bLB8QkqTEmsxvoL9cuaOKxtC2y9mFOvOurD8B4CQhRAXgnQK8l7Hks06vItEqXSZQMMQXgTMvh4kVWrVmHevHkYO3asr0UhPMiYeA3GxFsbdUKkwNwugeUJYOtaksPVOFgUjOAg+15Lo3oL2HzAfPRrb0KnoBShBBEQyHngtk7n8MfpDg7LKkQcOfp2ZggLZpj7jfmXZ7H+IcJkjvj4nfo+Z99pl8QlHNA+VIfzIkGWZRzDnS00ZnGeAOCpDio81cF2bIiYIIZiCzvQ6BZqRMj0fby3J5xyGcBzDAITP1NoMENFtXekkDSwM0V07XtYxuuX0Row6Owtk3HHt33rMsN22hTpsG6OA55LrsF7meLLuG2RFCYgKUxAlFxAoZpHv2iN2YejVuFKXC6rMjvm3tQ2mPvnUYd13xpVDaXUPMPjW12qUVRe//FDl2ZNfGrwGTfA+WuQSxnUTmSXYwxIbc0CPjA5QRDegz6heRGNRoMePXr4WgyCcJnnkovRqmkxJg6rsFtueA+Gzq0YJt5WZxiyHHIEyeoGOHNbOfd1jyCIwOLZe8zj3TAmPjEWM/jcf6uAjokM0++yjplzM2Q/9CavR59F74gafNCjEu93r0T3JlqkRWgxsbUKt0Rp8E1f+328LRZ1r8QtURp8lV4XbdtUt3IJ8Ggb7wZpf+IuAR3iGcKV1o3EVtpsT2DLw6df0yqr5XD1pU9TDR5p493gr848Yp/1rsDAGL1BZ1bnOkPOu92qkB6lwazO1ZCZ3Jf4sGDEhSiMfydGhEAhFbeUTe7e3uzvZ1rrxwn3JKgxJFaDOSlVYoe5RdPgIPRoHuWx+lzBVtwrWyTE6APiO4LjgDvSAzekAEEQ3oc8fLzIvffei59++glPPfWUr0UhCJdoF6rBpL5nEBHf1W654CDgqbvNBxoRIQymZp/28XWZvXqHBc5yN4K42ZHydc92iyiGnEJza02QyYqRDvHmx3IAJCITY7Fv0JGhwIxxNGHxBp2DKjCmUwGCQ0PRLlTAKA8tOW4XKuCLdPMgXZbqfqlTDbo30WHGYdvLfE7fUYKDRRJM3FsXR+bQiBL0/D3SoQypbYDUNvp2YxlPzptBbMUMmZ2URfi4Wymy1NEYv9P1mDi2+OqW+gdCe7VzFd46ZXt5iSBih5BxDJpa76kWwQL6x2jRP8Y6tlXfaC36RltvjwySYUbfFIey9WgehQ5REUiLa4KM3GIAQCulvr4gCbC0l2cDwXEch/EprTGucyu8tvWwR+t2xIA0cYPPgDQBO2uzzg1KE/BX7e/rhcALExju7qfDv7/SNzqxflgqcS2OGkEQNx9k8PEwpoGYBUHAmjVrsGfPHiQnJ0MqNb/dr7zySkOLRxBeZ1Qfhku5DIO76Ac39w0WsLSYYTS7AMB+TBCCIPyHLgnXkZHXDqmtefTowPD5rzzuukVAjZrD1iMcJgw2N9J0TGTGmD3t4wFw+m0XcgBNbbpiCmXXeOFFluwOirFtYFrYTT+ZV1hYipRSoFWIBpcrZbitRxX2ng5GuYPlWV3bMRy7YF5mcBcBO44758juypIYMQ+f01VNAZRC60d2yyfb1+CvPCnGJ6hRqeXwU44cH3SvxEtHQ3BHi7r1eGIiSzhAU6tOW/Ga7OHMXY8LUWB4+xYAgJEdEpBbVoExQRecPLp+cByH1LgwnMgtd1wYwC2dBVzN43CtwP0ObFRvcYPPiJ4M57MZ+qcyXM6r266p9VKTmUwdTH8nJTBwHNA6DlBb2Nyom21YGLmi3rQEiu7J4ONhTp06ZfZ3x44dAQBnz541204BnInGSmwkMGdi3QgxOgKYdXcpmv52A2TwIYjAQS4V8Oy4UgQrIgGYPtcM/VKsBzliXjozxgk4cxVYvIGyyDR2xEY1cgnwj1YqswC8gN6zp66MdVta3S8Hv8gvICK+K4b3DMLLy+23n2l3Wnv63Hcrw5h+Orzwqf1jZz2kQ3w08PEPvFNZJXkRewRfazbR+tHY/19JNfhXkv73E+1VeKK9fmnYhoHmRg4xDx8JD6MlyJ7RzhYS3v597BgdgYe71S3lilTIMaNrPJKv7gMQ6/L53OGOjrEo46/jynX7gaAVcoaJwxkA5jAzqT3CbDhZRYUDr9X2rWt21N03Q2wzmY2Z2iMjBWMZMW9KwvtIat391Go1goNdi4NFNA6qqvRLTmUyx0HyfQkZfDzMypUrfS0CQRAEQfgN7nzeeGCIgI27OEwa4UcuE4QoT7Srweorcvyzg3jMHkf6b6n0nI57Jws4kMmjV5K+TtOJcIiC4f5bGb7dyuHR2wX8dpBHRTUQ10S//95BAhau4TGsh2OrTedWzMw4JK31btK5YfCJkAko1egFVfAMNTZS3nsL08DX87pUYu4pJZb2rMDuAhm+uyzH4+2cjyE0OEqFg8VBaBcpbkQZ3q4Fdl3OxcgOCfWW2xM483HeneWBQbwAHRgExkMuhVmcQ3vc1oNhxzH973sH6Y8JlgNtmjGUV5kHyA8zsS9YhkcKEzGiEp5HKpVCqVQiPz8fMpkMvJg1mGiUMMZQVVWFvLw8REZGGo1//goZfAKMZcuWYdGiRZg0aRJeffVVAPpGt2TJEqxevRplZWXo2rUr5syZgw4dHGdXIQiCIAhv4s7UY2CafomDA0cBwg94NrkG/0qqsakrR8FqFRLgrhZq/Jwjku7NRR4ZyTBxuM4YZ8d0DD5llIBOLYHuHfTtqnMrAQwwyh3XBFgwTXCqzf1zjIBz2cCHtZ5rYVL9Eiln2/qp20vQ+ddIAMCT7VWYf1o/e993Wyke3R+KQ8UNNzw3lXlsggZj4kvBc0CfKB1mJNVA4sIz+FancnydqbAZoPnWNs0xqHUz8H7i5S4mRZiSobzKdfkODclCkKIJJBxQpC7FJtlFRCZ0gUIR6XQ/1iQMWDxDB7A6TzKOA16YIIAx4JOf6gwKprYFjgM6xDOcu6Y/EfWbDQPHcWjevDmysrJw+fJlX4tD+IDIyEg0a9bM12I4hAw+AcTx48exevVqJCcnm21fvnw5vvjiC8yfPx+tW7fGJ598gilTpmDz5s0IDbXvqkoQBEEQ3qR1nP7/TcJcM/3QpCVwsKer+xLV+OZSELQMYODwTFK1VZlH2qjw63UZxrRQi9TgGqZGHp4D4qMZisvr2qFBVo6znvA72+Y4DmgZV/f3I81OA2iCzuH6wCsSjkHGATUCBx4MgsWZOA5oE6JDVqUEo1uo8c5pBUKk+tTrM5Jq8Mi+UNyb6N3sXAbGxqvxyXkF0qP0S7dM74Erxh5Af12OjDn+YuwBgOQ2Jbhyw3yc3D+FYfMBcRn7pQjYfVLci4Pn6u6XhAN4ntXeD9dk4jlYNUyO0/8rLHOtLsL7yOVydOjQAWp1/fsuIrCQyWR+79ljgAw+AUJlZSVeeuklzJ07F5988olxO2MMX3/9NaZPn44RI0YAABYsWIB+/frh559/xgMPPODSeXQ6L+YydQGdIEDgeQg879UonwLPAxIZdJwEnEigQF3tNl0DBBE0k4vjIZFw4DlmjA3gDoxjgEQKgeNdugYBEvCQgmM8OA+4l3OM18vB8xDqoU8xfXlSN566797EXZ02JGLPjY6TQJDKIPC8MYYZ43jwnHvtjGM8GC+DwElcug9icjjqB1zFE+3IW3p2tk/zZB8QLAUWTRMgk8Bj/Yk7uvcGnuwzDMd7qu/xl76iZSiwY3g5QqVAqYZDEzmzkqdjBMNfw8oRLtO3TVvtjxM4cC7enpcnMGh1gELGiUcodhKDHIb/G9p1VUkJ0s7mQ+CioZDy2D+iDDIeqNYBUk4f10fBAz1+q0ulpAOP9QMroREApZTDvpHlkEDfnnpFCdh9WxnCpA0z9ogPAfbcVoYQD5yvPs+Do/Zqr253nh0JxxAbocOciRWQQok5K/XnjIu0LmvQ+T9uBcbeIsAwND1wFlj1J18rX11/5OkxlIH4KKA2mZlVvabL02yNtQzjap0ggG+g8b5hXmFrfuEv8476wPM8FAqFr8UgCJtwLFDCS9/kvPzyy4iIiMCsWbMwceJEdOzYEa+++iquXr2K4cOHY8OGDejcubOx/JNPPonw8HAsWLDAqfp1Oh2OHj3qJekJgiAIgiBcp0wlYMqP+vRFn4+OQaQiML6oWvLtiXKsO12J0UlKPNKV8mj7E2odw4PrcwEA/70rBv/clG/MuHZvpxA8mBomelxupRb/3FQApYzDyrFxomU8yaK9Jdh1VR8ra90E82Uku65WY9HeUnSNk2POoMBLkNGtW7eA8ZYgiECDPHwCgF9++QWnTp3C2rVrrfbl5+cDAKKiosy2R0dHIycnx+VzpaWl+UWHqyktRf6GDZCGhoIPCnJ8gJsIlcXg8w8jqENnSMMirfbrwON8SHu0rzwPSQN6fBRXaLHqXAyatG4PZYiN1A5OwCqL0OHaT2jbOhoKF5b3lWnK8Jv8IsJbpCE4KMLt8xvQlpaiydZTSIjpCGWw+wNdU31xYU09rhtP3Xdv4q5OGxKx50ZTWoaSI+cR1CYVkjB9myrTlGF75Fk0bd3J5XYhVBQj8ehBJER1QlBQpNPHicnhqB9wFU+0I2/p2dk+zdN9gCdxV/fewJN9Bg8BHZrk4lxxHAQPeHYEQl9hC9P2pxMiYEjVnRedC1WIb2TiBA6x+c2RF3MdzCQukbPt8fXWwMRoHm1Dy8BX3vC+wD6gPs+Do/Zqr253np1ybSmuKLYjNSEKEQol5k3RL6fSKnPx74f1AZJLKoDmTcuRy9tO3/76PaVIOnsYrYs6GPXvrf5Tpahb75UbZz7Gbx8HzIotR4cDJ9H0bLLoO1VQqaCtqEDMuHGQRTRMv67T6ZCRkWFzfmHYTxCE9yCDj59z/fp1vPXWW1ixYgWC7Bg+LNO8u+u4JZFI/MLgI/A8eEHQ//OmE5oggNdpIGE6u5MfCYQGNfjwTIBOxyAwrl4Df8Y4QKcFz1yTn4cOArRgnGA2sHVbDk7Qy1FffZroi6u9Hk/qxlP33Zu4q1NfYKobgenAazVmbYBjAgTmXjtjnABO0IB38OxaIiaHs/2As3iiHXlbz46eG0/3AZ7EXd17A2/0GQJ4zxh8AqivsMRW+2M8A/Nx16yXwUQmZ9sjBySHBZYeXKU+z4Oj9upM3a48OzrGQQsdhNo2Fl7rxMMANI3U/1Yq67bZIipci1Cu2kz/Xus/OeN/ROuNi9RCKmhsj7Vqx9USnm/wsb6/zC8I4maEDD5+zsmTJ1FYWIjx48cbt+l0Ohw4cADffPMNNm/eDAAoKChAbGyssUxhYSGio6MbXF6CIAiCIAhPYTpv9aN4vwTR8FD7JwjCDcjg4+fccsst+Omnn8y2vfLKK2jbti0ef/xxJCYmIiYmBrt27TLG8FGr1Thw4ABefPFFX4hMEARBEAThEYJkdb/lNGolbmKS4oGDmb6WgiCIQINenX5OaGgokpKSzLYplUpERkYat0+aNAnLli1D69at0apVKyxbtgwKhQJ33XWXL0QmCIIgCILwCHIZ8Mx4HcD0cVUI4malb2cGqURA2+b+tcyWIAj/hgw+jYDHH38cKpUKb7zxBkpLS9G1a1esWLECoQEWpJEgCIIgCMKSpARfS0AQvofngfROZOwhCMI1yOATgKxcudLsb47jMGPGDMyYMcNHEhEEQRAEQRAEQRAE4U+QwYcAUJfVS6fT+VgSPTpBgMDz0Go04HnvpeQQtFpIJTL9datV1nKAB0IArVoF1oBZTnRaHSQSDhqtAJVa43Y9nEYAJFIIOi20Itdn8/yCFjyk0Oq0UGmcP84Wgk4HSKTQabXQqtXu12OpLw/rxlP33Zu4q9OGROy50ek0EKQyaLVasNo2oNNpwXPutTNO0IHxMghanWttW0QOR/2Aq3iiHXlLz872aZ7uAzyJu7r3Bp7sM3hOrw+VRgPBA6moAqGvsIU/tj9O0EfMVWlUZhmS/Kk9+pr6PA+O2qu9ut15drRaHaTBEujq2cbE9O+r9utorCVoNBB4HjpBAN9A433DvMLW/MKw3d3swgRBOIZj9IQR0Ad6zsjI8LUYBEEQBEEQBEHcRKSlpUEupyBdBOENyOBDAAAEQYBWqwXP8+Ao7ylBEARBEARBEF6EMQZBECCVSr3q0U8QNzNk8CEIgiAIgiAIgiAIgmhkkCmVIAiCIAiCIAiCIAiikUEGH4IgCIIgCIIgCIIgiEYGGXwIgiAIgiAIgiAIgiAaGWTwIQiCIAiCIAiCIAiCaGSQwYcgCIIgCIIgCIIgCKKRQQYfgiAIgiAIgiAIgiCIRgYZfAiCIAiCIAiCIAiCIBoZZPAhCIIgCIIgCIIgCIJoZJDBhyAIgiAIgiAIgiAIopFBBh+i0bFs2TLcc8896N69O/r27Yt//vOfuHjxolmZxYsXY9SoUejWrRt69+6NRx55BMeOHROtb+jQofjrr78AAJmZmXj44YfRpUsXDBw4EEuWLAFjzKy8Wq3G+++/jyFDhiA1NRXDhw/H2rVrvXOxAQjpx38h3fgvpBv/hXTj35B+/BfSjf9CuiGIxoPU1wIQhKfZv38//vGPfyAtLQ06nQ7vv/8+pk6dil9++QVKpRIA0Lp1a8yZMweJiYmoqanBl19+iUcffRR//PEHmjZtaqzrzJkzKCkpwS233IKKigo8+uijSE9Px9q1a3Hp0iXMnDkTSqUSjz76qPGYZ555BoWFhXjrrbfQsmVLFBUVQavVNvh98FdIP/4L6cZ/Id34L6Qb/4b047+QbvwX0g1BNCIYQTRyCgsLWVJSEtu/f7/NMuXl5SwpKYnt3r3bbPuSJUvYjBkzGGOMffPNN6xnz55MpVIZ9y9btowNGDCACYLAGGNsx44drGfPnqy4uNjzF9JIIf34L6Qb/4V047+Qbvwb0o//QrrxX0g3BBG40JIuotFTXl4OAIiIiBDdr1arsXr1aoSFhSE5Odls37Zt2zBs2DAAwNGjR9G7d2/I5XLj/gEDBiAvLw/Z2dnG8qmpqfjss88wcOBAjBw5EgsWLEBNTY03Lq1RQPrxX0g3/gvpxn8h3fg3pB//hXTjv5BuCCJwoSVdRKOGMYZ58+ahZ8+eSEpKMtu3fft2PP/886iurkZMTAxWrFhh5oKam5uLzMxMDB48GABQUFCA+Ph4szqioqKM+xITE3H16lUcOnQIQUFB+Pjjj1FcXIw33ngDJSUlmDdvnpevNvAg/fgvpBv/hXTjv5Bu/BvSj/9CuvFfSDcEEdiQhw/RqHnzzTdx9uxZLFq0yGpfeno6Nm7ciFWrVmHgwIF49tlnUVhYaNy/detWdO/eHZGRkcZtHMeJnsewnTEGjuOwcOFCdOnSBYMHD8bMmTOxYcMG+jIhAunHfyHd+C+kG/+FdOPfkH78F9KN/0K6IYjAhgw+RKPlP//5D7Zt24avvvoKzZo1s9qvVCrRqlUrdOvWDW+//TakUqlZBgBTF1QAiI6ORn5+vlkdhpea4etETEwM4uLiEBYWZizTrl07MMZw48YNj15foEP68V9IN/4L6cZ/Id34N6Qf/4V047+Qbggi8CGDD9HoYIzhzTffxO+//46vvvoKiYmJTh+nVqsBAJWVldi3b5/ZS6pbt244ePCgsQwA7Ny5E7GxsUhISAAA9OjRA3l5eaisrDSWycrKAs/zoi/KmxHSj/9CuvFfSDf+C+nGvyH9+C+kG/+FdEMQjQjvxYMmCN/w73//m/Xs2ZPt27eP5eXlGf9VV1czxhirrKxk7733Hjty5AjLzs5mJ06cYLNmzWKpqans7NmzjDHGfv31V3bXXXeZ1VtWVsb69evHnn/+eZaZmcl+//131qNHD/b5558by1RUVLBBgwaxGTNmsHPnzrH9+/ezESNGsFdffbXhboCfQ/rxX0g3/gvpxn8h3fg3pB//hXTjv5BuCKLxwDHGmK+NTgThSSyzAxiYN28exo8fD5VKhRdeeAHHjh1DcXExIiMjkZaWhieffBJdunQBALz00kto0aIFnnvuObM6MjMz8eabb+L48eOIiIjAAw88gKeeespsPfKFCxcwd+5cHD58GJGRkbj99tvx7LPPQqFQeO+iAwjSj/9CuvFfSDf+C+nGvyH9+C+kG/+FdEMQjQcy+BCEBTqdDv369cPy5cuNLy3CfyD9+C+kG/+FdOO/kG78G9KP/0K68V9INwThP1AMH4KwoKSkBJMnT0ZaWpqvRSFEIP34L6Qb/4V047+Qbvwb0o//QrrxX0g3BOE/kIcPQRAEQRAEQRAEQRBEI4M8fAiCIAiCIAiCIAiCIBoZZPAhCIIgCIIgCIIgCIJoZJDBhyAIgiAIgiAIgiAIopFBBh+i0fLNN99g6NChSEtLw/jx43Hw4EHjvt9//x1Tp05Feno6kpOTcfr0aafqzMzMxMMPP4wuXbpg4MCBWLJkCSzDYO3fvx/jx49HWloahg0bhu+++86j19VYsKUfjUaDd999F6NHj0a3bt0wYMAA/N///R9yc3Md1kn68Qz2np3Fixdj1KhR6NatG3r37o1HHnkEx44dc1gn6cYz2NONKXPmzEFycjK+/PJLh3WSbjyDPd3MnDkTycnJZv/uu+8+h3WSbjyDo+fmwoULmD59Onr27Inu3bvjvvvuQ05Ojt06STeew55+LJ8bw7/PPvvMbp2kH89gTzeVlZV48803MWjQIHTp0gW33347vv32W4d1km4IooFhBNEI+eWXX1hKSgpbs2YNO3/+PJs7dy7r1q0bu3btGmOMsQ0bNrDFixezNWvWsKSkJHbq1CmHdZaXl7N+/fqx5557jmVmZrLffvuNde/enX3++efGMleuXGFdu3Zlc+fOZefPn2dr1qxhKSkpbPPmzV671kDEnn7KysrYI488wn755Rd24cIFduTIETZhwgQ2btw4u3WSfjyDo2fnxx9/ZLt27WJXrlxhZ8+eZbNmzWI9evRghYWFNusk3XgGR7ox8Mcff7AxY8awAQMGsC+++MJunaQbz+BINy+//DKbOnUqy8vLM/4rLi62WyfpxjM40s3ly5dZnz592IIFC9jJkyfZlStX2Pbt21lBQYHNOkk3nsORfkyfmby8PLZ27VqWnJzMrly5YrNO0o9ncKSbV199lQ0fPpzt3buXXb16la1atYp16tSJ/fHHHzbrJN0QRMNDBh+iUXLvvfeyOXPmmG0bNWoUW7hwodm2q1evOm3w+eabb1jPnj2ZSqUyblu2bBkbMGAAEwSBMcbYO++8w0aNGmV23Guvvcbuu+8+dy+lUeKsfgwcO3aMJSUlWU1sTSH9eAZXdVNeXs6SkpLY7t27bdZJuvEMzujmxo0bbODAgezs2bNsyJAhDg0+pBvP4Eg3L7/8MnvyySddqpN04xkc6ebZZ59lL774okt1km48h6vvnCeffJJNmjTJbp2kH8/gSDd33nknW7Jkidn+cePGsffff99mnaQbgmh4aEkX0ehQq9U4efIkBgwYYLa9f//+OHLkiNP1zJw5ExMnTjT+ffToUfTu3Rtyudy4bcCAAcjLy0N2draxTP/+/c3qGThwIE6cOAGNRuPO5TQ63NFPRUUFOI5DeHi4cRvpx/O4qhu1Wo3Vq1cjLCwMycnJxu2kG8/jjG4EQcBLL72EqVOnokOHDqL1kG48j7PPzf79+9G3b1+MHDkSs2fPRmFhoVl50o3ncaQbQRDw559/onXr1pg6dSr69u2LCRMmYMuWLWblSTfewdV3TkFBAXbs2IF7773XbDvpx/M4o5sePXpg27ZtyM3NBWMMe/fuRVZWltkxpBuC8D1k8CEaHcXFxdDpdIiKijLbHh0djfz8fKfriYmJQfPmzY1/FxQUIDo62qyM4RwFBQV2y2i1WhQXF7t0HY0VV/WjUqmwcOFC3HXXXQgNDTVuJ/14Hmd1s337dnTv3h1dunTBl19+iRUrVqBp06bG/aQbz+OMbpYvXw6pVIpJkybZrId043mc0c2gQYOwcOFCfPXVV3j55ZeRkZGByZMnQ61WG8uTbjyPI90UFhaiqqoKy5cvx8CBA7FixQrcdtttePrpp7F//35jedKNd3B1PLBhwwaEhIRgxIgRZttJP57HGd3Mnj0b7du3x6BBg5CamorHHnsM//73v9GrVy9jedINQfgeqa8FIAhvwXGc2d+MMatt9njhhRcc1im2Xey89o69WXFGPxqNBs899xwYY3j99dfN9pF+vIcj3aSnp2Pjxo0oLi7GmjVr8Oyzz+L77783DtpIN97Dlm5OnDiBr7/+GuvXr7d7v0g33sPec3PHHXcYtyclJSE1NRVDhw7Fn3/+aZy8km68hy3dCIIAABg2bBgeeeQRAECnTp1w+PBhrFq1Cn369AFAuvE2zo7X1q1bh9GjRyMoKMhsO+nHe9jTzcqVK3H06FF88sknaNGiBQ4ePIg33ngDsbGx6NevHwDSDUH4A+ThQzQ6mjRpAolEYvxSYKCwsNDqi4EriH1xMrjkGya6YmWKiooglUoRGRnp9rkbE87qR6PR4Nlnn0V2djZWrFhh5t0jBumn/jirG6VSiVatWqFbt254++23IZVKsXbtWpv1km7qjyPdHDx4EIWFhRgyZAg6d+6Mzp0749q1a1iwYAGGDh1qs17STf1x550TGxuLFi1a4NKlSzbrJd3UH0e6adKkCaRSKdq1a2e2v127dnazdJFuPIMrz87BgweRlZWFCRMmOKyX9FN/HOmmpqYG77//Pl555RUMHToUHTt2xMMPP4w77rgDn3/+uc16STcE0fCQwYdodMjlcqSkpGDXrl1m23fv3o3u3bu7XW+3bt1w8OBBMxf8nTt3IjY2FgkJCcYyu3fvNjtu586dSE1NhUwmc/vcjQln9GMw9ly+fBlffvklmjRp4rBe0k/9cffZYYyZ3XdLSDf1x5Fu7r77bvz444/YuHGj8V9sbCymTp1qN30x6ab+uPPcFBcX4/r164iNjbVZL+mm/jjSjVwuR1paGrKyssz2X7p0CfHx8TbrJd14BleenbVr1yIlJQUdO3Z0WC/pp/440o1Wq4VGo7HyuJFIJFYp1k0h3RCED2jYGNEE0TAYUkl+//337Pz58+ytt95i3bp1Y9nZ2YwxxoqLi9mpU6fYn3/+yZKSktgvv/zCTp06xfLy8ox1LFy4kL300kvGv8vKyli/fv3Y888/zzIzM9nvv//OevToIZpK8u2332bnz59n33//PaWSFMGefjQaDZs+fTobNGgQO336tFk6VtOsDqQf72BPN5WVley9995jR44cYdnZ2ezEiRNs1qxZLDU1lZ09e9ZYB+nGOzjq1ywRy9JFuvEO9nRTUVHB5s+fzw4fPsyuXr3K9u7dy+6//342cOBAVl5ebqyDdOMdHD03v//+O0tJSWGrV69mly5dYitXrmSdOnViBw4cMNZBuvEezvRr5eXlrGvXruzbb78VrYP04x0c6ebhhx9md955J9u7dy+7cuUKW7duHUtLS2PffPONsQ7SDUH4HjL4EI2W//3vf2zIkCEsJSWFjRs3ju3fv9+4b926dSwpKcnq30cffWQs8/LLL7OHH37YrM4zZ86whx56iKWmprL+/fuzxYsXG9NIGti3bx8bO3YsS0lJYUOGDLE5QLnZsaWfq1eviuomKSmJ7d2713g86cd72NJNTU0Ne+qpp9iAAQNYSkoK69+/P5s+fTo7duyY2fGkG+9hr1+zRMzgQ7rxHrZ0U11dzR599FF2yy23sJSUFHbrrbeyl19+meXk5JgdT7rxHo6em++//57ddtttLC0tjY0ZM4b98ccfZvtJN97FkX5WrVrFunTpwsrKykSPJ/14D3u6ycvLYzNnzmQDBgxgaWlpbOTIkWzFihVm95l0QxC+h2PMjt8dQRAEQRAEQRAEQRAEEXBQDB+CIAiCIAiCIAiCIIhGBhl8CIIgCIIgCIIgCIIgGhlk8CEIgiAIgiAIgiAIgmhkkMGHIAiCIAiCIAiCIAiikUEGH4IgCIIgCIIgCIIgiEYGGXwIgiAIgiAIgiAIgiAaGWTwIQiCIAiCIAiCIAiCaGSQwYcgCIIgCIIgCIIgCKKRQQYfgiAIgiAIgiAIgiCIRgYZfAiCIAiCIAiCIAiCIBoZZPAhCIIgCIIgCIIgCIJoZJDBhyAIgiAIgiAIgiAIopFBBh+CIAiCIAiCIAiCIIhGBhl8CIIgCIIgCIIgCIIgGhlk8CEIgiAIgiAIgiAIgmhkkMGHIAiCIAiCIAiCIAiikUEGH4IgCIIgCIIgCIIgiEYGGXwIgiAIgiAIgiAIgiAaGWTwIQiCIAiCIAiCIAiCaGSQwYcgCIIgCIIgCIIgCKKRIfW1AIR/IAgCtFoteJ4Hx3G+FocgCIIgCIIgiEYMYwyCIEAqlYLnyQ+BILwBGXwIAIBWq0VGRoavxSAIgiAIgiAI4iYiLS0Ncrnc12IQRKOEDD4+5sCBA/j8889x4sQJ5Ofn4+OPP8bw4cON+xljWLJkCVavXo2ysjJ07doVc+bMQYcOHYxl1Go1FixYgJ9//hkqlQq33HILXn/9dTRr1sxpOQxW9bS0NEgkEs9dYICj0+mQkZFB98UPId34L6Qb/4V047+Qbvwb0o//QrrxXxzpxrCfvHsIwnuQwcfHVFVVITk5GePHj8eMGTOs9i9fvhxffPEF5s+fj9atW+OTTz7BlClTsHnzZoSGhgIA3nrrLWzfvh3vv/8+IiMjMX/+fDzxxBNYv3690y8+wzIuiURCL0sR6L74L6Qb/4V047+QbvwX0o1/Q/rxX0g3/osj3VA4CYLwHmTw8TGDBw/G4MGDRfcxxvD1119j+vTpGDFiBABgwYIF6NevH37++Wc88MADKC8vx7p16/DOO++gX79+AIB3330Xt956K3bv3o2BAwc22LUQvocxhj/P5qO4Uo0xXVtAKvG/LyalVRrM+fEE/jWsA9rFhPpanIAlu7gKf58rwH29ElFarUFWQQV6tGwSEIOmKrUWGdml6NW6KSS88/Keyy3H4SvFuK9XYr2vU6MT8NYv/8/efcc3Uf9/AH9lNN170AmFDlYLLVBmy944cQsC4kZUcIIDFdSKC7/CV3+ogIjgQuGrojJEZYMIZe89uyjdI03u90dJSNq0Tdqkd7m+no8HD9K7y90797673L3zuc8dQrC3Kyb1j3GK9SYFOUXlWH8oC8MTQ+Hj5lLrdAVlWizbfhb7LuTjz8NZuKd7S0wf0Q7HsooQ4u0KlVKB83mlSIjwRXmlDrvPXkWbIE/c/8U/OHCxAJ+P64YO4T4oLq9EbIgXNh3PweFLhZiY2tqmbUbq9HoBu89dRcdwH5y/UozsEp3d5n05vwzvrTmCbq38EdfCC50j/Rr9naDXC/j+33Po1SYILQM9jPG3C/XG4csFSIzww8mcIgR5uSLIy9Usljd/PYR3b++EI5cLkXHuKq4UVyDC3x2BnhqE+7nj9Z8PoKJSj9ziCnSPDkC3aH9kF5bj3zN5CPF2Q9dof3hq1BjWsUWdn+N4VhE8XVXwdXfByyv2Y2jHUMz65SBCfd3QrZU/tDoBE1Oj8eDinRjfOxoD2oZg/eEs/Lb/EorLK9Em2AuncoqRGOGLyQNjzT5HbcordViy9QxuTY5AeaUeizafwrhe0ajUC1i67QxyispxX69ohPm6IbuwHEu2ncH+C/nwcXNBalwQ7uvZCv6e129nEQQBi7ecxvm8UozvHY2oAA+Ly9Xq9Fi2/SyGdQxFqK+bDZms37aTuZj1y0Ese6gnfN1r39dNGbaHg5cKUK7V4YHU1lYdW8/nleCtXw/h3u6tkBoX1Ki4D18uqLH9Gew7n49Fm0+hW3QAhnVsgcBr02h1euw4dQU/77mIw5cL8ezQtsgv1WLdoUxE+rsj49xVhPq4YfLAWJRp9fD3dEGId9X6zi/RYv/FfBy4mI+tJ3KRGOmHX/ZchLtGhbS4YOw8fQWFZZXoFRMIPw8X3N+ntcX1+fv+SzhyuQhPDoqFQqHAyewi/HsmD7d1iYTy2jFPEARsOZGLCp0eK3ZdQKCXBv4eGozp0RKBXq44kV2EH3edx+mcEsy5Kwka9fX95MDFfFy6WoaeMYHwcuXlH1FzohAEQRA7CKrStm1bs1u6zp07h8GDB2PFihXo0KGDcbrHHnsMPj4+mD17NrZu3YoJEyZgx44d8PX1NU5z0003YfDgwXjyySetWrZOp0NGRgabw1bjbM2Et57MxdgF/wAAXh7VDvf3jhY3IAtiXvrd+PrEm8MbPB9ny429GdbjnV0jcTSrEBnn8vH5uK4Y0DZY5Mjqz82zy/dixe6LmHlTB4zp0dLq+Ro+89u3JuCObpGNivGRr3Zh3aEsAMD7d3TCLUnhjZqfs2jsfmPt/ms6nUGP1gHYfuoKAMBDo0JJhQ7fPdwDfx7Jxid/n7Q4H6UCSL81AS/8uB8A0DcuCIsmdLM5bqn6fNMppP92BJ0jfbHnfD4A4Mjrg6FWN/6CrHoOHkiNxosj2jVqnu+sPoL5G04BqMr/pxtPYfbvR4zjk6N8sftcvnF8bbE0Rl2fI7e4At3fWm+3ZQHXP0dd+87N/92C/RcLGryMbq388e3DPYx//7TnIqZ+t9f49+GZQ+Fiocj1xNcZ+HX/ZbM47SG/VIsub/xh/Nvaef/f3yfx7pqjxr9fu7E97uvZqt73mW4f65/ui1aBlgtctTHkxj20NUbO3Wox5opKPdq/usb4d2KED1ZOqvqh9OWVB/D1P+dsWqZh/vd+vh3bT+U16L0GRzILMfKjzQCAZ4bEYVL/GOM6eWpgLJ4cFAsA+ONQFh7+aleN+QV4avDPiwNr7GeG5ZzMLsKQDzcBAOJbeOG3J1NtircxrL2lKykpqVmeyxE1BZZ4JSw7OxsAEBgYaDY8KCgIFy9eBADk5OTAxcXFrNhjmCYnJ8fmZbLjZsucZb2sPlJsfP31luNI9rgqXjBWyMjIaPQ8nCU3jvLdv+evv950EP6lvnVM3bRqy82K3VUXKB//cQQdXa/YPN+3Vh1AnNr245spQ7EHAOauOYhoZNUxtfzYY7+xdf81FHsAoKSiqiXLtxv344dDxbW9BXoB+Omf48a/NxzLsctxQyoWbKj6njcUewBg7759UDqgxdmCTacxMqysUfOYv+Gy8XVGRgYWbDDfbwzFHsN4R6jrcxzOqbD78qp/Dkv7TmOKPQCw80ye2XLmr881G//Prgx4uNQs+BiKPZbibIxTV7Vmf1s778+rbQ8frj2CRDfbiiE/b96D1JbuNr3H4KctB4yvq8dcXKE3+3vfhQLjNF//cxm2MrzX1mKPpdh+O379GPj+2mPo7Vdo/Ps/64+jb2ARAOCr7Vctzu9KcYXFHBmGrTlZYhx2NLNIlGNocz9XIxITCz5OoHpzWGsaZTW04VZzbS1RG2drRbKj8BSwt+rXVnd3DyQlJYkbkCXfX/8FqjHxOVtu7O77mr+YBwUFISmpowjBmKs3N9di17hqbNsGrr1PqVI3fts2WX/u7u7S3FccoNH7jbX7r4Xt05KQkBbAIcutewx8/fyAc9cvyOSUK826v4HiUrNhCQmJ0LjY4fTMQg7sud8kJSXBde1fQInl4ovZsqzcHqxV2+fQnckD/tzukGXVue/Y4fOZfib3bVuB3OvFs4SERPhYuq3KTt+n1blfLgTWbrZ53urf/gRQbvzbRe1i3XtNPkfLVq2Q1Nm2FpeG3ERGRgD/VhXfqi/3akkF8D/z1l/GaRqQP7u895p9ZWeA3YfMx1vIrf/RPcDZS7XPs1oshvcdqjgH/HugxvCmYG0LHyJyHBZ8JCw4uOrWjJycHISEhBiH5+bmIiio6h7noKAgaLVa5Ofnm7Xyyc3NRXJyss3LZId3ljnLejH9VVihUEg+ZnvE5yy5aQpSy3n9uWlYvHpBsO/nlNh6awr22G/sss4a0JJF7rlSKJUO+4z2nK9KpaqzfxZH5qm2eavV9l9m9WU56jvHdJ76ar/ZKZX1L9OeMVVfj1bPu/rmoLA9LmUjtn+V8vr7qs9Doaw5z8asM3u+t/oTqixtcwDqPF5aiscwrL75NwWeqxGJR3o9upJRZGQkgoODsXnz9V9ZKioq8M8//xiLOQkJCXBxcTGbJisrC8eOHWtQwYfkQwC75yJ5qn4xRM5Lb1WL1SYIRCSWPpszfV6p9XUusXAaTFdtI7BmP7GnhvaLLva2W1fY7LKUiJortvARWXFxMc6ePWv8+/z58zh06BB8fX0RHh6OcePGYf78+YiOjkarVq0wf/58uLm54YYbbgAAeHt747bbbsPs2bPh7+8PX19fzJ49G/Hx8candlHzpNfXPw2RM+KJu4xYkcqmvtgVmzNt3wqJlVjk8rS96t/fTb0PNHw9Nj7OxnzUusKW8g8Fjk4vfwAkat5Y8BHZ/v37MW7cOOPf6enpAIBbb70Vb7/9Nh566CGUl5fj9ddfR35+Pjp37oyFCxfCy+v646xffPFFqNVqTJkyBWVlZejVqxfefvttNp1s5prbRRI5n4ZeU3DLlg9rcinnQ5ml4o6MPy5Zqfr3d/UWP46mauDB2R5hOqo44UyF1NpidaKPQEQSwoKPyHr06IEjR47UOl6hUOCJJ57AE088Ues0rq6ueOWVV/DKK684IkRyUjop/5xF1Aj2LmY604WA3Fiz7uV8KLP00ZypWC+1BjUSC6fBqn9/N3WL3YY+Ja76ltuQTblRm7+TtvCprmHrzYk+IBE1KfbhQyRTTf2LIFFTsffFD4uj4rFm1cv5QsaZ+/ARBEFyBRZHPM5eDNW/v5v6+7zBrS/tEGejbumqY4t0pkJqQyJ1oo9HRE2MLXxIsvR6AQqF+b3kgiDI5h59R6vUCdDqqq6MFag6EdYLAlRKhVXrUK8XoFQqoL92RVY9F6YamhfDyaHhvZU6vdXxmb7f8NrwpyNitSdrYqj+eXT6qtwJAqCspUdNvXB93tXXLWC+T1Wfrq75GhhiqCtmw3L0ggBBEFBRWZVTpaIqPtO3N/QE1dKJe13rtL71rdMLktguamPYFmrLj62x6wWhqsilqMqT6tqxQaFQ1NlZa/XiTEWl3ji96ThbOnyt1NVfvauoNo1h+1KrlDWOU4Z1pNXpoVIo6t2mLTG8VycIcFEpIQgCKvVVxQ3DOjKsb9P9x7AKTBepF0z3XfP9Ry9Y3pa1Oj10+qocKRRVx25BEIz7j1KhQKVeqPHaNAfqWj634RhrmFelvuozVur0xmKJ4Rhh2C+UCoXFAoBWV7VeaiMIArQ6wSGtgCwd5/R6AZUOaApjuo3pBOHacfT657ZXMcawPwmA8bvbwLCfmH7nVd/nDevE0ne3Tl91o5RhXwcA9bVt2/S4LAiWP09FpR4KRdV2VbW9KVC9uKMXUGN7MGzLimtxGPYTnYVt1rgsnd64roGqbVxp8l5Lx5yq3AtmMZkW8qu2xZrbhuFzNUSlTt/gm8/0etM8WriFr9qKqdTpjftkbaofJ4Gq9a+otjwian4Ugpx/OiOr6XQ6ZGRkICkpSRJ9/yS8uhpF5ZUAgFPpI6FQKPDhuqNYtv0s/je5D8J83ZskDqmtl/oM/3ADDl8urHe6T8Z0wYjEsFrHf7H5FN5fcxT+nhqcvVJiHL7u6X6IDfEymza/VIuR/9mIIR1a4LWbOta77Ohpq2oM++WJVPy+/zLm/XkcAPD26ETc3b1lnfPZeDQLk77aifTbOqN3bDC6zFprNv7A68Pg6Wpe037i6904crkAvzyRBo1anAaOv++/jOk/7sXce7ogNS7I4jSCIKD19F8bvIxP7+uKr3ecxZUSLVY81htKpQKv/3wAizafBgB890gv3Dl/q9l7vF3VGNyhBebclWRxnoa8tW3hjdVT+9YYP2HRDvx1JNvmWA/PGg43l/r3rerr5PTbo4yvF2w6hU/+Oo5vHu5VY/t845eD+HzTKfRvG4wv7u8OAFiy9TRe+d+BGstY8kB3pMUF2/wZHGnxltN49aeqWDc8NwAtAz3Mxj/x9W78vOciJg+IxbPD2tY7v6Fz/sbRzCKrl1/bRZmUtAnyxMmcYgBAoKcGTw6KM64zwHxbqc9nG07izV8PGf9+cmAsPlp/vMZ0+14bisv5ZRgyZ0MjIpeuR/vF4P/+PiF2GHU6+dZItHmx6pjw8ZgumLR0l8gROdasmzuaHbe8XdUovHaeZPDlxO54fNkuFJZVVn97Da0CPXAmt6Te6Uh+dr48GEFerk2yrPrOo53tPJvIGfGWLpKkIpOTmPxSLQDgw3XHkFVYjo/+OCZWWJIX4KmxarrH6jkxfu3ngygsrzQr9gDAaz/VvEj+7p9zuHC1FF9sOW11nNU9890eY7EHAKb9uK/e94xb9A8KKwRM/joDCzedqjF+ZcaFGsN+3nMRRzOLsOVEToNjbaxHv/oXeSVajF2wvdZpLuWXNWoZDy/5F38eycaec1dxLKvq4t5Q7AFQo9gDAIXllVixu+Y6q+5IpuWCYkOKPQBqbGO1qeuniVm/HEROUQVe/Wl/jXGfX9s2TOOzVOwBgPsW7LAqlqZkWrj4cN3RGuN/3nMRAMz2n7rYUuwBpF/sAWAs9gBAbnEF1h3KbPC8vv/3nNnfloo9ALBw02mMmrupwcuROqkXewDgcsH146Tciz1AzeNWYXklEiJ8zIaNW7jDqmIPABZ7mjG2+CFqXnhLFzkdtkmrnRiP9rT1iRqGJuGmGtIk3vQtlm/xsXmWkuHEodvM2v5zrOl/wZlzbo2ySp3YIcietdujAKHGLS1kPx+PqWoB2em1NbVOU6mzbv2P7hKBzIIybD6eCwA4OHMYOsxYbZc4rdU+zAeHLhWYDXt5VHvc16sV2r78e4Pn27aFD/ZfKKh/Qmoy+18fBuD6rfQCqm6B0+kFfL3jLN5YdajuGThYhJ87QnzcRI2BiJoWCz4keTyntp4zdEpoqbjjiAunuuYo9bVkz/XhqEfc2ov1BR8HB+IEnGD3dnq2rOOqDmKZFEfw0Kjg4+ZS5zSW+iyxxMfNBQXXWgpXzbvpT3393Gt+FneNCq7qxt3CwqKj9Hi51r59WXP7sqPV1Q8fEckTb+kiybPHYz6bC0evG0tPwKjrqRjVmXZEbDa8MUHV9v66Vga3IcmwtkjJFj7y/3z20pjCt03v5HWTw1iTB0ud8FqclwR2HEsdA9vy3Vkb8T8Z2UIKxRap/whERPbHgg9JnjO0WpEKqX+R19qaowFh1/dkjbpb+Eh7Pdlzk5f67sNHoltP6tutVDRmm7K2OCAItj2NjGxjTR6sLfhUza8x0TSexYKPHbYfnh85F5UEngTJTYao+WHBhySv+gmNBL4vJcvR186NPWmtra+ehoTNzcA6Uj+5s3abtebCRu7HBqnnUioacxy09q2Gx6WTY1jzdHWbCj6NiMUe7NGaxxLWy+3PkYVcHjKISAws+JDkVT/x40VP7aT+a19tJ/ENaXKvMDlzsnibWF13dEl7NUmOI2+JsP6WrvqnkXteZf7x7KYxT6CxdhsSBBadHcm6W7qcZ4+wfEtX40n9O98ZOfK2K0nc0sVNhqjZYcGHJK8hT3BqrqT+a589T07rO22qq0gh9U1KzPgsXSw78rYrez6lS+64CqzTmO8Ma7czAWzh40jW5MHqPnwaG4yD2GPzkUL/RHLjqNZYgDQKPkTU/LDgQ5LXmF9rmx0Hn/wpLJyhWhpWG3ve0lUfp35Klx0jtHVelnLkyKKrtfs3r2sA6W+50tAk3xls4uNQ9uzDR87HDjl/NrEoHXhlJIUiMYuERM2PQuCeTwB0Oh0yMjKQlJQElUr8x0ZGT1tl9ndaXBA2Hstp0Lw8NSoUV+hqHX941nDsOXcVd326zTjsxFsjoVIqzNbLgUuFuGv+NpRqr8/r5Fsj8fPei3jqm4wa820f5oObk8Lx9m+HjcN2vTIEAZ4ai3FU6vR49acDWLr9bI1xXVv5498zeZjYpzVKtTp8vcN8mscHxOC/f56o9TPak5erGkXllXVOE9/CC0czi5oknqZ2d0oUvvnnnNmwrq384aG5vt8UlFViz7mrAKq2XQA4mV2MC1dLzd5nGFddYVklMq69v6mlxgZBoQCyC8tx+HKhKDFYEhPsiRPZxTWG39ktEt/tPG/8e1SnMKzaewl3p0ThUn4Z/j6a3eBlvnVrIu7pHoX4l39DpL8HFk5IwTu/H8Zv+y/XmHbuPcn4Ydd5lGl1eDC1DR78cidigj2REh2AZ4a2xQdrj2BEQhj6xgcb3/Pu6sOI9PfAPd1bYs2By3h4yb8NjhVo3HFSzrhenM/HY7pgZGJYjXOBhrivZyuczyvBn0eqjgWn3x5ll/naom98MDZUOxa9c1sn3JkS1eSxUN3qO2esz+m3R9U67td9lzBp6a4Gz9sewnzdsHX6oCZbXn3XF1K7/iCSI7XYARBZozEn6/V9cS/afBqzfz9sNuyXvRdxc1KE2bDFW86YFXsAYPe5PIvFHgA4dKkAhy4VmA27/f+2YP0z/S1Ov+f8VYvFHgD490weAGDh5lMWxzdVsQdAvcUeALIt9gCoUewBrufHkrq2XSlehG46Lr2YAFgs9gAwK/YAwKq9lwBYzpOtXlyxD2F+btDqBJzKKcZ/1h21WOwBgCe+3m18ve3kFWPMJ7KLjbF8veOc8WJg3/l84357T/eWjS72ANLcnqrTqJWoqKy7ZUbPNgEo1eqNRdPGcob1QuY6hPkAAEK8XZFVWN6oeQ1sF4Lc4gr8eSQbLQM8AFR1zNuUjYdv7BSGDUez0SrQA2dySwAASS39mi4AEaiUCqd8CuOLo9rjpRX7rZ5+Qu9ofLHlNABg8oDYOqdt4ePamNAssrWgfU/3lnaPgYikjQUfcgqT+sfg478cU9S4nF9aY1hOUUWNYRUWmo8Xldv2K9DJWi5aAaBca/0TR+ozoXc0TuYUY2RCKLzc1Ji8bHf9b6JG+eDOzsbXT3+3x/h6xg0d4OfhYjYMANqFeuPhvm1qnd+Ry4WYv+EkACAuxAslFToEeGqw70I+7uwWibUHM/HBnUm4/4t/jO/x83BBamwQfrlW9KhPuK8bNGolTl+7AIkO9MCTg+JqfIaGuqlzGEYmhuPRrxpfzHCUlGh//HO69oJdrsmxIK9Ea7fl5pfab14A8OatCdColHhu+d4Gz8PPwwU+bi7o0ToAFTo9VAoFvN3U0AvAkm1nAADebmoUll0v+t7RNRKHLhfgxRHtEeHvjqslWqw/nIX2YT7YdjIXQV4a3NcrGhuOZmPfhXxM6B0NpUKB99ccwegukYj0d8fx7CL4ubvgVE4xjmYW4alBcVApFfh0wwmE+Ljh4tVSaHV63NktCo8v24X9Fwpq+whm+XRzUWJS/1hE+rvbvD13jvLDw2ltcKWkAq+sNL/4S4ryw7herSAIwId/HMW5K9e/Q8J93aDVC+gc6Ydgbw3Cfd1xZ0oUPlx3FEczi3AssxCR/h44WO3HAH8PF8y5szNOnjyBk+XeaOHjBj9PDU5lF2Ph5lNoF+qN27tG4v/+PomrJRVYMCEFb606hKulFRjXKxo5ReXo0ToQWp0eG45m4+e9F1Fm8p3ySN828PVwwTu/H6n1M3cI80GpVodTObV/Txm0C/U2awF4b4+WSI0NwpdbT8NVrUKrQA98ufVMjfctuj8F9y+qOmalxQUhOtATx7IK4ePmgtu7RiIhwhe5RRWIDvIEAGx4fgBe/d8BfLvTugLulMFxiG/hjb3n83Hxain6xQejf9tgCAIQ6e+O9tcKSTteGowB7/6Fwms/YLxzeydEB3rCQ6PCDXM3AajKiaV9PshLY3aOcHNSOIZ3DIWfhwa7z+XB21WNYQmhSJ39p7G4eVuXSEQFeKB9mA9KKiqRVVCO+BbeAICDM4dh8rLdGNKhBXKLytEq0NNYQI7wc8ej/dpgy4lclGl1xlZK1YX6uOHm5HDM//uk1evpw3XHrJp28oBYdG3lb/Zd89ywtjh0qQBXiiuQFheM1kGeKC6vxFfbz+CRvm3g6qJCt1b+WHswE59uOAlPV7XZDyNv3pqA0godRnUKw7HMIny47iheGlX1XTn9h33YcfoKpo9oh7ah3jieVYTTucW4kFdq9vnDfN3QLToAmfllUCgEnM0uQGyYP/ZfyEcLHzfj9nlDpzBsOZGLR/u1QX6pFnd2i0K4nzvuX/QPJqZGw0WlxMnsYgR4ahDi7YrurQPgoVGhUidUtcD8rKr1t7uLCvf1aoWbOofjn9NXsO1kLjqE+eLJQbEYnhCKc1dKcGPn8DrXZZeW/vjqgR4Yu2C7Vev+tRs7AACOZhVh2fazSIryQ2KEL4Z2bAEPjQplWj26RfvjeFYRLl4tw9WSCqREB0ClVOCGuZvwxMBYnLtSgpM5xRiVGIYWPm61tiwmIvliwYecQr/4YIcVfCz1QWPpTkdLw+x5N7Y9+0kZ1D4Er8Vdv3Vk5+k84y9QcrdgfDc8sHhnky93dJdI42vTi8sbOoUhxMetxgXn7V0jzd5jyfSR7etdrp+HC65euyjJmDEUAPDLXutuEZg8MA739mhpvKXgvl7RxpjsUfCZc2dnuzfR9tCoUNKI5vbVDesYildv7Gi8yKuLlDuOHtOjFfR6weqCz8HXhqDDa2uNf9d1GwJwveDzn7uT8NCX/xp/uX/3js5m07UKrCqWAMDwhFDj8Bs7h5tdDJm+L+paq4vklv5m85o8MK5GHK/flIDbPtliMcaVj/fBztNXjAWfw7NGGMfZuj0/OzQeaXHBKKmoNBZ8/nimH2KCvcymu61r3fuwQfroTsbXBWVadHptjdn41LhgpMUFwbv4PMYndTDbb2Zcu+gDgAfTrheJ+5ncHmjqxs7hePeOzma3ChmOJYcuFeLnPReNw6MC3I0Fq9du6ojurQNq3GK0eGJ3jF+4w2zY6C4RuL1rFLrMqtqGbusSia6t/DEyMQwAsPtsnsWCz4C2IcbXfWKD8Gi/mBrThPu5G1+7uajw1OA4qws+g9u3QEKErzEOA4UC6Nkm0Ph3kJcrurTyN97yeWe3qBrzstTB7g1xHvjPhL6Ieel3AMDLo9qb5aRXzPVl3Nw5HN//W9UCUalUGJfv6+6CMN/rn9FDo8bCCSlmyzEUfPrEBuK+XtG4r1c0Fmw6VWvBZ+69yUiJDqiz4NMnNhCbj+cCAKYMjre64PPssLYAgG6t/LHzWtHm8VpaslTfH0Z3uf49Z7pddQjzMe7vYb7uZre6fvdoL7N59DfZZgzzmDI4DlMGxxuHN+S2oK8e7GF8nRZnvi/dmlxzv/bzcMGL1/ajhAhf3N+ntXFczzaBZttXbRQKBVLrKLiM7hKBPjFBeOb7quPVBJNlvHVrYq3v6xjui47hvmbD9rw6tN54iKh5YKfN5BSk8GQDR1/r2bPps4SvSx1OKYFtxZSj42lMy7DqHTpLa81ZprJzp5f1dTpuWuSptONjoO3ZMbeBLdtaQ7dL8Y8ttQdgz23D0Lmq6RN77PXZLXXcKlZ3itZ0ImtpCkGoe33b0pl/fWzp6Nae5woWfwyq/reD02b62ev6ZE3xtWfPj9rYeYl/HHIMBRR2eXobEZEpFnzIKTjyotnaL1dH/7pvz/nL9FzIKvYuCDSWo+Mpr2x4a5fqNUaJrbomoVTU/blNL8TlVJSV2n5irbrWmz2frmNYO45YTWKu+eqFJasKPhYmEVD3+rbnV7YtObBrwcfCsOrbX12FW3vs4qZFp7rXg+O3Kj7jxfEU9XwfERE1BAs+5BSa+uLE0nmNpYKMPU9/rHzCrFWkfOtJc1NbsdJeKWpMDcIZT+DtHbFSoTBrxVEXRz6evqk1poWPVK9HHNG6w/yrxz75t9jCxy5zrl/15ZiGUtfxoHrIekGotr6rtxZ0bOGlNvZ87HVthS6zv+tInD0OFyqTs/TGfjZ75qSxGrtu5HMkNqdUSCtPRCQPLPiQU7DnSZw1LP1q5+hrPbsWadhyQzKkcDtibapvctKN9Dp7F6nq+0XVdHF2beFjtzk1LQHiHk/qWm9KhcKOt11dn6dx2Xaat8X1J9IG0Zjv1sYXIKyczobl2HK4rW+21lx4O/ohVKYxNHa/k9Z5QGMrPs56BK2bUsFbuojI/ljwIadgz6b61rDcwsfSdPY76dDb9WJSnidDzqi21mlSOKmrvv3as98NR7H3ll1/Hz7XX9v3li7n3EfFjrvOW7rs2W+M0tCHj8my7Tb3msQ6ZpsWSGrbFyy1gROEute3PQ8ltszLlm2gvikttvCx6ZauxudUSr8X2LUPH7bwscgJvoKJyAmx4ENOwZGtJCydeFg6mbD85C77xWHP20Wc9FpSlpq6WGkLZ+zDx97bdn19+Jh12swWPqLHXVfByZ7fE4ZZKZqohU+THbOrLcfaPnwsFYOaqvViU7fwNbBmqQ7vtNlkHYt9eHZgI2Tb3y/2gchBnOFHFyJyPnwsOzkFR/bh8+eRrBrD3v7tME5lF6OoXAtdSQG0+/7FH4drPg517aFMm5dX/ZG3bVt4Y3CHEKw5YPu8aiPXkyFrSO2jS7lz3Br9edhhnkqFY29zsHdLCIXF9gvXfbD2qPH1oUsFjV7el1tPAwAyzl2tMcwZiH1sqWvx9t3XquZlWtOw17ZnaXtrqvXakM9gufNioc7WJ3btS8duc7JxuRb7WmraHcD8li5xv0uk1cJHat/09qGA+HkmIvmR8G/PRNe5uagcNu8zuSUWh3+78xxW7buM30+UWCz2AMCy7WcbvfwjmYX4758ncCyrqNHzMvBxdzH7OzrQ027zlroAD43YISC+hZfxdW2/gof7udtlWUFergCA5JZ+Nr83zNfN7O9Q3+sxtQ6yvM0EedW9fru3DgAAeGuuf+6Y4Kp5RQd62BxjdWWNeAy9JUoF4O1W+28fV4or7Lq8Gf87gBn/O4Afd10wG2aNLg3Isb0FeWmQHOUPAPB2bfrfjPzr2L/dXJQI83OrdbwtXNVVp0emF19edvq8lo4JMSFNc4yOCfYy+7t9mI/xtZ+HS/XJAQD+nhokR/mZDQv0cjVbN77VvnPq2qcMwqw8BtpSPHLXWH+ukHRtOw70tP47I9TT/HOF17W92aEmYbqpRPjXvr58rq3v2BCvWsfHt/A2G2aae2u0D/WufyIr1batWSvSv/HfJWKq7bwg0t8DId6uTRwNEckdW/iQJL1zWyc8/8NeAEBaXBCiAmr/clco6v61aO49yXji6921jm/bwhtHMgsbFOewji2w2o4tcxrKdB0oFUBKtL/Z+Ht7tMTF/FL0jQvG3vP5mP374VrnlRLtj66tApAaG4T//HEU2YXl+GRsV4z4z0bMuKED2of54L4F23F39yh8te16wWtIhxZYe7BqXXz/aC/c8X9bjeMi/Nxx4Wqp2XIe7tsGV0sq0CHMB6/9fLCxq8AoMdIXW6cPRK/09WbD/T1ckFeitdtyTPlUu7j5/pHe6DxzDcb3amW8KPr1yTT8sOs82oZ642R2MYZ1DLXLsr97pCeWbDuDR/vF1DttWlwQNh7LAQCM7dkSw6/F8Pm4bth7/ioGtw8xTvvlxO545vs92H02D7d1iYSHRo0+sYFoE+yFAe/9ZXH+0YEe+GRMV3y47iji3K7vU4sndseCTacwsU9rPL5sF/aezwcA/PZUGkb8Z6NxuscHxODPw9m4sXN4ndvoXd2i8O3OcxbHadRKVFTWLAopFVUXpdW3AaVCgXA/d8y4oQPe/v2wxfdaI8hLg5yiquJQqI8bLheUGccNbh+CdYeqWhKG+7ohuWXV/rlq3yW4qBQY2iEUBy8V4FROscV592oTiCcHxSE2xAspb66rMf6PZ/oZXz8zJB7vm7RKsuSxrrZd6AHAf+/tglM5Rejayh9z703G//19AmN7trJ5Po3VNtQb00e0g0atxLkrpbgpKRy3/HczBrYLQYiPG4Z3DMUj/drUKFB8Pq4bpn6bgcLySjw5MBZ/H81GUXklTmTXXOeJEb7oYHIx/O7tnVBYVmm3i0yVUoHZtyWitEKHxEhfrD6QickD4uwy7/pM6h+L8ko9Iv3dcSa3BE8MjEVaXBAuF5QZCwLfPNwTd3+6DamxQUiNC0L7MB/8d0wXzP/7JPw8XHCluAI3J4UDAN6/ozOyCssRG2JeDIgK8MDLo9rjyOVC+Htq4KlRIzqoav0tmpCCnWeu4IbEMOuCNrk2fvf2Tjh4qQCdI/3w8sr9uK9XK3SO9MOjX/2L/m2D0cLH+oLfA2mtUVimxfCE2o/F797eCSeyi7HhaDbCfF0xIraqEPjpfV2x80weRiWG1/pee7RBMb2lq398MJ4YGAuVUoGMc1fh5VpVxFEpFYi7lrv/3J2Eu+dvQ2F5JUZ3iYC7iwpKhQI3dApDxwhfKACM6lS13j8f3w2fbTiJqyUV6Nc2GD/8ewH/nsnDt4/0xE3zNteIZfrI9vB0VeOWpIgGfZZPxnTBu2uO4K5uUTWKT9b6cmJ3bD2Zizu6Rjbo/VLx+1NpeHzZLrQP80GEnzs+/usEAOCulCj4e7jg6SHxiKuleEdEZCuFIHYPjCQJOp0OGRkZSEpKgkrluNY0jdH3nT9x9kpVa5zTb4+qMX7Puau4+b9VJyl7XxsKHzfrfkHaeCwb9y3YYXM8M2/uiDu7RaHdK78DqDrRutnkROjQpQKzi1lrvTSyPW5ODkf3N/8AAOx6ZQi6zFprcVpL60HKHvpyp7EoZBr7sDkbahTdZt+WiLtSWpoNM9wO5+aiNLb0eLx/DP577WTp2aHxmDzQsRdOer2ANi/+ajasY7gPVj2Z5tDl2qL6bYOGdX0pv9RYCNszYyh8G/kra23qOp5MWvovft132SyuupRW6NB+xu9mw+p7n+nnrz7tH4cy8cDinca/3729E+7oFmXVvAxm3NABE1Nb1xlDbfN5/47OuK2WixXDNK/e2AH397Ft/tYyzU3MS9fXq7MdS+TI3t/Dde0HzqSgTItOr60BUHXB3zc+2KHLM6y3CD93bJ420Djc1vxM/TYDK3ZXteSzdf0bYnikXxtMH9Hepvfaw5jPt2Hz8VwAzrHtOPIc1pCLMF83bJ0+yK7zBprue1ks9eXGGa4/iJwdb+ki2TCtXNrSl4OjHkvbmPma3rcvp5qso+9Mb4pVpZTSY1NsZLZ+RPoYehsb0Ni70+saj6JvwH7amC4WrNlEZbTLEzWaWJ02S0Fz/uzNhVmfXkw3ETkACz42Wrp0KSZMmICnnnoKW7duNRt35coVDBpk/+o/VanvvMe0MGLL00Ma+v0qCObLqXkh2cAZN/K9zkhv4xPQTDsFNu28UazrZGe8QHeWupWjO712lvVAZCu5bNvO+jHs8WONWDl0xu80Z2X2Fcf1TkQOwIKPDb788ku8++67aNOmDTQaDR5++GHMnz/fOF6v1+PixYsiRihv9Z33mH5P2vSrWANPqKo/pcSeT41obt//OguPdarrc5ueSJuemFoqHNF1Zg18RKoq2rqf2PvRz9WX3tS/oFtzEcitmOxBLq1DTD+HM30ku/Th40wfmBrE/HyPR38isj922myDb7/9FrNmzcKNN94IALj33nvx+OOPo6ysDE899ZTI0clffReoptdRtrXwadgJlVAtJkfVGppDDUNnYwuf2sY1h3Xl7GzNkb0LU9ULLg2ZvaO3MzndxkniUSoV5s0hnVRzrnmIVfBpzuuciEhuWPCxwfnz55GcnGz8Ozk5GYsXL8aECRNQWVmJ8ePHixid/NV//nH9xNaWRgH2akBgr2s0haJaIUlGv/jUdhJZqbPtM9bWkocXynUzXT9inc+LnSHRW/g06dKoOZPNLV0y+RwN0Zw/e7PBHBORg7HgYwN/f39cvnwZkZHXn7ASFxeHxYsXY/z48cjMFP/x3M2Z6bW+La0CGtqCoHptwZ4Xcs3t+9/yLV21r1GzPnxMEiHWj9nOchFvvo+IH4MUNPkv6BL7/CRfcrkdqKGtcMVmj2OdXHJItTN/SIeIgRCRbLEPHxt07doVq1evrjE8NjYWX3zxBTZutP0R3GSD+jptbuBsG/oraPXl2bN1SXM7x7P1li6z6cxei3O25Iwti5z1Isremtu+Rs2HXIoF4hWnxT+u27sPM5Ie0+1b/C2OiOSILXxs8NBDD+HAgQMWx8XFxeHLL7+0WBAi+6jvtKeh50UNPaFSVXubi8q8ftqYeOR6Me6qVlkcbqmFT115cXNRokyrrzGdWy3zdzRXtXPUzqVx/SfuKW31p36pG7CjahqRb6UVy5PLhTqJy0OjQlF5pdhhNJpY+0Njj1S8eCdr8HhPRI7mHFcpEtGuXTvcdttttY6Pi4vD5MmTmzCi5qW+k6ekKH90jw7A7V0j65nSXOdIP+PrRfenmI2LC/FCqJd5EeH2rpFoF+qNO7pFAQDu7dES8S28MLhDC7Pp2gR5ITU2CDd0CsM7t3WqN44IP3e0DPDAiIQw+LirMbRDCwxsF4JgL1e8MLydcbo+sYGICfbEtBHt6pibNE0b0Q5tgjzx2o0dzIZX6vTG14/0bYP2YT64JSmixvsfHxCDdqHeWPd0P+OwB/pE47H+MWgd5Im7ukc5LngT43u1QqdIX7w9OhGtAj3w3h2dm2S51nppZHv4e7jAx02NKYPjjMMj/NzRLz4YIxJC4a4RpzjWkB/N7+ne0qbpF0/sDgCIb+FVY1zf+GDj69ZBnujfNqTOeaVE+xtfR/i5IybYEzd2CrcpHgB4KK01Oob74IZOYbVOY9i+70ppmu142UM9EBXgjiUPdG+S5VHT+mxcN7QM8MD/je0idiiN0pwvh1kMkD9/DxcMbt8Cg9uHwN/DRexwiEiG2MKngQoKCrB8+XKcOHECCoUCMTExuP322+Ht7S12aPJVz4WiSqnAd4/2snm2SqUCp98eZfzb9LVOp0NGRgaWHFNiZcZFAKhxcf/WrYm1zverB3sY/77TwkXc1ZIKJM1cCwD4ZGwXdDIpPn06rpvx9WP9Y/BY/xgbPpU0hfu5Y/2z/WsMN23hM31ke0yv5f3PDWuH54ZVFbpOvDkcGRkZ8PPQ4IXh7cyKYo72+s0Jxtd321iMaAoP9W2Dh/q2qTFcoVAYiyFiqa3D7bqkj07E9zvPodLKTpr6xQeb7cemNGplreMs+f7R3lZPW5eXRnWodxrT7bsp9I4JwsbnBzbZ8qhpdY7yw4bnB4gdRqOZ1jzk2vq1NmLd0dXc1rOYFAoFPh/frf4JiYgaiC18GmDfvn0YMmQIvvjiC+Tn5yMvLw9ffPEFBg8eXOstX+TcHPUjm2mH0c35BMvaC3lyfg3NNLcRouapoQ9WEJs9ouZj2YmIqLHYwqcB0tPTMXDgQMyaNQtqddUqrKysxMsvv4y33noLS5cuFTlCeZLj5Z7pr3fN+QTLUh8+REREzVlzPi8gIiL7YAufBti/fz8efPBBY7EHANRqNR588EHs379fxMjkTQpPzLA33p9fxdJTukiemGoicgaNPVbZ4+tdrHMEnpsQEckHCz4N4OXlhUuXLtUYfunSJXh6eooQETkr05Oq5nx+xSJA88FUExFZR7Q+fJrx+QgRkdyw4NMAI0eOxEsvvYRff/0Vly5dwuXLl7Fq1Sq8/PLLGDXK+s5AyTZyvFDkSRU1N3JsqUdE5AhKkSo+PDUhIpIP9uHTAM8//7zxf51OB6Dqlq577rkHzz77rN2XV1RUhP/85z9Yt24dcnNz0aFDB7z44ovo1KnqUd/Tpk3DihUrzN7TuXNnfPfdd3aPRUxyvE5UifXzHRERETmMPb7dxeqw2lk7yiYioppY8GkAjUaDl19+Gc888wzOnj0LQRDQqlUruLu7O2R5L7/8Mo4dO4Z33nkHISEh+Omnn3D//ffj119/RYsWLQAAaWlpSE9PN77HxcXFIbGISZBhGx8ln9JFZBMXFfcTouaqudUhxPpNiL9FERHJBws+jeDu7g4fHx8oFAqHFXvKysqwZs0afPzxx0hJSQEAPPHEE1i3bh2WLVuGqVOnAqgqQgUHBzd6eYYWS1Jk2sKnqeI0LMf0NhR7Ltt0voKgl/T6byrWrgPDdFxn0lNXbvT6xu1Lrmolc94I3G+ki7mpn07flN+TgtmybM2PPc4bFIIgzvYgwvlWYzTFviM4eP5yVV9uuE6JHI8FnwaorKzEvHnzsGTJEpSUlAAAPDw8MHbsWEyePNmurWsqKyuh0+ng6upqNtzNzQ27du0y/r1jxw706tULPj4+SElJwdSpUxEYGGjz8vbt29fomB1lRGsXfJZXip4RrsjIyGjSZbd2rcpzGz+1w5add+4YMi6zWy1b16+Ut9nmzlJuCgoLja9tyXX/Vm7460wZbmvn0eT7vxxxv5Eu5qZ2lTlnkFF4rkmWVVGhtXissTY/eXlXja9tPWZplECFHvAtz0RGRq5N77WH/IJ842tnOt46ct/RVlQ41bqQGh7XiMTDgk8DzJw5E+vWrcNzzz2HpKQkAFVfiPPmzUNeXh5mzpxpt2V5eXkhOTkZH3/8Mdq0aYOgoCD88ssv2LNnD1q1agUA6Nu3L4YPH47w8HCcP38e//nPfzB+/Hj8+OOP0Gg0Ni0vMTERKpXKbvHbU+fOAm5LK0brQA+oVU1TGNHpdNi3bx8eHZmCAd1K0DLAA95u9t1t/omrgFanRwsfN7vO16l8/7vxpWGfqo8hN1LeZpurunLj+e8OIOsKAOtzDQCfdhJwIrsIcSFe7F+iEbjfSBdzU7tdbbUoLq9EuJ9jWlObufZ95OLiYnaMsjU/Acf2AmcvArDtWAcAO9pVIr+0ApH+Hja9z178D+wGLmYCsD12MTh03zFsDxqNU6wLqakvN4bxROQ4LPg0wKpVq/DBBx+gX79+xmHt2rVDWFgYnn76absWfADgnXfewYsvvoi+fftCpVKhQ4cOuOGGG3Dw4EEAVU8NM4iPj0dCQgIGDhyIv/76C0OHDrVpWSqVStInmu3CfEVZrlqtRqcof4fMO9inCU5gnYit25/Ut9nmzFJuTPuqsiVvKhXQPtzPXqE1e9xvpIu5qSnAS4UAryZeqMLyMcra/JgWpm3Np5+nCn6ervVP6CDKRsQuJkfuOwo417qQGh7XiMTDgk8DuLq6IjIyssbwyMhIh3SW3LJlS3z11VcoKSlBUVERQkJCMGXKFIsxAEBISAjCw8Nx+vRpu8dCRNQYcux8nYjkp7FPBmU7RCIikgJ2GNIA9957Lz7++GNUVFQYh1VUVOCTTz7B2LFjHbZcDw8PhISEID8/H5s2bcKgQYMsTpeXl4dLly4hJCTEYbEQETVEYy+iiIicghNXfHjXLBGRfLCFTwMcOnQIW7duRd++fdGuXTsAwOHDh6HVatGrVy9MnjzZOO28efMavbyNGzdCEAS0bt0aZ8+exTvvvIPWrVtj9OjRKC4uxrx58zB06FAEBwfjwoULmDNnDvz9/TF48OBGL5uIyJ5Y7yEikjYlKz5ERLLBgk8D+Pj4YNiwYWbDwsLCHLa8wsJCfPDBB7h8+TL8/PwwdOhQTJ06FS4uLtDpdDh69ChWrlyJwsJCBAcHo0ePHpgzZw68vJr6hncionqw4kNEJG2s9xARyQYLPg3w6quvQq/Xw8Oj6ukJ58+fx7p16xATE4O0tDS7L2/kyJFmHTObcnNzw4IFC+y+TCIxKHmSSUREEtDY2rTCiasmzhs5ERFVxz58GmDSpEn43//+BwAoKCjAXXfdhUWLFuHxxx/HsmXLRI6OyHmplTwkyR07bSYikjbe0kVEJB+8umqAAwcOoFu3bgCA1atXIzAwEH/++Sdmz56NJUuWiBwdkfNivUf+9Kz3EBFJGus9RETywcurBigrK4OnpycAYNOmTRg6dCiUSiWSkpJw8eJFkaMjcl5s4SN/Ah/TRUQSFuCpAQD0ahPYqPkkRPjYIxxRsN5DRCQf7MOnAVq2bIl169ZhyJAh2LRpEyZMmAAAyM3NZUfJRI2gYic+ssdyDxFJ2f8e74Of917EmB6tGjWfsT1boVInoHds4wpHYuAtXURE8sGf0xvg8ccfxzvvvIOBAweic+fOSE5OBgBs3rwZ7du3Fzk6IuelZsGHiIhEFBXggUn9Y+Hr7tKo+biolHiobxt0DPe1U2RNiF/FRESywRY+DTB8+HB07doV2dnZaNeunXF4r169MHjwYBEjI3JubOEjf7yji4hI2pz5CWNERGSOBZ8GCg4ORnBwsNmwTp06iRQNkTywhY/8sd5DRERERNQ0eEsXEUmGkgUf+WMTHyIiSeNXMRGRfLDgQ0SSwRY+8sdyDxGRtLHPZiIi+WDBh4gkgy185I8NfIiIpI19+BARyQcLPkQkGWzhI38C2/gQEUmaklcHRESywUM6EUmGimeZsscWPkREUscfX4iI5IJXV0QkGYGeGrFDIAdjwYeISNp83PkQXyIiueARnYhE939ju+CzjaeQPjpR7FDIwVjvISKStkn9Y5Fx9ipuSY4QOxQiImokFnyISHTDE8IwPCFM7DCIiIiaPV93F3z7SC+xwyAiIjvgLV1ERNRkBN7TRURERETUJFjwISIiIiIiIiKSGRZ8iIioybCBDxERERFR02DBh4iImozAbpuJiIiIiJoECz5ERNRk2MKHiIiIiKhpsOBDRERNhvUeIiIiIqKmwYIPERE1GT6li4iIiIioabDgQ0RETYblHiIiIiKipsGCDxERERERUTUT+7QGAEwf2V7kSIiIGkYtdgBERNSMsIkPERE5iVduaI/JA2MR4KkROxQiogZhCx8iImoyrPcQEZGzUCgULPYQkVNjwYeIiJoMO20mIiIiImoaLPgQEVGTYbmHiIiIiKhpsOBDRERNhg18iIiIiIiaBgs+RETUZAS28SEiIiIiahIs+BARUZNhCx8iIiIioqbBgg8RETUZFnyIiIiIiJoGCz5ERERERERERDLDgg8RETWZIR1aAABaBniIHAkRERERkbypxQ6AiIiaj2kj2qFjuA/6tQ0WOxQiIiIiIlljwYeIiJqMm4sKd3SLEjsMIiIiIiLZ4y1dREREREREREQywxY+BAAQrj06R6fTiRyJtBjWB9eL9DA30sXcSBdzI13MjbQxP9LF3EhXfbkxDBf4CE8ih1EI3MMIQEVFBfbt2yd2GERERERE1IwkJiZCo9GIHQaRLLHgQwAAvV6PyspKKJVKKBQKscMhIiIiIiIZEwQBer0earUaSiV7GiFyBBZ8iIiIiIiIiIhkhqVUIiIiIiIiIiKZYcGHiIiIiIiIiEhmWPAhIiIiIiIiIpIZFnyIiIiIiIiIiGSGBR8iIiIiIiIiIplhwYeIiIiIiIiISGZY8CEiIiIiIiIikhkWfIiIiIiIiIiIZIYFHyIiIiIiIiIimWHBh2Rn/vz5uO2225CcnIxevXph0qRJOHnypNk0c+fOxfDhw5GUlISUlBRMmDABe/bssTi/gQMHYsOGDQCAI0eOYOzYsejUqRPS0tIwb948CIJgNn1FRQXmzJmDAQMGICEhAYMHD8by5csd82GdEPMjXcyNdDE30sXcSBvzI13MjXQxN0TyoRY7ACJ727FjB8aMGYPExETodDrMmTMHDzzwAFatWgUPDw8AQHR0NGbMmIGoqCiUlZXhiy++wMSJE7F27VoEBAQY53X48GFcvXoVPXv2RFFRESZOnIgePXpg+fLlOH36NKZNmwYPDw9MnDjR+J6nnnoKubm5ePPNN9GyZUtcuXIFlZWVTb4epIr5kS7mRrqYG+libqSN+ZEu5ka6mBsiGRGIZC43N1eIj48XduzYUes0hYWFQnx8vLBlyxaz4fPmzROeeOIJQRAEYenSpULXrl2F8vJy4/j58+cLqampgl6vFwRBEP7++2+ha9euQl5env0/iEwxP9LF3EgXcyNdzI20MT/SxdxIF3ND5Lx4SxfJXmFhIQDA19fX4viKigp8++238Pb2Rtu2bc3GrV+/HoMGDQIAZGRkICUlBRqNxjg+NTUVWVlZOH/+vHH6hIQEfP7550hLS8OwYcMwe/ZslJWVOeKjyQLzI13MjXQxN9LF3Egb8yNdzI10MTdEzou3dJGsCYKA9PR0dO3aFfHx8Wbj/vzzTzz99NMoLS1FcHAwFi5caNYENTMzE0eOHEG/fv0AADk5OYiIiDCbR2BgoHFcVFQUzp07h3///Reurq7473//i7y8PLz++uu4evUq0tPTHfxpnQ/zI13MjXQxN9LF3Egb8yNdzI10MTdEzo0tfEjWZs6ciaNHj+KDDz6oMa5Hjx5YuXIlvvnmG6SlpWHKlCnIzc01jv/jjz+QnJwMPz8/4zCFQmFxOYbhgiBAoVDgvffeQ6dOndCvXz9MmzYNK1as4C8TFjA/0sXcSBdzI13MjbQxP9LF3EgXc0Pk3FjwIdmaNWsW1q9fj8WLFyM0NLTGeA8PD7Rq1QpJSUl46623oFarzZ4AYNoEFQCCgoKQnZ1tNg/Dl5rh14ng4GC0aNEC3t7exmliYmIgCAIuX75s18/n7Jgf6WJupIu5kS7mRtqYH+libqSLuSFyfiz4kOwIgoCZM2dizZo1WLx4MaKioqx+X0VFBQCguLgY27dvN/uSSkpKws6dO43TAMCmTZsQEhKCyMhIAECXLl2QlZWF4uJi4zSnTp2CUqm0+EXZHDE/0sXcSBdzI13MjbQxP9LF3EgXc0MkI47rD5pIHK+++qrQtWtXYfv27UJWVpbxX2lpqSAIglBcXCy8//77wu7du4Xz588L+/fvF1588UUhISFBOHr0qCAIgvDbb78JN9xwg9l8CwoKhN69ewtPP/20cOTIEWHNmjVCly5dhAULFhinKSoqEvr27Ss88cQTwrFjx4QdO3YIQ4cOFV566aWmWwESx/xIF3MjXcyNdDE30sb8SBdzI13MDZF8KARBEMQuOhHZU/WnAxikp6dj9OjRKC8vxzPPPIM9e/YgLy8Pfn5+SExMxGOPPYZOnToBAJ577jmEh4dj6tSpZvM4cuQIZs6cib1798LX1xd33303Hn/8cbP7kU+cOIE33ngDu3btgp+fH0aMGIEpU6bAzc3NcR/aiTA/0sXcSBdzI13MjbQxP9LF3EgXc0MkHyz4EFWj0+nQu3dvfPbZZ8YvLZIO5ke6mBvpYm6ki7mRNuZHupgb6WJuiKSDffgQVXP16lWMHz8eiYmJYodCFjA/0sXcSBdzI13MjbQxP9LF3EgXc0MkHWzhQ0REREREREQkM2zhQ0REREREREQkMyz4EBERERERERHJDAs+REREREREREQyw4IPydbSpUsxcOBAJCYmYvTo0di5c6dx3Jo1a/DAAw+gR48eaNu2LQ4dOmTVPI8cOYKxY8eiU6dOSEtLw7x581C9G6wdO3Zg9OjRSExMxKBBg/D111/b9XPJRW350Wq1ePfdd3HjjTciKSkJqampeP7555GZmVnvPJkf+6hr35k7dy6GDx+OpKQkpKSkYMKECdizZ0+982Ru7KOu3JiaMWMG2rZtiy+++KLeeTI39lFXbqZNm4a2bdua/bvzzjvrnSdzYx/17TcnTpzAo48+iq5duyI5ORl33nknLl68WOc8mRv7qSs/1fcbw7/PP/+8znkyP/ZRV26Ki4sxc+ZM9O3bF506dcKIESOwbNmyeufJ3BA1MYFIhlatWiV07NhR+O6774Tjx48Lb7zxhpCUlCRcuHBBEARBWLFihTB37lzhu+++E+Lj44WDBw/WO8/CwkKhd+/ewtSpU4UjR44Iq1evFpKTk4UFCxYYpzl79qzQuXNn4Y033hCOHz8ufPfdd0LHjh2F33//3WGf1RnVlZ+CggJhwoQJwqpVq4QTJ04Iu3fvFu644w7h1ltvrXOezI991Lfv/PTTT8LmzZuFs2fPCkePHhVefPFFoUuXLkJubm6t82Ru7KO+3BisXbtWuOmmm4TU1FRh0aJFdc6TubGP+nLzwgsvCA888ICQlZVl/JeXl1fnPJkb+6gvN2fOnBG6d+8uzJ49Wzhw4IBw9uxZ4c8//xRycnJqnSdzYz/15cd0n8nKyhKWL18utG3bVjh79myt82R+7KO+3Lz00kvC4MGDhW3btgnnzp0TvvnmG6F9+/bC2rVra50nc0PU9FjwIVm6/fbbhRkzZpgNGz58uPDee++ZDTt37pzVBZ+lS5cKXbt2FcrLy43D5s+fL6Smpgp6vV4QBEF45513hOHDh5u975VXXhHuvPPOhn4UWbI2PwZ79uwR4uPja1zYmmJ+7MPW3BQWFgrx8fHCli1bap0nc2Mf1uTm8uXLQlpamnD06FFhwIAB9RZ8mBv7qC83L7zwgvDYY4/ZNE/mxj7qy82UKVOEZ5991qZ5Mjf2Y+t3zmOPPSaMGzeuznkyP/ZRX25GjRolzJs3z2z8rbfeKsyZM6fWeTI3RE2Pt3SR7FRUVODAgQNITU01G96nTx/s3r3b6vlMmzYN9913n/HvjIwMpKSkQKPRGIelpqYiKysL58+fN07Tp08fs/mkpaVh//790Gq1Dfk4stOQ/BQVFUGhUMDHx8c4jPmxP1tzU1FRgW+//Rbe3t5o27atcThzY3/W5Eav1+O5557DAw88gLi4OIvzYW7sz9r9ZseOHejVqxeGDRuGl19+Gbm5uWbTMzf2V19u9Ho9/vrrL0RHR+OBBx5Ar169cMcdd2DdunVm0zM3jmHrd05OTg7+/vtv3H777WbDmR/7syY3Xbp0wfr165GZmQlBELBt2zacOnXK7D3MDZH4WPAh2cnLy4NOp0NgYKDZ8KCgIGRnZ1s9n+DgYISFhRn/zsnJQVBQkNk0hmXk5OTUOU1lZSXy8vJs+hxyZWt+ysvL8d577+GGG26Al5eXcTjzY3/W5ubPP/9EcnIyOnXqhC+++AILFy5EQECAcTxzY3/W5Oazzz6DWq3GuHHjap0Pc2N/1uSmb9++eO+997B48WK88MIL2LdvH8aPH4+Kigrj9MyN/dWXm9zcXJSUlOCzzz5DWloaFi5ciCFDhmDy5MnYsWOHcXrmxjFsPR9YsWIFPD09MXToULPhzI/9WZObl19+GbGxsejbty8SEhLw4IMP4tVXX0W3bt2M0zM3ROJTix0AkaMoFAqzvwVBqDGsLs8880y987Q03NJy63pvc2VNfrRaLaZOnQpBEPDaa6+ZjWN+HKe+3PTo0QMrV65EXl4evvvuO0yZMgXff/+98aSNuXGc2nKzf/9+fPnll/jxxx/rXF/MjePUtd+MHDnSODw+Ph4JCQkYOHAg/vrrL+PFK3PjOLXlRq/XAwAGDRqECRMmAADat2+PXbt24ZtvvkH37t0BMDeOZu352g8//IAbb7wRrq6uZsOZH8epKzdLlixBRkYGPvnkE4SHh2Pnzp14/fXXERISgt69ewNgboikgC18SHb8/f2hUqmMvxQY5Obm1vjFwBaWfnEyNMk3XOhamubKlStQq9Xw8/Nr8LLlxNr8aLVaTJkyBefPn8fChQvNWvdYwvw0nrW58fDwQKtWrZCUlIS33noLarUay5cvr3W+zE3j1ZebnTt3Ijc3FwMGDECHDh3QoUMHXLhwAbNnz8bAgQNrnS9z03gN+c4JCQlBeHg4Tp8+Xet8mZvGqy83/v7+UKvViImJMRsfExNT51O6mBv7sGXf2blzJ06dOoU77rij3vkyP41XX27KysowZ84cTJ8+HQMHDkS7du0wduxYjBw5EgsWLKh1vswNUdNjwYdkR6PRoGPHjti8ebPZ8C1btiA5ObnB801KSsLOnTvNmuBv2rQJISEhiIyMNE6zZcsWs/dt2rQJCQkJcHFxafCy5cSa/BiKPWfOnMEXX3wBf3//eufL/DReQ/cdQRDM1nt1zE3j1Zebm2++GT/99BNWrlxp/BcSEoIHHnigzscXMzeN15D9Ji8vD5cuXUJISEit82VuGq++3Gg0GiQmJuLUqVNm40+fPo2IiIha58vc2Ict+87y5cvRsWNHtGvXrt75Mj+NV19uKisrodVqa7S4UalUNR6xboq5IRJB0/YRTdQ0DI+S/P7774Xjx48Lb775ppCUlCScP39eEARByMvLEw4ePCj89ddfQnx8vLBq1Srh4MGDQlZWlnEe7733nvDcc88Z/y4oKBB69+4tPP3008KRI0eENWvWCF26dLH4KMm33npLOH78uPD999/zUZIW1JUfrVYrPProo0Lfvn2FQ4cOmT2O1fSpDsyPY9SVm+LiYuH9998Xdu/eLZw/f17Yv3+/8OKLLwoJCQnC0aNHjfNgbhyjvuNadZae0sXcOEZduSkqKhLefvttYdeuXcK5c+eEbdu2CXfddZeQlpYmFBYWGufB3DhGffvNmjVrhI4dOwrffvutcPr0aWHJkiVC+/bthX/++cc4D+bGcaw5rhUWFgqdO3cWli1bZnEezI9j1JebsWPHCqNGjRK2bdsmnD17Vvjhhx+ExMREYenSpcZ5MDdE4mPBh2Trq6++EgYMGCB07NhRuPXWW4UdO3YYx/3www9CfHx8jX8fffSRcZoXXnhBGDt2rNk8Dx8+LNx7771CQkKC0KdPH2Hu3LnGx0gabN++XbjllluEjh07CgMGDKj1BKW5qy0/586ds5ib+Ph4Ydu2bcb3Mz+OU1tuysrKhMcff1xITU0VOnbsKPTp00d49NFHhT179pi9n7lxnLqOa9VZKvgwN45TW25KS0uFiRMnCj179hQ6duwo9O/fX3jhhReEixcvmr2fuXGc+vab77//XhgyZIiQmJgo3HTTTcLatWvNxjM3jlVffr755huhU6dOQkFBgcX3Mz+OU1dusrKyhGnTpgmpqalCYmKiMGzYMGHhwoVm65m5IRKfQhDqaHdHREREREREREROh334EBERERERERHJDAs+REREREREREQyw4IPEREREREREZHMsOBDRERERERERCQzLPgQEREREREREckMCz5ERERERERERDLDgg8RERERERERkcyw4ENEREREREREJDMs+BARERERERERyQwLPkREREREREREMsOCDxERERERERGRzLDgQ0REREREREQkMyz4EBERERERERHJDAs+REREREREREQyw4IPEREREREREZHMsOBDRERERERERCQzLPgQEREREREREckMCz5ERERERERERDLDgg8RERERERERkcyw4ENEREREREREJDNqsQMgadDr9aisrIRSqYRCoRA7HCIiIiIikjFBEKDX66FWq6FUsh0CkSOw4EMAgMrKSuzbt0/sMIiIiIiIqBlJTEyERqMROwwiWWLBhwDAWFVPTEyESqUSORrp0Ol02LdvH9eLBDE30sXcSBdzI13MjbQxP9LF3EhXfbkxjGfrHiLHkUXBZ9CgQVi+fDn8/f3NhhcUFODWW2/FH3/8IVJkzsNwG5dKpeKXpQVcL9LF3EgXcyNdzI10MTfSxvxIF3MjXfXlht1JEDmOLMqpFy5cgF6vrzG8oqICmZmZIkRERERERERERCQep27hY9pyZ+PGjfD29jb+rdfrsXXrVkRERIgRGhERERERERGRaJy64PP4448DqGoGOG3aNLNxarUaERERNYYTERGRcxEEgU3+iYiIiGzk1AWfw4cPAwAGDhyI5cuXIyAgQOSIiIiIyJ6WbD2NueuPY+mDPRDXwrv+NxARERERAJn04bN+/XoWe4iIiGTolf8dQFZhOV5csU/sUIiIiIicilO38DG1detWbN26Fbm5uTU6cE5PTxcpKiIiIrIHvSB2BERERETORRYFn3nz5uG///0vEhISEBwczPv8iYiIiIiIiKhZk0XB55tvvkF6ejpuueUWsUMhIiIiIiIiIhKdLPrw0Wq16NKli9hhEBERkYMIAu/pIiIiIrKFLAo+t99+O37++WexwyAiIiIiIiIikgRZ3NJVXl6O7777Dlu3bkXbtm2hVpt/rOnTp4sUGRERERERERFR05NFwefIkSNo164dAODo0aNm49iBMxERkfPj9zkRERGRbWRR8FmyZInYIRAREZEDsQ8fIiIiItvIog8fgzNnzmDjxo0oKysDwJNDIiIiIiIiImqeZNHCJy8vD1OmTMH27duhUCiwZs0aREVF4aWXXoKPjw+mTZsmdohERERERERERE1GFi180tPToVar8ddff8HNzc04fOTIkdi4caOIkRERERERERERNT1ZtPDZvHkzFixYgNDQULPhrVq1wsWLF0WKioiIiIiIiIhIHLJo4VNSUmLWsscgLy8PGo1GhIiIiIiIiIiIiMQji4JPSkoKVq5caTZMr9djwYIF6NGjhzhBERERERERERGJRBa3dD3//PO47777sH//fmi1Wrz77rs4fvw48vPz8fXXX4sdHhERERERERFRk5JFwSc2NhY//fQTvv76a6hUKpSWlmLIkCEYM2YMQkJCxA6PiIiIiIiIiKhJyaLgAwDBwcF48sknxQ6DiIiIHEAQOwAiIiIiJyObgk95eTmOHDmC3Nxc6PV6s3GDBg0SKSoiIiIiIiIioqYni4LPhg0b8MILLyAvL6/GOIVCgUOHDokQFREREdmLQuwAiIiIiJyMLAo+s2bNwvDhw/H4448jKChI7HCIiIiIiIiIiEQli8ey5+bm4v7772exh4iISKbYhw8RERGRbWRR8Bk2bBi2b98udhhERERERERERJIgi1u6ZsyYgaeeegr//vsv4uPjoVabf6xx48aJFBkRERERERERUdOTRcHnl19+waZNm+Dq6oodO3aYjVMoFCz4EBEREREREVGzIouCz4cffognn3wSDz/8MJRKWdylRkRERCb4lC4iIiIi28iiOqLVajFy5EgWe4iIiGSKnTYTERER2UYWFZJbbrkFv/76q9hhEBERERERERFJgixu6dLr9fj888+xadMmtG3btkanzdOnT7f7MufPn481a9bg5MmTcHNzQ3JyMp599lm0adPGOI0gCJg3bx6+/fZbFBQUoHPnzpgxYwbi4uKM01RUVGD27Nn45ZdfUF5ejp49e+K1115DaGiocZr8/Hy88cYbWL9+PQBg4MCBeOWVV+Dj42Oc5uLFi5g5cya2bdsGV1dX3HjjjXj++eeh0Wjs/tmJiIiIiIiISNpk0cLnyJEjaN++PRQKBY4ePYqDBw8a/x06dMghy9yxYwfGjBmD7777DosWLYJOp8MDDzyAkpIS4zSfffYZFi1ahBkzZmD58uUICgrC/fffj6KiIuM0b775JtauXYs5c+Zg2bJlKCkpwSOPPAKdTmec5plnnsHhw4fx+eef4/PPP8fhw4fx/PPPG8frdDo88sgjKCkpwbJlyzBnzhysXr0as2fPdshnJyIiIiIiIiJpk0ULnyVLljT5MhcsWGD2d3p6Onr16oUDBw4gJSUFgiDgyy+/xKOPPoqhQ4cCAGbPno3evXvjl19+wd13343CwkL88MMPeOedd9C7d28AwLvvvov+/ftjy5YtSEtLw4kTJ7Bx40Z899136Ny5MwBg1qxZuOuuu3Dy5Em0adMGmzZtwvHjx/HXX3+hRYsWAIBp06Zh2rRpmDp1Kry8vJpwzRAREdmfwE58iIiIiGwii4KPwZkzZ3D27FmkpKTAzc0NgiBAoWia53oUFhYCAHx9fQEA58+fR3Z2NlJTU43TaDQapKSkYPfu3bj77ruxf/9+aLVa9OnTxzhNixYtEBcXh927dyMtLQ27d++Gt7e3sdgDAElJSfD29sbu3bvRpk0bZGRkIC4uzljsAYDU1FRUVFRg//796Nmzp9Wfw7RlEV1fH1wv9pNTVA5/Dw1Uysbtm8yNdDE30uXMuVFAcMq4reXMuWkOmB/pYm6kq77cMGdEjieLgk9eXh6mTJmC7du3Q6FQYM2aNYiKisJLL70EHx8fTJs2zaHLFwQB6enp6Nq1K+Lj4wEA2dnZAIDAwECzaYOCgnDx4kUAQE5ODlxcXIxFItNpcnJyjNNUn4dhvqbTBAUFmY339fWFi4uLcRpr7du3z6bpmwuuF/s4mluB6euvIDFEg9f6BdhlnsyNdDE30uWMuSkuLkFGRobYYTicM+amOWF+pIu5kS7mhkg8sij4pKenQ61W46+//sKIESOMw0eOHIn09HSHF3xmzpyJo0ePYtmyZTXGVW9hJFjRJt3aaUznXVtLJltbOCUmJkKlUtn0HjnT6XTYt28f14udfLV8LwBgX1YFkpKSGjUv5ka6mBvpcsrcfP87AMDT06PRxw0pc8rcNCPMj3QxN9JVX24M44nIcWRR8Nm8eTMWLFhg9mQrAGjVqpWxNY2jzJo1C+vXr8dXX31ltvzg4GAAVa1vQkJCjMNzc3ONrXGCgoKg1WqRn59v1sonNzcXycnJxmlyc3NrLPfKlSvGlj9BQUHYs2eP2fj8/HxotVqLrYPqolKp+GVpAdeLfZgWIO21Ppkb6WJupMspc6NQOF/MDeCUuWlGmB/pYm6ki7khEo8sntJVUlICNze3GsPz8vIc9lhyQRAwc+ZMrFmzBosXL0ZUVJTZ+MjISAQHB2Pz5s3GYRUVFfjnn3+MxZyEhAS4uLiYTZOVlYVjx44Zp0lOTkZhYSH27t1rnGbPnj0oLCw0TpOUlIRjx44hKyvLOM3mzZuh0WiQkJBg/w9PRETUxNhpMxEREZFtZFHwSUlJwcqVK82G6fV6LFiwAD169HDIMl9//XX89NNPeP/99+Hp6Yns7GxkZ2ejrKwMQFVLhnHjxmH+/PlYu3Ytjh49iunTp8PNzQ033HADAMDb2xu33XYbZs+eja1bt+LgwYN47rnnEB8fb3xqV0xMDNLS0vDyyy8jIyMDGRkZePnllzFgwAC0adMGQFUHzbGxsXj++edx8OBBbN26FbNnz8add97JJ3QRERERERERNUOyuKXr+eefx3333Wd86tW7776L48ePIz8/H19//bVDlmmY73333Wc2PD09HaNHjwYAPPTQQygvL8frr7+O/Px8dO7cGQsXLjQrwrz44otQq9WYMmUKysrK0KtXL7z99ttmzR7fe+89vPHGG5g4cSIAYODAgZgxY4ZxvEqlwvz58/H666/jnnvuMRaVXnjhBYd8dmdxNLMQOUXl6B0TVP/EJCpBEFBeqYebC5v7EhERERER2YMsCj6xsbH46aef8PXXX0OlUqG0tBRDhgzBmDFjzPrPsacjR47UO41CocATTzyBJ554otZpXF1d8corr+CVV16pdRo/Pz+89957dS4rPDwc8+fPrzem5mTonA0AgD+f7Y/WQZ4iR0N1eejLnVh3KAtbpg1EuJ+72OEQERERERE5PVkUfICqTpKffPJJscMgCTqVU8SCj8StO1TV/9Tyf8/jyUFxIkdDRFLELnyIiIiIbCOLPnwGDhyIDz/8ECdPnhQ7FCIiIiIiIiIi0cmi4HPfffdh48aNGDlyJEaPHo0vvvjC7IlVRERERERERETNiSwKPvfffz9++OEH/Pbbb+jfvz++/vprDBgwABMnTqzx9C4iIiIiIiIiIrmTRcHHoHXr1njyySexevVqLF26FFeuXMH06dPFDouIiCSmpKISecUVYodBthDYiw8RERGRLWTTabPB3r178fPPP+O3335DYWEhhg0bJnZIRERkYuuJXAiCgN6xQaLF0Pn1NdDqBOx5dSh83V1Ei4OIiIiIyFFkUfA5deoUfv75Z/zyyy+4cOECevTogWeeeQZDhgyBl5eX2OEREdE1ZVod7vlsGwBg/+vD4OUqzteQVlfVWuTQpQL0bBMoSgxkI4VC7AiIiIiInIosCj4jRoxAQkIC7r33XowaNQrBwcFih0RERBasOZhpfF1SXilawYeIyJLDlwvw95FsTOgTDVe1SuxwiIiIGkUWZ9q//fYbWrduLXYYJFHs9kE6Dl4sEDsEEtm5KyXG11LYNdlmhIhMDf9wIwBAq9Nj8sA4kaMhIiJqHFkUfAzFnv379+PEiRNQKBSIiYlBx44dRY6MiEwdvlzosHnr9QIuFZQhws/dYcsgIhGxek9NaO/5fLFDICIiajRZFHxyc3MxdepU7NixAz4+PhAEAYWFhejRowfmzJmDgIAAsUOkRjh4sQBuLkq0CWZ/TFS7aT/uxXc7z+Od2zrhzpQoscMhJ6FgvzBEZAHLi0REJAeyeCz7rFmzUFRUhFWrVmHHjh34559/8Msvv6CoqAhvvPGG2OFRI+QVV2DkRxsx8P2/xQ6FJO67necBAHPWHRU5EiIicnZsUEZERHIgi4LPxo0b8dprryEmJsY4LDY2Fq+++io2bNggYmTUWBeuloodAhE5CC+oiIiIiIgcRxYFH71eDxcXlxrD1Wo19Hq9CBGR2C7ls1DUXPEGHWnjHVTUUKwPEhEREdlGFgWfnj174s0330Rm5vXH/WZmZiI9PR29evUSMTJqrIZeHC7afNqucRCRPLEARURERERyJYtOm2fMmIFJkyZh0KBBCA0NhUKhwKVLlxAfH493331X7PBIBALvFSEiIqIG43kEERE5P1kUfMLCwrBixQps3rwZJ0+ehCAIiI2NRe/evcUOjYiaGJ+65DwEXlARERERETmMLAo+Bn369EGfPn3EDoPsSNHAHll40U8kTQ3dp4mIiIiIyDayKfjs3bsX27dvx5UrV2p01Dx9+nSRoiJ7EgQBBaWV8HFXs6AjU7wTT/6ktutKLBwikgh+H5G9FJRpsXr/ZQztGApf95oPmSEiciRZFHz+7//+Dx9++CFat26NoKAgs3EsDMjHH4ey8OCXOzGhdzReu6mj2OEQEREREdXp6W8zsO5QFv6XcRFfPdhD7HCIqJmRRcHnyy+/xFtvvYXRo0eLHQo5UPpvhwAAX2w5XW/Bh502OyfWZ6mpcZsjIkt4FkH2su5QFgBg0/EckSMhouZIFo9lVyqV6NKli9hhkAOYXozx5IuswQt45yGFuqwUYiAiIiIicgRZFHzGjx+PpUuXih0GEREROQiLc0RERES2kcUtXQ888AAefvhhDB48GLGxsVCrzT/WvHnzRIqMGsustQZP9onIztgijIgs4a3hREQkB7Io+MyaNQvbt29Hjx494Ofnx46aCSUVOrFDoAawx/k1d39pY3qIyBmw3ENERHIgi4LPypUrMXfuXPTv31/sUMiBbDn5OpFd5LA4iKjhpNcvF0tQRFK3cvcF/HE4C+/e3gluLiqxwyEiInIasujDx8/PD1FRUWKHQQ6gMLkYs6V5tYIXcTU4Q/N0e7TO0esbPw9yHCfYDEmiBImUCJ3FpmM5eOvXQ9DqnP+gOOXbDPy85yKWbD0jdihERERORRYFn8mTJ2Pu3LkoLS0VOxSSCNMLA15gArvP5qHrG+uw/N/zYoficBeu8jggZVdLtWKHQNesPnDZqY4JF6+WiR2CUxm7YDs+3XASy7afFTsUu8ktrhA7BCIiIqcii1u6lixZgrNnz6J3796IjIys0WnzihUrRIqM7MmWug1b+Jh77KtduFJcgWe/34Pbu0aKHQ41Y5/8dULsEJyitVtTeGTJvwCA3jGBCPdzFzma+l3hxX6DnLtSInYITomHCSIikgNZFHwGDx4sdgjkIGb9fTTw5Iud+AKVep65kvRIofDC4wNwtUTrFAUfahg5beO8ra9pXM4vw+zfD2Ncr1ZIbukvdjhERNQIsij4TJ482arpfvnlFwwcOBAeHh4OjoikRALXlKKTwoW1NZwkTHJy3M7MyakgQDLXTPbd83klOJpZiAFtQ0R58uyUb3dj28krWLH7Ak6/ParJl09ERPYjiz58rDVjxgzk5uaKHQY1EH/Zazg9r3CJLGqutQ5nKQITiUXMPSR19p+Y+MVO/HkkS5TlH8/ik06JiOSiWRV8eILbfBSUXe8YllnnOiCqTca5q2KHIDq28CFn0dy+y7afuiLKcrW65rama6fV6bH7bB4qZfC0OyJqnppVwYecj+l1yLkr1j996cDFAvsH48T0TtKHDy88G6a0Qid2CA0iVg3edLFrD2aKE4TITNd9YVmleIGQw4lxSxDZh1gPoHDW7xRHeGXlftz68Ra8+eshsUMhImoQFnxIltqH+Rhfs2UX4CT1HmqAbSdz0X7G75j9+2GxQ3FKzfVa2PSQ8PjSXaLFQY4np028Kb/PpXDuINbxqYKtWYy++eccAGDR5tPiBkJE1EAs+JCkNfRkx8ften/k4p+yia+onL/gy9Ubqw4CkMbjzp2F6YVcZkG5iJGIx3QdZBU2z3VAzkcCNZgmJadiHRERiYMFH5KlEpPmyM3tBJGaF7Ga/MtFc+2c1BGHxeNZhTh3pcQBcyYiIiKihpDFY9mtFRERAbW6WX3kZmvfhXyTv1jxcRa6Bt57JoWm92JprrckNUbz3Vqus3e/XldLKjD4gw0AwMc4k8M0t32Xx3ciImosWbTwmTZtGv755596p/vll18QFhbWBBGR/Vg+29HpBbyycj9W7r7QxPHUtO1kLp/0Yyf/+eNYg953Kb/MzpE4j+ZyPaDV6XHkcqGsi3v5Jdr6J7KTn/desuv8Lly1vlN9amIyOkjYY/cXBAETv/gHk5b+W2PcgYv5Ft5B5BzeX3MEExbt4BPFiMiMLJq7FBcXY+LEiQgLC8Po0aNx6623okWLFmKHRQ60at8lLNl2Bku2ncEtyRF1TuvI68MrxRW4+9NtAIBT6SNl+TSUc1dKcPZKCfrEBokdSq2a6205AJrNT8CTl+3C6gOZmHVzR9zXK7pR82qqmpEgCLiYXwZXtRL/WXcMS7adwUsj28PX3QUKBTC0QyhKtJUI9XHDHf+3FTvP5AEA3rujM8J83fDvmTzEt/BCx3BfRAV42LRsnV5AqVYHL1fLX/Nnqt16de5Kic3LMGV6a6FeL0CpbB7bJZk7cDEfaw5k4tF+MXDXqMQOx6KL+WVYfzgLAFBcXglPk31k1EebjK+lUFvmLbv2JQgCTuYUo02QpyzP1+auPw4A+PtoNga153UQEVWRRcFn7ty5yMvLw08//YQVK1Zg7ty56NWrF26//XYMGjQILi4uYodIdpZjoZNRQRDwzHd7aly02HLOtufcVWw/lYsHUttAZcUFS27R9Tj0AqBqxPnDleIKFJRqER3k2fCZ2Nn+C/m4YW7VCfCPk3qjS0t/kSO67kJeKY7mViAJQH5p07WMkBpbN7njWYVwc1Eh0t8DWYVlmPnzQYzp0Qq9YgIdEp+9rD5Q9fj0V3860OiCT3WFZVp4u9X+PaHXC6jQ6bFg0ync0S0SBaWV2H8hH1O+zUDrIE+cyim2elmmj/Z9DnstTvPs93tqDBuREIoBbUMwslMYKnV6XC4ow+6zV9GjdQAGvv83BrULQX6p1lg0ssRFpcCPj/aCVifUuJhNe+dPfDKmC0YkNqwVrNKkvbBOEKDkhWqzZCiYlGl1mD6yvd3nL9j5pi4J1HSoCX2w9ijmrj+OR/vFYNqIdmKH4zClWl39ExFRsyGLgg8A+Pv7Y/z48Rg/fjwOHjyIH374Ac8//zw8PDxw00034d5770V0dLTYYTrU0qVLsWDBAmRnZyMuLg4vvvgiunXrJnZYDqE3uVoRBAEKhQK7z13FjxZu8So16cC5pKISp3NK0D7M2+zXnaLySnzy13H898+qJx35urvgrpSW9cZh+gORTi9YVSSqTZdZawEAW6YNRLife4Pn01gVlXqs3H0Bob5uGLdwh3H47rNXoa3UI8THDa3tUJSq1OmhVjX8rtK+7/0NAEhOLGpw3z9SdeFqKVbuvoCxPVrB18NyIaKiUg+NWml2O2FxeSUeXrITLQM8EO7rjof6toGby/Vf2U37WYkJ9kSApwb/nM7DL3svOU2/K/ZI9ff/njP7O/G1NegQ5oPnhrVFxwgfhHi74dyVEqS982eN9767+ojZ37YUexrjt/2X8dv+y3j+B8tFoj+utVioi1Yn4Mb/bql1/GP1PJ7ddBsxFJ0i/asK7Kb7oE4vwKURjTt2nLqCL7eexi97LyG5pV/DZ0QAAG1l0x8fzfvRkxbTb2m9FJrx1KG5NpSrqNRDLwhm31/2YGgB839/n7Cq4NOQW4jXHsxEoJdG1B/IJL5ZE1ETk03BxyArKwubNm3Cpk2boFKp0K9fPxw/fhyjRo3Cc889hwkTJogdokP8+uuvSE9Px6uvvoouXbrgm2++wUMPPYRVq1YhPDxc7PAarLYWt6YnaVO+zUB8C29kFljux+WZ7/fg8OUCPNw3BilvrgMAfDymQKu8NwAAnzdJREFUC85eKcHbvx3GqE5h2HPuKs7nXe+DYuuJXIT6ugOCHqjQQxAEnMktRpS/ByYt3YWySh0Wjk8xW05mQRn+l3EBOj3w5KBYlFfq8dhX/yIhwhf39mgJF5USQV6uVfHrBVReKxCplAqzk4p9F/IR6uMGhaLqS9uwDhQKBUoqKqGAAq5qJY5kFkKpUMDPwwVBXq7Q6vTQqJSouPb/30ezsTLjAqYOjjeLM6ugDN5uLnBzUUKhUKBMq4OrWgm9AFTq9fh846kaF7UAsPtsHmb9UvUIcNMLP0PBzcBQ+Cour4THtSb9CoWixolT0sy1KCqvREywefEos6AMQV6uxuKZ4baYLcdzEOHvjlAfN7P+QtYfzsKnG0+ZzWPp9jMY06MVyrQ6HLlciAcW78Qbt3REXAtvbD2Ri7S4IOj0AlxdVPBzd8G/Z/IQ6e+OdYcykVtUgZuSwo1PGwryckWpVodIfw8cvlQAtUqJFj6u8HV3wf/9fRLB3q44eLEAReVaPD4gFjtP52Fw+xaY9+cxrD6QicHtW6BLKz/ckBiOpTvOoEOYD9xdVGjh44a9F/IhCAJSogOgUStRVFaJMD83jP54MzILyrF4y2mM7x2Ncq0OH60/jkX3pwACUKHT45ElNfufeGnFPmw+novNyDUOe2JQHICqVlBJM9cah5/ILsaJ7OvFig/WHEFmQTl6xgRgaIdQXCmuwKLNp+GiVuBEVjEm9I7GD7vOY8epK7grJQq9YgJx5HIhUqIDEN/Cyzif8ko91AoBZZV6PPrVLvx9NAc/PNYbekGosT+XV+qRdW2/LSqvRJtgL+j0AhS4/gulh0aFMq15fwSPLvkXzw9vCw+NGtmF5cgqLMOe8/m4r2crBHu7oqBMi292nMXg9i1wpbgCWp2Ap77ZjUHtW6B3TCBeWrG/xro7eKkA939Rf19wzVn0tFVWTdfuld8BAGG+bnhyUBym/7jPeDzrHOWHPTb0ebb7rPm0hWVa5BRVIMBDg13n8tCrTSD0goDZvx1GVmE5XFRK3NO9qlh/JrcYLQM9EOCpQXSgp9nFoyAIKK/UQ6lQQKmo2v5c1Spo9Xr4uLmYHdcyC8ogCICXmxqX88sQ5usGnSDATa2CRq1EXnEF9IJw7Va9qvcoFcD+CwV4d80RzLihPWJDvI3L1KiUUF477p+9UoLzeaVmt8zq9QKyi8oQ6usGQahqXeZyrQmVtbfKmX4fLtx8Cgs3n0L66ERM/3Gf2XSP9Y/Bos2nauxj9fF2VaOwvLLW8VtO5JptL88OjcfwhFAUleuQcTYPgV6uGNAuBB4uKvxvzwVM/XYPDs8aDrVSgeyicoT5Xv/RQ2vSH8mizadx7koJDl4swNx7k3HbJ1trLPumzuEoLNOiQ7gPwv3cEe7rju6tAzBp6S78fTQbPzzW+/p6yi+Dl0aNCp0eV4orzOaj0wvYcDQb3VsHWCw8lFfqIAiosyhh+H4t1ergplbVyJ/he/HAxQJE+rvDz0NjNv6j9cexeOsZu7VibRfqjUq9gPt6toKbixJ7z+dj6fazdb5n6fYzuKlzOEq1Onhq1DhwsQDtwryN5ye5RRXwdlPDz90FxeU6vPy//XikbxtE+rvD280FuUXl8PfU4HxeKcL93CAIgKtaiZIKHSoq9dh/MR/+Hhr4e2pwJrcYXVv5I232nyjT6vDPy4PholRCoaj6vlAoAI1KifJKPVzVSmh1AlxUCpRX6nE2X4vO19ZnRaUeaqUCCsW11tdKBdYcuGzx8xl+PKlOEATc89k2s2HR01Zh0f0paBPkiV/3Xcbs3w/j0X4xmDokDi5KJc7lleChL3cCuH6eZNoSvPr8FQoF9HoBWYXl8HRV1dnS1BK9vup7VaFQoKDs+jaiFwSLP6pdLalAfqkWrQKl05KciBxPIcigB0ytVov169fjxx9/xObNmxEfH4877rgDN954I7y8qi5EVq1ahddee82qzp2d0R133IEOHTrg9ddfNw4bMWIEBg8ejGeeeabe9+t0OmRkZCAxMREqlfj33f+67zJ2n8vDlWItVmZcFDscIiIiIiKn9+sTfdA21LtJlqXT6bBv375ary8M45OSkiRx/UEkR7Jo4ZOamgpBEDBq1Ch8//33aN++5n3jqamp8PZumoNbU6uoqMCBAwfw8MMPmw3v06cPdu/ebdO89u3bV/9EDlapF/DMikxU8CEDRERERER2885P/+KJ7n5NukwpXF8QNVeyKPhMnz4dI0aMgKura63T+Pr6Yv369U0YVdPJy8uDTqdDYKB5p6tBQUHIzs62aV5SaeHzkVumsW+S/9twqu6JiYiIiIioXl3iopCUFNMky7K2hQ8ROY7TF3wqKyvx4osvokOHDoiPj6//DTJW/RGT1ftWsYZKpZJEwWd4YjiGJ1b1PfTssHbIL9Wi6xvrjOOnDI7DP6ev4ObOEUhpHYAB7/1V5/xuSQo33ho2tmdL3J3SEpfzy9A21Ntix6wTekfjhk5h8HZV4dyJI4hp2x4tA72gUlbdby0Axr539AIQ8+KvAIDvH+2FzpF+xvvBX1yxD65qJV69sSOA6zmp/j9wvX+MJwfF4ekh8aio1OPslRKUaXVwUSnRNtQbV0sq4O3mAq1OD5VSAZ2+6mk7FZV6uKgV2H+hAHfON+/ToF2oNw5fLjT+vefVodDpBfh7VPU3UanTQydUzadcW9VRoqerGhq1Enq9gGNZRSjV6pAU5Vdr/Hq9gLWHMo39yjzWPwaf/FXVAbZpfz+W+gB5alAc/vPHMYt5m9A7Gq/dVLXuVh+4jF1n83BH10h88tdJ/LDrfK35/vCuJEz5NsNs2J3dIjG+dzQi/NxRXKFDqI+b8d59rU6PCp0ex7OKUFCqhUalxIWrpXBzUaFHmwAUlFYir6QCmQVlOJldjMRIXxSUalFYVom956/CQ6PGs8Pa4uLVUlwprkB0oCf2XciHt5saiRG+OJNbgrJKHZQKBdqFeuNSfhnKK3UI8NDATaNCVkE5Csq0EAQB7UJ9IAAoKquESqnAgk2noNPr0cLHDccyizA8IRSHLxciMcIXYxdsN/uMx98cYXbPfn6pFj5uapzPK0WEn7tZ/xF6vYA217Zbg1uSwtEp0g/dWwegbag3Sip0WLb9LHzdXRAd5AFXtQofrjuK9NGJ8PfQoLCsEgVlWsSFXO/DR6FQQKfTYcs/u3DfyqqOhL95uCd6tA6AQqEw2wZOvDUSKqUC2YXl2HgsG09/twduLkocnjUCen1VfyduLkqcyC7G4A/+Nr7vVPpI434jCAJ+2nMRu89eNfbrY+grBQD2ns/H6gOX8czQeLipVSi91qdG7Eu/1br9UMMZ+hFztAg/d1y4WoqWAR5YM7UvVuy+AD93F0T4u6NjuC9yispRUanHpfwyeLupEeHvDk+NukbH+lqdoa8Py9+VWQVl6P7WHwCA3a8Mgb9nVR8r5ZU6lFfqkZlfBjcXFaICPIwPCNColThwMR83zdtsnM/pt0dBq9NDp6+9I1rDrdWGWxts/Q7X6wXjPp5XXIHkWWvNxkf6u+PB1NYoq9QjOtATLQM8EOStwR+HstDCxxWFZZXILaqAUgHEtfDGoUsF6Bzlh6yCcjz5zW7o9AKGdwzF8IRQHLpcgE4RfjifV4KhHUPx7Pd7cH+faExeZt6quHt0AJ4YFAt3FxXO5Jagayt/VOoFxIZ4QRAEHLhYYHwSpOl+XZ3pcePHSb2RXViOjuE+yC4sx6cbTuLFa08E23YyFz3bBCLAUwOVUoFPN5zErrN5+OieZFRU6quOKWolAjw1OHy5EO1CvVFUXgkvV3WN49Ok/jF4fng7CIKA2Jd+M3ZMvnfGYPh4XP+BsaBMi06vrQFg/tCF+xZsx8ZjOcbpHu7bBi8MbwetTg83FxVW7b2Ex5dVdZR+/M0Rxm2z9XTz4zIAfDmxOzYdz0GrQA/kFlXAx00NnQBjv3o3J4Vjx6krUCoUZn3cGRj60OrROgAvj+qAs1dKcKWkAuVaHd5YdajG9KYOzxqOC1dLEenvDhelEjlF5Sgoq0RxeSUi/N0R6KlBUXklPDVqKBRA2bXzCA+NyiyfOUXlyC2qwOWCMnSO9IWvuwv0QlXO2of5wEOjMvZvZaDTC9DpBVTq9fDQqI39JpVpq/6v6jcL0Ov1yMjIQMfETnDTXO8Hx7AP6fRCVb8+KoVxf9dfy2d9/WKZbhM3dg7H88PaIszXDYVllcguKkdciFe9+6npPE6+NRKVesFiv0HW2n4yF3d9er1/odNvj8IP/57HM9ee8DioXQj+O6aL8Vjzz+kr+HDdUWw+XtW/35USbZOf60vl+oKoOXL6go9arUZ4eDj0+uZ7/4+/vz9UKhVycnLMhufm5iIoKKiWdzkPtUqJQC/z1ltTqnVEfPrtUTh3pQRbT+bi+eU1n2Lz4d3JeO+OzmYXwwkRvgCAd27vZHzPr0+moUO4j3EanU6HoosqtAzwMJ6MmZ4cKBQKs0ex+7q7mH2Jv3VrolkchpOC6v+bMnSrpVErEWtyIQ3A2KGjSln1pWm4bnC/1jmyv4UnOi26PwW90q+3bvN1N59GrVIaDwTVL0SUSoXZfd61xa9UKjCoXQiGdGiBThG+uKdHS/y46zxuTY6sEY/BR/cko198MABYLPjMuzcZN3S63uH4sI6hGNYxFADw/p2d6yz43JIcgXA/dxSWafHA4qoOFN+8NREu1/LvV/VgIeN6UylVcHNR1fpUjZA67wZtZXwV3+L6hKG+bsbXptsUgBpPOfOx0FGjl2tVViw9SWRAuxCLkVTvoNGQ66gAjxrTKpUKLBjfDQ8s3on/3J2E5Ch/tAz0qPZ+JR7rb/4r4JIHehhfe7qqzT6nKVf19W07KcrPuK3Et/DC0cwis2mDvV1x67WcxQR7GeMz5Kf6fmC63ygUCtycFIGbkyLMhhm25e6tA9C9dYBZzNYwrJvm4sdJvTH649qf4AVUFWB93NS4MyUKn244iYxzV7FyUh8olQocuVyI+BZeZoU4Qbh+vNTrBZzOLUbrIE8oFAocvlyAZdvP4vaukWgf5oNTOcWIC/FCeaXe2OlzffEu3X4WY3q0hJuLythRs0ELn6rt0tK2b8qlnicFBnm5ok2QJ6AwP3a6qlVwVavM9l3D9goAnSL98PGYLpi0dBd+eSLVuCxbHjpk6w82pt9NhsKUwZ3dIjGpfyyiLTxhsfq6MzDtSHpUpzCzcbcgwuxvQ0fIF/JK8cOu8/j6oZ41vre7RQeY/a1QKJAQ4YuXR7VHsLer1Z/X9Dgd6e+BT8Z2Nf5dPd9PXuu03pL2YVXHZdOOclsFeuBMblWH/Wrl9e+5nyb3wQvL92J0rKrGMcTdJKmm24hXteliQ7yuPaih5kZQ2xMrw33dsHpqX3i7uaDvte9LU96uani7qTEiMczCu6tYKhwmRvoaXz+Y1gbF5ZXwdFVb/FHGzUVlPC4DQIiPG0LMv9LM1qHpfmAqyMsVQV6uZucUKoX5dlad4cEWGlStH1e1yhiTJdX3Z8PnVpl8nxhY2wG6qbn3JBtf+3tqauxn1lAqFdA08vFrPdoE1jneRaU0W0cp0QFY+mBPjPpoIw5cLMCtyRF1vJuI5MbpCz4A8Nhjj+H999/Hu+++Cz8/P7HDaXIajQYdO3bE5s2bMWTIEOPwLVu2YNCgQSJG1rSiAjwQFeBhseAD1H5CZdpvefULc2s9NSgOWYXlZi0dbGX4xXpoh9AGz8NSD+ymTztxJLVKic/GdTP+vW36oDpP4EcmhEKtUpo9WQIAfnisF/JLtRjQ1nJRo7rU2EBsOp5bY3j31gE4lllo4R3yseG5Aej7bs0WatYa1L6Fwx7HrlIo8O9LAwGF+YmnApa3CYVCgZ71nMQ2JcO60esFbDiWjXd+P4KDlwqQFheEcq0ee85fhSBUPfHvwS93YlC7EKsejW5vvWMCseVEze3fFmlxQejS0h/H3hwBBa4fKysq9Th0qQCJEb41Lo5m3pxg9nf1DkAVCoXZU9mUSgXamFw0tgv1MZuHoVjq5qKq8fh3S62xWvi44ekhjm/Vq1QqsPbpfhAEweYLxJGJYQ7bv2z1zu2dm2Q5j/SLwSP9bLtV5MG0Ng6KxnZ/PtPf2PJRpbx+ztAx3Bf/e7w3MjIyarzHRaXE2ql9UakXzIpBL9/QAReuliIpyg+hvm64rUvtP4DUpmebwDqf3HRnSlS987CmkGaI+49n+mH32av49p+z+Od0nvWBUpObe08ynvh6Nyb0jgZg/lTb6j+SGKyY1Ae5xeVNdl5IRNIgi4LPkiVLcObMGaSlpSE8PBweHua/8KxYsUKkyJrO/fffj+effx4JCQlITk7Gt99+i0uXLuHuu+8WOzTJ09vhOXVT7XDhsfbpvsgqKLf4C6y1anvmnqdGheJrtxs0lfpOMpW1jI9v4W3Vo0n9PVyQV6LFsI4tLBZ8gOu/BgJVTcNt+XXdGVRvkSM1fh6aGk24BYtlSXGtntIXy7afweKtZwAAH9x5/eJYqVSgf9sQ9K+jAGl6K8rm4zlIiPCFp0YFlVKBo5lF+L+/T2DF7gtm77mvZyvc2iUCn288ickD4jBn3VGsPZhpHP/JmC5oH+aD/ia3q1oqHgiCgMOXC9Eq0AMemutf6f+eycPl/DKMSAjF7nN56Bjui6yCcmOB8M9n+mLA+xuMsQA1fx3XqJXoHOVX6+duCtUL9b8+mQZvt6Y9dalq3dm4X+TJPjxqaT1iL0qlAg+mtsZv+y9jfO9W9b/hmrgWNZuBRvi546fJqbW+p298EDw0KiRG+JoNX3R/Cu5fdO2Jsk282cUEeyEm2Avf7Kj7Ue3NUWNuwXKEGzuH44ZOYSatKq+Pq60VsEatZLGHqBmSRcFn8ODBYocgupEjRyIvLw8ff/wxsrKyEB8fj08//RQREc2v2eamFwZg2JwNVhc4Qn0s35LS1Dw0akQHNW6XdDG5v8zX3QWv3tgBgH2KWvZmqPdUP5+1ptgDAL8/lYoVG3bjrm5ReOV/By1O4+Zy/QStTKurtRm4M+vWyh87z+ShYwNbp4mpIdcyUQH2P1ltG+qN127qiEf6xRj737CFaXGz+u0JbUO9MeeuJMy5K8nirRUfj6m6HeWzcd0sjje0HGpXyyN0FQqF8dYUU11b+Zu8rrqVpmWgB357sg8unDrqtOWLhrbCJHl4qo5btOzl5Rs64KVR7W2+pc5W3m4uyJgx1Ox7G4BZ61bTHy2akr62X49IUhy9jRKRPMii4DN58mSxQ5CEMWPGYMyYMWKHIbpIfw+0DfXGrrNXrZq+f9tgTB0c75QXzNW1DvLE3SlR8PPQ4IXhbY0nA1I8eWvsiUqQlytSwt1qdMJqysekPwWp/TpnL5+M7Yrvdp7D7V1tv11ADLXd0mUtRxVoFQpFg4o9ti7D1vHv39kZy/89j5uSwi28w3bxLbxRckkFXic0H/EtGn6rsdTU1j+MvTXVhXRt30svj2qPb/45h6mDHV/gsiTC38PqcyiSIumd8xGReGRR8DHYv38/Tpw4AYVCgdjYWHTo0EHskEgktpysKRQKPCXSSZW9KRQKvH1bpxrDXVRK41OLmhM3FxV+nNQber1gdruLnAR7u+LxAbFih2G1xl5HSbB26VB+HhqH9HFi2tqtttsrSR6iAxt+m7DUNJf9/8G0NqL2bfTqjR2gQO0dejdHmno6eK+Lt5sahWWVdoyGiMh6srgCys3NxdSpU7Fjxw74+PhAEAQUFhaiR48emDNnDgICAuqfCZGMLbo/BZOX7cLr1x5xLiX1PSWnsWp78hZRcxZk8gQlS0//IfmQU0FPaC4VH5EFebniI5MnUjVn/ze2C17/+aDZE7qIiJyJLAo+s2bNQlFREVatWoWYmKqnQxw/fhwvvPAC3njjDXzwwQciR0gkrpToAGx/UZp9XdmjXx2lQpr9FBFJ2an0kWaPTid5klG9h6jJDU8Iw/CE2h97L0WsixKRKVl0arFx40a89tprxmIPAMTGxuLVV1/Fhg0bRIyMxMLz2+bl64d6ih0CNUBDLkR5Hms/CoWCxZ5mIMBTI3YIdsP9n4iIyDayKPjo9Xq4uNR8so9arYZe3/z6LSFqbkyfSETSxl8eiZrGJ2O6YFC7EDw3rK3YodgNjx/klJpguxVqeU1EJIuCT8+ePfHmm28iMzPTOCwzMxPp6eno1auXiJGRFIxICBU7BHIwOfVRQURkDyMSw7BgQgr8PJy/hU/LAA8AwOD2LUSOhEj6kqP8xA6BiCREFn34zJgxA5MmTcKgQYMQGhoKhUKBS5cuIT4+Hu+++67Y4ZEITK//H+sfU/uEJCkN7TyWt6UQyZ+fR82WvNQ8rH26LwpKKxHs7Vr/xETNnNrBD8MgIucii4JPWFgYVqxYgc2bN+PkyZMQBAGxsbHo3bu32KGRBHi78SLBWWhULNzIndDIxuZ8Sk/z1TeOTxNrrlzVKgR7N76DfyIiouZGFgWflStXYuTIkejTpw/69OljHF5RUYFff/0Vt9xyi3jBkeh4gehMWPBpThQNuBWPe3PzxTs3icgZNcX3lqeGBVEiskwWbf6mT5+OwsLCGsOLi4sxffp0ESIisSlYOHBKvKCTv8bWX7mJNF+s3RMRWTakQwuMSgzDy6Paix0KEUmMLFr4CIJg8ZfizMxMeHt7ixARERERERGR46lVSvx3TBexwyAiCXLqgs8tt9wChUIBhUKB8ePHQ62+/nF0Oh3Onz+PtLQ0ESMkIluw9QYREREREZF9OHXBZ/DgwQCAQ4cOITU1FZ6ensZxLi4uiIiIwNChQ8UKj8TEyoFT4i1d8se7coiIiIiImoZTF3wmT54MAIiIiMDIkSPh6srHdRJJWUq0P/45nVfrePa9RERERHLCh4cQkZicuuBjcOutt4odAkkYv2adh1IW3cgTkSPwWE5ERERkG1kUfHQ6Hb744gv89ttvuHTpErRardn4HTt2iBQZEZmqrwUPW/hQfRryKHciIiIiouZIFr+nz5s3D4sWLcKIESNQWFiICRMmYMiQIVAoFMbbvoiIyPmxaTwRERERkXVk0cLn559/xhtvvIH+/ftj3rx5uOGGG9CyZUu0bdsWe/bsETs8EhnbAzgROyTrzm6RjZ8JOcwjfdvgueV7xQ6DiIiIiEj2ZNHCJycnB/Hx8QAAT09PFBYWAgAGDBiAv/76S8TISCw+btdrmWwP4DzsUZxjAxBpiwnxatT7eUsXERE5E56WEJGYZFHwadGiBbKzswEALVu2xObNmwEA+/btg0ajETM0EsmrN3YUOwRqAF7ME1FteDsfERERkW1kcUvXkCFDsHXrVnTu3Bnjxo3DM888g+XLl+PixYuYMGGC2OGRCML93MUOgRqA5R75k1qOH0htLXYIREQkY6xVE5GYZFHwefbZZ42vhw8fjrCwMOzatQstW7bEoEGDRIyMxKJUAMkt/VBQqkV0oKfY4ZCV2MCHmlrrIB4fnAVbABIRERHZxukLPlqtFjNmzMCkSZMQFRUFAOjcuTM6d+4scmQkJoVCgR8f6w1BAJRKXiQ4C2ZK/vhDJxERNSesVRORmJy+Dx8XFxesXbtW7DBIghQKBYs9UsN0UCP5e9i3XzYWoJwH+/AhImfEUx8iEpPTF3yAqj581q1bJ3YY5GBPDYoDANzTvaXIkVCD1XO9Zo9bNnhJKE+f3tcVvWMCMesWdshORERERGQNp7+lC6h6MtfHH3+M3bt3o2PHjnB3N++wd9y4cSJFRvY0ZXAcRiSGIi7EW+xQyEH4K5j8NTTHQzuGYmjHULvGQkRE5Gg3dg7HN/+cQ0KEj9ihEFEzJIuCz/fffw9vb2/s378f+/fvNxunUChY8JEJhUKBdqH8spSzxrTwuTkpHP/LuIgH0/jUJSIiIpKGV2/siB5tAtA/PkTsUIioGZJFwWf9+vVih0BE1qinntOYO7o+vCsJ6aMT4aGRxWFNtnjLHRERNSfuGhVuTY4UOwwiaqZk0YcPEclDY27pUigULPaQ7dgRsNNgpoiIiIhs47RXR+np6Xjqqafg4eGB9PT0OqedPn16E0VFRERERERERCQ+py34HDx4EJWVlcbXtbHHU3+IyD76xgVhx6krcHdRWRzP3VX+mGIiIiIioqbhtAWfJUuWWHxNRNL1cN8YhPq6o3dMoMXxCpYDiIiIiIiI7MJpCz61uXTpEhQKBUJD+fheIqnRqJW4vWvtHReyhY/8sR8WIiIiIqKmIYuCT2VlJebNm4clS5agpKQEAODh4YGxY8di8uTJcHFxETlCIrIGCz7U1FiAciJMFhEREZFNZFHwmTlzJtatW4fnnnsOSUlJAICMjAzMmzcPeXl5mDlzprgBEpFV+sQGiR0CORhrekRERERETUMWBZ9Vq1bhgw8+QL9+/YzD2rVrh7CwMDz99NMs+BBJ3NbpA3HgQgEGtQ8ROxQikipWC4mIiIhsohQ7AHtwdXVFZGTNfkEiIyN5OxeREwjzdcfgDi34VD1qMmlxVa3JRiaGiRwJEREREZFjyKLgc++99+Ljjz9GRUWFcVhFRQU++eQTjB07VsTIiIjIlFS6YflyYnccnjUcQV6uYodCREREROQQsril69ChQ9i6dSv69u2Ldu3aAQAOHz4MrVaLXr16YfLkycZp582bJ1aYREQkEQqFAm4uKrHDIFtIpVpIRERE5CRkUfDx8fHBsGHDzIaFhbGZPhGR1PCmPSIiIiKipiGLgk96errYIRARERERERERSYYs+vApKytDaWmp8e8LFy7giy++wKZNm+y+rPPnz+PFF1/EwIED0alTJwwePBgfffSRWf9BAHDx4kU8+uijSEpKQo8ePfDGG2/UmObIkSMYO3YsOnXqhLS0NMybNw+CYN5mfceOHRg9ejQSExMxaNAgfP311zViWr16NUaOHImEhASMHDkSa9eutfvnJiIiIiIiIiLnIYuCz6RJk7By5UoAQEFBAe644w4sWrQIkyZNwrJly+y6rJMnT0IQBMycOROrVq3C9OnT8c0332DOnDnGaXQ6HR555BGUlJRg2bJlmDNnDlavXo3Zs2cbpykqKsLEiRMREhKC5cuX45VXXsHChQuxaNEi4zTnzp3Dww8/jK5du2LlypV49NFH8eabb2L16tXGaXbv3o2pU6fi5ptvxv/+9z/cfPPNmDJlCvbs2WPXz01EZA/sN4eIiIiIqGnI4pauAwcOYPr06QCqWrsEBQVh5cqVWL16NT766CPce++9dltW37590bdvX+PfUVFROHXqFL7++mu88MILAIBNmzbh+PHj+Ouvv9CiRQsAwLRp0zBt2jRMnToVXl5e+Omnn1BeXo63334bGo0G8fHxOH36NBYtWoT7778fCoUC33zzDcLCwvDSSy8BAGJiYrBv3z4sXLjQ2GfR4sWL0bt3bzzyyCPGaXbs2IHFixfjgw8+sPnz6XS6Rq0fuTGsD64X6WFupKuu3MQFe+CubpEI9XFj7kTgzPuNXtA7ZdzWcubcNAfMj3QxN9JVX26YMyLHk0XBp6ysDJ6engCqii1Dhw6FUqlEUlISLl686PDlFxYWwtfX1/h3RkYG4uLijMUeAEhNTUVFRQX279+Pnj17IiMjAykpKdBoNGbTvP/++zh//jyioqKQkZGBPn36mC0rLS0NP/zwA7RaLVxcXJCRkYEJEybUmGbx4sUN+iz79u1r0PvkjutFupgb6aotN3e2BoAiZGRkNGU4ZMIZ95urV682i23GGXPTnDA/0sXcSBdzQyQeWRR8WrZsiXXr1mHIkCHYtGmTsQCSm5sLLy8vhy777Nmz+OqrrzBt2jTjsJycHAQFBZlN5+vrCxcXF+Tk5BiniYiIMJsmMDDQOC4qKsrifAIDA1FZWYm8vDyEhIQgJyfH+D7TabKzsxv0eRITE6FS8ZYLA51Oh3379nG9SBBzI13MjXQ5ZW6+/x0A4Ofnh6SkJHFjcSCnzE0zwvxIF3MjXfXlxjCeiBxHFgWfxx9/HM8++yzS09PRs2dPJCcnAwA2b96M9u3bWzWPuXPnYt68eXVOs3z5ciQmJhr/zszMxIMPPojhw4fjjjvuMJtWobD88GHT4Q2ZxtCpc33T1Dbv+qhUKn5ZWsD1Il3MjXQxN9LljLlRKBROF3NDOGNumhPmR7qYG+libojEI4uCz/Dhw9G1a1dkZ2ejXbt2xuG9evXC4MGDrZrHmDFjMHLkyDqniYyMNL7OzMzEuHHjkJSUhFmzZplNFxQUVKPT5Pz8fGi1WmNrnKCgoBqtcHJzcwGgzmmuXLkCtVoNPz8/4zSGVkOm01RvGUREREREREREzYcsntIFAMHBwfD09MTmzZtRVlYGoOr2pJiYGKveHxAQgJiYmDr/ubq6Arhe7OnYsSPS09OhVJqvxqSkJBw7dgxZWVnGYZs3b4ZGo0FCQoJxmp07d5o9qn3Tpk0ICQkxFpaSkpKwZcsWs3lv2rQJCQkJcHFxMU6zefPmGtMYWjkRERE5s1GJYQCAB9PaiBwJERERkXORRcEnLy8P48ePx7Bhw/Dwww8bW8W89NJLePvtt+26rMzMTNx3330IDQ3FCy+8gCtXriA7O9usJU5qaipiY2Px/PPP4+DBg9i6dStmz56NO++809in0I033giNRoPp06fj6NGjWLt2LebPn298QhcA3H333bh48SLS09Nx4sQJLF++HD/88AMmTpxoXNa4ceOwefNmfPrppzhx4gQ+/fRTbN26FePHj7fr5yYiIhLDvHuTsWfGUHRp6S92KERERERORRYFn/T0dKjVavz1119wc3MzDh85ciQ2btxo12Vt3rwZZ86cwbZt29C3b1+kpqYa/xmoVCrMnz8frq6uuOeeezBlyhQMHjzY+Nh2APD29sbChQtx+fJl3HbbbXj99ddx//334/777zdOExUVhU8//RQ7duzAzTffjI8//hgvvfSS8ZHsANClSxd88MEH+PHHH3HzzTdjxYoVmDNnDjp37mzXz01ERCQGhUIBXw8XscMgIiIicjqy6MNn8+bNWLBgAUJDQ82Gt2rVyu6PZR89ejRGjx5d73Th4eGYP39+ndO0bdsWS5curXOa7t27Y8WKFXVOM3z4cAwfPrzemIiIiIiIiIioeZBFC5+SkhKzlj0GeXl50Gg0IkRERERERERERCQeWRR8UlJSsHLlSrNher0eCxYsQI8ePcQJioiIiIiIiIhIJLK4peuFF17A2LFjsX//fmi1Wrz77rs4fvw48vPz8fXXX4sdnlMQBAEAoNPpRI5EWgzrg+tFepgb6WJupIu5kS7mRtqYH+libqSrvtwYhhuuQ4jI/hSCk+9hWq0WEydOxDPPPIMNGzbgwIED0Ov16NChA8aMGYOQkBCxQ3QKFRUV2Ldvn9hhEBERERFRM5KYmMhuOIgcxOkLPgDQs2dPfPPNN4iOjhY7FKel1+tRWVkJpVJpfCw8ERERERGRIwiCAL1eD7VaDaVSFj2NEEmOLAo+b7/9NtRqNZ599lmxQyEiIiIiIiIiEp0s+vDRarX4/vvvsWXLFiQkJMDd3d1s/PTp00WKjIiIiIiIiIio6cmi4HP06FF06NABAHDq1Cmzcbw9iYiIiIiIiIiaG1nc0kVERERERERERNexdywiIiIiIiIiIplhwYeIiIiIiIiISGZY8CEiIiIiIiIikhkWfIiIiIiIiIiIZIYFHyIiIiIiIiIimWHBh4iIiIiIiIhIZljwIdmZP38+brvtNiQnJ6NXr16YNGkSTp48aTbN3LlzMXz4cCQlJSElJQUTJkzAnj17LM5v4MCB2LBhAwDgyJEjGDt2LDp16oS0tDTMmzcPgiCYTV9RUYE5c+ZgwIABSEhIwODBg7F8+XLHfFgnxPxIF3MjXcyNdDE30sb8SBdzI13MDZF8qMUOgMjeduzYgTFjxiAxMRE6nQ5z5szBAw88gFWrVsHDwwMAEB0djRkzZiAqKgplZWX44osvMHHiRKxduxYBAQHGeR0+fBhXr15Fz549UVRUhIkTJ6JHjx5Yvnw5Tp8+jWnTpsHDwwMTJ040vuepp55Cbm4u3nzzTbRs2RJXrlxBZWVlk68HqWJ+pIu5kS7mRrqYG2ljfqSLuZEu5oZIRgQimcvNzRXi4+OFHTt21DpNYWGhEB8fL2zZssVs+Lx584QnnnhCEARBWLp0qdC1a1ehvLzcOH7+/PlCamqqoNfrBUEQhL///lvo2rWrkJeXZ/8PIlPMj3QxN9LF3EgXcyNtzI90MTfSxdwQOS/e0kWyV1hYCADw9fW1OL6iogLffvstvL290bZtW7Nx69evx6BBgwAAGRkZSElJgUajMY5PTU1FVlYWzp8/b5w+ISEBn3/+OdLS0jBs2DDMnj0bZWVljvhossD8SBdzI13MjXQxN9LG/EgXcyNdzA2R8+ItXSRrgiAgPT0dXbt2RXx8vNm4P//8E08//TRKS0sRHByMhQsXmjVBzczMxJEjR9CvXz8AQE5ODiIiIszmERgYaBwXFRWFc+fO4d9//4Wrqyv++9//Ii8vD6+//jquXr2K9PR0B39a58P8SBdzI13MjXQxN9LG/EgXcyNdzA2Rc2MLH5K1mTNn4ujRo/jggw9qjOvRowdWrlyJb775BmlpaZgyZQpyc3ON4//44w8kJyfDz8/POEyhUFhcjmG4IAhQKBR477330KlTJ/Tr1w/Tpk3DihUr+MuEBcyPdDE30sXcSBdzI23Mj3QxN9LF3BA5NxZ8SLZmzZqF9evXY/HixQgNDa0x3sPDA61atUJSUhLeeustqNVqsycAmDZBBYCgoCBkZ2ebzcPwpWb4dSI4OBgtWrSAt7e3cZqYmBgIgoDLly/b9fM5O+ZHupgb6WJupIu5kTbmR7qYG+liboicHws+JDuCIGDmzJlYs2YNFi9ejKioKKvfV1FRAQAoLi7G9u3bzb6kkpKSsHPnTuM0/9/encdFVTVuAH+GYVAQBBc0l1REGYlFcMlEcF8Il9LXtaBU1LSyl8yUkEpzzUxKtMUtyzYNTTNNLc0tFVLTEBETF0RNFJFFQIaZ8/vDl/tjYIYZYIBhfL6fD5/gLuece55774ynuwDAkSNH0KRJE7Rs2RIA0KlTJ6SlpeH+/fvSMpcvX4aVlZXOD8pHEfMxX8zGfDEb88VszBvzMV/MxnwxGyILUnXPgyaqGe+++67o3LmziI2NFWlpadJPXl6eEEKI+/fviw8//FD89ddfIjU1VZw9e1ZEREQIT09PceHCBSGEEL/88osYMmSIVrlZWVnCz89PzJgxQyQlJYm9e/eKTp06iXXr1knL5OTkiJ49e4rp06eLf/75R8TFxYmBAweKOXPmVF8HmDnmY76YjfliNuaL2Zg35mO+mI35YjZElkMmhBA1PehEZEol3w5QZPHixRgxYgQePHiAN954A2fOnEFGRgacnJzg5eWFadOmwdvbGwDw5ptvonnz5nj99de1ykhKSsJ7772Hv//+G46Ojhg7dixeeeUVrfuRk5OTsWDBApw6dQpOTk54+umnERYWhrp161bdRtcizMd8MRvzxWzMF7Mxb8zHfDEb88VsiCwHB3yISlCr1fDz88OaNWukDy0yH8zHfDEb88VszBezMW/Mx3wxG/PFbIjMB5/hQ1TCvXv38OKLL8LLy6umm0I6MB/zxWzMF7MxX8zGvDEf88VszBezITIfvMKHiIiIiIiIiMjC8AofIiIiIiIiIiILwwEfIiIiIiIiIiILwwEfIiIiIiIiIiILwwEfsljffPMN+vbtCy8vL4wYMQInTpyQ5u3duxehoaHo1q0blEolEhMTjSozKSkJwcHB8Pb2RkBAAFauXImSj8GKi4vDiBEj4OXlhX79+uG7774z6XZZCn35qFQqfPDBBxg6dCh8fHzg7++PWbNm4datWwbLZD6mUdaxEx0djcDAQPj4+KBr164YP348zpw5Y7BMZmMaZWVT3DvvvAOlUokNGzYYLJPZmEZZ2YSHh0OpVGr9jB492mCZzMY0DB03ycnJmDp1Kjp37gxfX1+MHj0aN27cKLNMZmM6ZeVT8rgp+lm7dm2ZZTIf0ygrm/v37+O9995Dz5494e3tjaeffhrffvutwTKZDVE1E0QWaOfOncLDw0Ns3rxZXLx4USxYsED4+PiI69evCyGE+PHHH0V0dLTYvHmzcHNzE+fOnTNYZnZ2tvDz8xOvv/66SEpKEnv27BG+vr5i3bp10jIpKSmiY8eOYsGCBeLixYti8+bNwsPDQ+zevbvKtrU2KiufrKwsMX78eLFz506RnJws/vrrLzFq1CgxfPjwMstkPqZh6Nj56aefxB9//CFSUlLEhQsXREREhOjUqZNIT0/XWyazMQ1D2RT59ddfxbBhw4S/v7/44osvyiyT2ZiGoWxmz54tQkNDRVpamvSTkZFRZpnMxjQMZXP16lXx5JNPivfff18kJCSIlJQU8fvvv4s7d+7oLZPZmI6hfIofM2lpaSImJkYolUqRkpKit0zmYxqGspkzZ47o37+/OH78uLh27Zr4/vvvhbu7u/j111/1lslsiKofB3zIIo0cOVK88847WtMCAwPFsmXLtKZdu3bN6AGfb775RnTu3Fk8ePBAmvb5558Lf39/odFohBBCLF26VAQGBmqt9/bbb4vRo0dXdFMskrH5FDlz5oxwc3Mr9Q/b4piPaZQ3m+zsbOHm5iaOHj2qt0xmYxrGZPPvv/+KgIAAceHCBdGnTx+DAz7MxjQMZTN79mwxbdq0cpXJbEzDUDZhYWFi5syZ5SqT2ZhOeT9zpk2bJl544YUyy2Q+pmEom8GDB4uVK1dqzR8+fLiIiorSWyazIap+vKWLLE5BQQESEhLg7++vNb1Hjx7466+/jC4nPDwcISEh0t+nT59G165dYWNjI03z9/dHWloaUlNTpWV69OihVU5AQADOnj0LlUpVkc2xOBXJJycnBzKZDPXr15emMR/TK282BQUF2LRpExwcHKBUKqXpzMb0jMlGo9HgzTffRGhoKNq3b6+zHGZjesYeN3FxcejevTsGDRqEyMhIpKenay3PbEzPUDYajQYHDhxAmzZtEBoaiu7du2PUqFH47bfftJZnNlWjvJ85d+7cwcGDBzFy5Eit6czH9IzJplOnTti/fz9u3boFIQSOHz+Oy5cva63DbIhqHgd8yOJkZGRArVajUaNGWtMbN26M27dvG12Os7MzmjVrJv19584dNG7cWGuZojru3LlT5jKFhYXIyMgo13ZYqvLm8+DBAyxbtgxDhgyBvb29NJ35mJ6x2fz+++/w9fWFt7c3NmzYgPXr16Nhw4bSfGZjesZks2bNGlhbW+OFF17QWw6zMT1jsunZsyeWLVuGL7/8ErNnz0Z8fDxefPFFFBQUSMszG9MzlE16ejpyc3OxZs0aBAQEYP369RgwYABeffVVxMXFScszm6pR3u8DP/74I+rVq4eBAwdqTWc+pmdMNpGRkWjXrh169uwJT09PTJo0Ce+++y66dOkiLc9siGqedU03gKiqyGQyrb+FEKWmleWNN94wWKau6brqLWvdR5Ux+ahUKrz++usQQmDu3Lla85hP1TGUTbdu3bBt2zZkZGRg8+bNCAsLww8//CB9aWM2VUdfNmfPnsVXX32FrVu3ltlfzKbqlHXcBAUFSdPd3Nzg6emJvn374sCBA9I/XplN1dGXjUajAQD069cP48ePBwC4u7vj1KlT+P777/Hkk08CYDZVzdjva1u2bMHQoUNRp04drenMp+qUlc3GjRtx+vRpfPrpp2jevDlOnDiBefPmoUmTJvDz8wPAbIjMAa/wIYvToEEDyOVy6f8UFElPTy/1fwzKQ9f/cSq6JL/oH7q6lrl79y6sra3h5ORU4botibH5qFQqhIWFITU1FevXr9e6ukcX5lN5xmZjZ2eH1q1bw8fHB4sWLYK1tTViYmL0lstsKs9QNidOnEB6ejr69OmDJ554Ak888QSuX7+O999/H3379tVbLrOpvIp85jRp0gTNmzfHlStX9JbLbCrPUDYNGjSAtbU1XF1dtea7urqW+ZYuZmMa5Tl2Tpw4gcuXL2PUqFEGy2U+lWcom/z8fERFReGtt95C37590aFDBwQHByMoKAjr1q3TWy6zIap+HPAhi2NjYwMPDw/88ccfWtOPHj0KX1/fCpfr4+ODEydOaF2Cf+TIETRp0gQtW7aUljl69KjWekeOHIGnpycUCkWF67YkxuRTNNhz9epVbNiwAQ0aNDBYLvOpvIoeO0IIrX4vidlUnqFsnnnmGfz000/Ytm2b9NOkSROEhoaW+fpiZlN5FTluMjIycPPmTTRp0kRvucym8gxlY2NjAy8vL1y+fFlr/pUrV9CiRQu95TIb0yjPsRMTEwMPDw906NDBYLnMp/IMZVNYWAiVSlXqihu5XF7qFevFMRuiGlC9z4gmqh5Fr5L84YcfxMWLF8XChQuFj4+PSE1NFUIIkZGRIc6dOycOHDgg3NzcxM6dO8W5c+dEWlqaVMayZcvEm2++Kf2dlZUl/Pz8xIwZM0RSUpLYu3ev6NSpk85XSS5atEhcvHhR/PDDD3yVpA5l5aNSqcTUqVNFz549RWJiotbrWIu/1YH5VI2ysrl//7748MMPxV9//SVSU1PF2bNnRUREhPD09BQXLlyQymA2VcPQea0kXW/pYjZVo6xscnJyxJIlS8SpU6fEtWvXxPHjx8WYMWNEQECAyM7OlspgNlXD0HGzd+9e4eHhITZt2iSuXLkiNm7cKNzd3cWff/4plcFsqo4x57Xs7GzRsWNH8e233+osg/lUDUPZBAcHi8GDB4vjx4+LlJQUsWXLFuHl5SW++eYbqQxmQ1TzOOBDFuvrr78Wffr0ER4eHmL48OEiLi5Omrdlyxbh5uZW6mfFihXSMrNnzxbBwcFaZZ4/f14899xzwtPTU/To0UNER0dLr5EsEhsbK5599lnh4eEh+vTpo/cLyqNOXz7Xrl3TmY2bm5s4fvy4tD7zqTr6ssnPzxevvPKK8Pf3Fx4eHqJHjx5i6tSp4syZM1rrM5uqU9Z5rSRdAz7MpuroyyYvL09MnDhRPPXUU8LDw0P07t1bzJ49W9y4cUNrfWZTdQwdNz/88IMYMGCA8PLyEsOGDRO//vqr1nxmU7UM5fP9998Lb29vkZWVpXN95lN1ysomLS1NhIeHC39/f+Hl5SUGDRok1q9fr9XPzIao5smEKOO6OyIiIiIiIiIiqnX4DB8iIiIiIiIiIgvDAR8iIiIiIiIiIgvDAR8iIiIiIiIiIgvDAR8iIiIiIiIiIgvDAR8iIiIiIiIiIgvDAR8iIiIiIiIiIgvDAR8iIiIiIiIiIgvDAR8iIiIiIiIiIgvDAR8iIiIiIiIiIgvDAR8iIiIiIiIiIgvDAR8iIiIiIiIiIgvDAR8iIiIiIiIiIgvDAR8iIiIiIiIiIgvDAR8iIiIiIiIiIgvDAR8iIiIiIiIiIgvDAR8iIiIiIiIiIgvDAR8iIiIiIiIiIgvDAR8iIiIiIiIiIgvDAR8iIiIiIiIiIgtjXdMNICIiIiIiIqptNBoNCgoKaroZ9IixsbGBlZVx1+5wwIcAPDxZFRYWwsrKCjKZrKabQ0REREREFkwIAY1GA2tra6P/8WpOCgoKcPnyZWg0mppuCj1irKys4OLiAhsbG4PLyoQQohraRGauoKAA8fHxNd0MIiIiIiJ6hHh5eRn1D1dzIoRASkoKVCoVmjdvXisHrKh20mg0uHHjBhQKBVq1amXwYg1e4UMAIJ2kvLy8IJfLa7g15kOtViM+Pp79YoaYjfliNuaL2ZgvZmPemI/5Yjbmy1A2RfNr42BJYWEhcnNz0bx5c9jZ2dV0c+gR4+zsjBs3bqCwsBAKhaLMZTngQwAgjQzK5XJ+WOrAfjFfzMZ8MRvzxWzMF7Mxb8zHfDEb82Uom9r4OAm1Wg0Ate7KJLIMRfudWq02OOBT+4ZTiYiIiIiIiGpYbRysotqvPPsdB3yIiIiIiIiIiCwMb+kiIiIiIiIiqqR7OYXIfaCutvrs6sjhZM9/0pN+3DuIiKhWSM9SAQAa1S/7XmUiIiJT4WcPGeteTiGWbrqKrNzCaquzvp01Zo1pXasHfbZu3YpFixbhxIkTNd2UCouNjcULL7yAP//8E/Xr16/p5mjhLV1EVO2ycwvx++kMZP/vA7H43yXnUcWZY19WtE3pWSos+f4qlnx/VfryXRPtsCSV6QP2n/kz54zK27aq2hZd5ZpDv7EN5sPUnz1k2XIfqJGVWwiF3Ar16lpX+Y9CboWs3IpdUXTq1Cm4u7sjNDRU7zLXr1+Hp6cncnJyEB0djWeeeabUMqmpqVAqlUhMTCx3G0xl69at6NKlS7XVFxISgoULF2pN8/X1xZEjR+Dg4FBt7TAWB3yIqNpl56lx4Mw9ZOepS/1dch5VnDn2ZUXb9EClQd4DNfIeqPFApamxdliSyvQB+8/8mXNG5W1bVW2LrnLNod/YBvNh6s8eejTYKKxQ16bqf2wUFf+n/JYtWxAcHIxTp07hxo0bOpfZt28funXrBnt7+wrXY04KCgqqrGwbGxs4Ozub5UO8OeBDRERERERE9AjIzc3FL7/8gnHjxqF3797YunWrzuX27duHvn37Vrq+zMxMzJo1C127dkXHjh0xadIkXLlypdRyv/32GwYNGgQvLy9MmDABN2/elOadP38eISEh8PX1RadOnTBixAjEx8cjNjYWb731FrKzs6FUKqFUKhEdHQ0A6Nu3Lz755BOEh4ejc+fOePvttxEbGwulUomsrCyp7MTERCiVSqSmpkrTTp48ieDgYHTs2BFdu3ZFaGgoMjMzER4ejri4OHz11VdSfampqVrlZmdnw9vbG4cOHdLavr1798LHxwf3798HANy6dQthYWHo2rUrunXrhmnTpmm1wVQ44ENERERERET0CNi1axdcXFzQtm1bDBs2DFu3boUQQmuZrKwsnDx50iQDPuHh4Th79iw+/fRTbNq0CUIITJkyBSrV/98mmZ+fj08//RRLlizBd999h5ycHLz++uvS/JkzZ+Kxxx5DTEwMtm7dismTJ0OhUMDX1xcRERGwt7fHkSNHcOTIEUycOFFab926dWjfvj22bt2Kl19+2aj2JiYmYvz48WjXrh02bdqEb7/9Fn369IFarcacOXPg6+uL0aNHS/U1a9ZMa30HBwf07t0bO3bs0Jr+888/o1+/fqhXrx7y8vLwwgsvwM7ODl9//TW+/fZb2NnZYdKkSSa/Eqn2Pt2JiIiIiIiIiIwWExODYcOGAQACAgKQm5uLY8eOwc/PT1rm4MGDcHNz0xrMuHDhAnx9fbXKKjlQVNKVK1ewf/9+fPfdd+jUqRMAYNmyZejduzd+++03PP300wAAlUqFd955Bx07dgQALFmyBEFBQfj777/h7e2NGzduIDQ0FK6urgCANm3aSHU4ODhAJpPB2dm5VP1PPfWU1nOK/v33X4P9s3btWnh6emLu3LnStPbt20u/KxQK1K1bV2d9RYYOHYpZs2YhLy8Ptra2yMnJwYEDB6Srj3bu3AmZTIaFCxdKt4EtXrwYXbt2RVxcHPz9/Q2201gc8CEiIiIiIiKycJcuXUJ8fDxWrlwJALC2tkZQUBC2bNmiNeCj63YuFxcXfPrpp1rTbt26hZCQEL31JScnw9raWhrIAYAGDRrAxcUFycnJ0jRra2t4enpKf7u6uqJ+/fpITk6Gt7c3JkyYgMjISGzfvh1+fn4IDAxEq1atDG5v8TKNlZiYiMDAwHKvV1yvXr1gbW2N/fv3Y/DgwdizZw/q1auHHj16AAASEhKQkpIiDYIVefDgAVJSUipVd0kc8CEiIiIiIiKycDExMSgsLETPnj2laUIIWFtbIzMzE46OjlCpVDh8+DBeeuklrXUVCgVat26tNU0ul5dZn74rgIQQpR5wrOuBx0XTpk+fjiFDhuDgwYM4dOgQVqxYgaioKAwYMKDM+m1tbbX+trKyKtWu4reWAUDdunXLLNMYNjY2GDRoEHbs2IHBgwfj559/RlBQEKytHw6/aDQaeHh4YNmyZaXWbdiwYaXrL47P8CEiIiIiIiKyYIWFhdi+fTvCw8Oxbds26Wf79u1o3ry59MyZ2NhY1K9fH+7u7pWus127digsLMSZM2ekaRkZGbhy5Yp0e1ZR286ePSv9fenSJWRlZaFt27bSNBcXF4wfPx7r16/HwIEDsWXLFgAPB6LUauPeKFg0mHL79m1p2vnz57WWUSqVOHbsmN4yFAoFNBrDb+0bOnQojhw5gn/++QexsbEYOnSoNM/DwwNXr15Fo0aN0Lp1a60fU7/anQM+RERERERERCZQoNIgv6DqfwpUhgcdijtw4AAyMzMxcuRIuLm5af0EBgYiJiYGALB//36TPKwZePisnX79+uHtt9/GiRMncP78ebz55pto2rQp+vXrJy2nUCgwf/58nDlzBgkJCYiIiICPjw+8vb2Rn5+P9957D7Gxsbh+/TpOnjyJ+Ph4acCoRYsW0nOI7t69i7y8PL3tadWqFZo1a4bo6GhcvnwZBw4cwPr167WWmTJlCuLj4zF37lycP38eycnJ+Pbbb3H37l2pvjNnziA1NRV3797VO/jz5JNPolGjRpg5cyZatGgBHx8fad7QoUPRoEEDTJs2DSdOnMC1a9cQFxeHBQsWGPWcofLggA8RERERERFRJdjVkaO+nTVUag3u5xdW+Y9KrUF9O2vY1Sn7tqoiMTEx8PPz03kFycCBA5GYmIiEhATs379fazCmshYvXgwPDw9MnToVY8aMgRACq1evhkKhkJapW7cuJk+ejDfeeANjxoxBnTp1sHz5cgAPb8O6d+8eZs+ejUGDBiEsLAw9e/bEa6+9BgDo1KkTxo4di7CwMHTv3h1r167V2xaFQoEPP/wQly5dwjPPPIM1a9YgLCxMaxkXFxesX78e58+fx6hRozB27Fjs27dPuh1r4sSJkMvlGDx4MLp3744bN27orEsmk2Hw4ME4f/681tU9wMNbzb7++ms0b94cr776KoKCghAREYEHDx7A3t6+3H1cFj7Dh4iIiIiIiKgSnOytMWtMa+Q+MO72IlOwqyOHk71x/6T/7LPP9M7z8PBAUlISEhISkJOTg65du2rNnz59OqZPn15qvZYtWyIpKanMeh0dHbF06VK980eMGIERI0YAeDjwVJKNjY00+KPPvHnzMG/ePK1p+/fv17ls586dS70yveQ2PPnkk/j+++91ru/i4oJNmzZpTdPXD7NmzcKsWbN0luPs7Iz3339f5zxTsrgBn61bt2LRokU4ceJETTelwmJjY/HCCy/gzz//RP369Wu6OURERERERGSAk7210QMw5kitViMyMlLr6huq3UxyS9epU6fg7u6u9Y77kq5fvw5PT0/k5OQgOjoazzzzTKllUlNToVQqkZiYaIpmVcjWrVvRpUuXaqsvJCQECxcu1Jrm6+uLI0eOmPyBTURERERERES6eHt749lnn63pZpAJmWTAZ8uWLQgODsapU6f03sO2b98+dOvWzeT3pNWUgoKCKivbxsYGzs7OOl9NR0RERERERERkSKWvN8vNzcUvv/yCmJgY3LlzB1u3bsWrr75aarl9+/bpvCevvDIzM7Fw4UL8/vvvKCgoQNeuXREZGYk2bdpoLffbb7/hgw8+wI0bN9ClSxcsWrQIzZo1A/Dw1WsLFy7E2bNnIZPJ0KZNG8ybNw+5ubl46623ADx8HRsAvPrqq5g+fTr69u2LkSNHIiUlBb/++iv69++PESNGlLr1KjExEc8++yz27duHli1bAgBOnjyJqKgoxMfHw8bGBt7e3li+fDkWL16MuLg4xMXF4auvvpL66fr161K5MpkMPXr0wMqVK9GzZ09p+/bu3YtZs2bhjz/+QL169XDr1i0sXrwYf/zxB6ysrNCpUyfMmTNHaoOxjH2l3aOiqD/YL6alUashhIBGrYZardb6G4DWPH2YjWEl+7m6lJVNRdv0cL3//72y21NTfVPTimdTmT54VPuvKpn6nGbOGZW3bVW1LbrK1VdXdX7mmEN25tAGY1VlNqb+7HnUGMqG/UlU9So94LNr1y64uLigbdu2GDZsGObPn49XXnlF6+qUrKwsnDx5EkuWLKlsdQgPD8fVq1fx6aefwt7eHh988AGmTJmCnTt3Svca5ufn49NPP8WSJUugUCgwb948vP7669KDl2bOnAl3d3fMnTsXcrkciYmJUCgU8PX1RUREBFasWIHdu3cDAOzs7KS6161bh5dffhnTpk0DAKNemZaYmIjx48fjP//5DyIjIyGXyxEbGwu1Wo05c+bgypUraN++vfSU8YYNG+L69evS+g4ODujduzd27NihNeDz888/o1+/fqhXrx7y8vLwwgsvoHPnzvj6669hbW2NTz75BJMmTcJPP/0EGxsbo/s3Pj7e6GUfJewX00rPAbKyrHAuMQO37LX/BrTnGcJs9CvZz9VNVzYVbVN6DpCX9/AtFOcSEyu9PTXdNzUtPj6+Un3wqPdfVTLVOc2cMypv26pqW3SVa6iu6vjMMYfszKEN5VUV2Zj6s+dRxe9qRDWn0gM+MTExGDZsGAAgICAAubm5OHbsGPz8/KRlDh48CDc3N+kKGwC4cOECfH19tcoSRUPoely5cgX79+/Hd999h06dOgEAli1bht69e+O3337D008/DQBQqVR455130LFjRwDAkiVLEBQUhL///hve3t64ceMGQkND4erqCgBaVwc5ODhAJpPB2dm5VP1PPfWU1nOKjBnwWbt2LTw9PTF37lxpWvv27aXfFQoF6tatq7O+IkOHDsWsWbOQl5cHW1tb5OTk4MCBA4iOjgYA7Ny5EzKZDAsXLpQG2hYvXoyuXbsiLi4O/v7+BttZxMvLC3K5ca/2exSo1WrEx8ezX0zsZvoDHLn8L55wfwzNGtXR+huA1jx9mI1hJfu5upSVTUXbdDP9AWzPXAMAPOH+eKW3p6b6pqYVzybtXmGF++BR7b+qZOpzmjlnVN62VdW26CpXX13V+ZljDtmZQxuMVZXZmPqz51FjKJui+URUdSo14HPp0iXEx8dj5cqVDwuztkZQUBC2bNmiNeCzb98+9O3bV2tdFxcXfPrpp1rTbt26hZCQEL31JScnw9raWhrIAYAGDRrAxcUFycnJ/79R1tbw9PSU/nZ1dUX9+vWRnJwMb29vTJgwAZGRkdi+fTv8/PwQGBiIVq1aGdze4mUaKzExEYGBgeVer7hevXrB2toa+/fvx+DBg7Fnzx7Uq1cPPXr0AAAkJCQgJSVFGgQr8uDBA6SkpJSrLrlczn8868B+MS0ruRwymQxW/+vX4n8D0JpnCLPRr2Q/Vzdd2VS0TQ/X+//fK7s9Nd03Ne3hcScq3AePev9VJVOd08w5o/K2raq2RVe5huqqjs8cc8jOHNpQXlWRjak/ex5V/K5GVHMqNeATExODwsJCrVuNhBCwtrZGZmYmHB0doVKpcPjwYbz00kta6yoUCrRu3VprmqETgb4rgIQQpR5wrOuBx0XTpk+fjiFDhuDgwYM4dOgQVqxYgaioKAwYMKDM+m1tbbX+trKyKtUulUqltUzdunXLLNMYNjY2GDRoEHbs2IHBgwfj559/RlBQEKytH8an0Wjg4eGBZcuWlVq3YcOGla6fiIiIiIiIiGqXCg/4FBYWYvv27QgPD5euNCkyffp07NixA8HBwYiNjUX9+vXh7u5e6ca2a9cOhYWFOHPmjHQ1S0ZGBq5cuSLdnlXUtrNnz8Lb2xvAwyuRsrKy0LZtW2kZFxcXuLi4YPz48ZgxYwa2bNmCAQMGQKFQGP0AsaLBlNu3b8PR0RHAwwdCF6dUKnHs2DHpGT0lKRQKaDQag3UNHToUoaGh+OeffxAbG4v//ve/0jwPDw/88ssvaNSokcW8BY2IiIiIiKg20dzPhCjIrbb6ZDZ2sKrnWG31Ue1T4QGfAwcOIDMzEyNHjoSDg4PWvMDAQMTExCA4OBj79+8vdTtXRbVp0wb9+vXD22+/jXnz5sHe3h7Lli1D06ZN0a9fP2k5hUKB+fPnIzIyEtbW1pg/fz58fHzg7e2N/Px8LF26FIMGDULLli3x77//Ij4+XnqDWIsWLaTnECmVStja2pa6sqdIq1at0KxZM0RHRyMsLAxXr17F+vXrtZaZMmUKhg4dirlz52Ls2LFQKBSIjY1FYGAgGjZsiBYtWuDMmTNITU2FnZ0dnJycdNb15JNPolGjRpg5cyZatGgBHx8fad7QoUOxbt06TJs2Df/973/RtGlT3Lx5E3v37sWkSZPw2GOPVa7jiYiIiIiISC/N/Uzc374UIi+72uqU2Tqg3jOzHvlBn5CQEHTo0AFz5syp8rqUSiVWrVqF/v37A3j42Jm33noLiYmJaNu2LVatWoV+/fph27ZtlbroxVTbZFXRFWNiYuDn51dqsAcABg4ciMTERCQkJGD//v1agzGVtXjxYnh4eGDq1KkYM2YMhBBYvXq19IYu4OFtVJMnT8Ybb7yBMWPGoE6dOli+fDmAh7dh3bt3D7Nnz8agQYMQFhaGnj17SlfgdOrUCWPHjkVYWBi6d++OtWvX6m2LQqHAhx9+iEuXLuGZZ57BmjVrEBYWprWMi4sL1q9fj/Pnz2PUqFEYO3Ys9u3bJ92ONXHiRMjlcgwePBjdu3fHjRs3dNYlk8kwePBgnD9/HkOHDtWaZ2tri6+//hrNmzfHq6++iqCgIERERODBgwe84oeIiIiIiKiKiYLch4M9cgVkdetV+Q/kCoi87ApdUXTq1Cm4u7trvZCopOvXr8PT0xM5OTmIjo7GM888U2qZ1NRUKJVKJCYmlrsNtdWRI0e0HmkTHR0NW1tb7N69Gxs2bECzZs1w5MgRrRc11aQKX+Hz2Wef6Z3n4eGBpKQkJCQkICcnB127dtWaP336dEyfPr3Uei1btkRSUlKZ9To6OmLp0qV6548YMQIjRowAAOmqneJsbGykwR995s2bh3nz5mlN279/v85lO3fujB07dmhNK7kNTz75pPRK+JJcXFywadMmrWn6+mHWrFmYNWuWznKcnZ3x/vvv65xHREREREREVU+msIFMUfnnuBpDqFWGF9Jhy5YtCA4ORkxMDG7cuIHmzZuXWmbfvn3o1q0bLyAooeTbtVNSUtC7d2+0aNFC7zI1qcJX+BhDrVYjMjJS6+obIiIiIiIiIqp+ubm5+OWXXzBu3Dj07t0bW7du1bmcrjdtV4RSqcRvv/2mNa1Lly5SvUVXCe3duxchISHo2LEjhg0bhr/++ktrnZMnTyI4OBgdO3ZE165dERoaiszMTJ11bt++HSNGjICvry969OiBN954A+np6dL8zMxMvPHGG3jqqafg7e2NgQMHYsuWLQCAgoICvPfee/D394eXlxf69u2Lzz//XOf2KJVKJCQkYNWqVVAqlYiOjtZ51dPFixcxefJk+Pr6ws/PD2+++Sbu3r0rzc/NzcWsWbPg6+sLf3//Uo+JqYwqHfDx9vbGs88+W5VVEBEREREREZERdu3aBRcXF7Rt2xbDhg3D1q1bS70NOysrCydPnjTZs3iNERUVhdDQUGzbtg1t2rTBG2+8gcLCQgBAYmIixo8fj3bt2mHTpk349ttv0adPH70vW1KpVPjvf/+Ln376CatWrUJqairCw8Ol+R9//DGSk5OxZs0a7Nq1C3PnzkWDBg0AABs3bsT+/fvx0UcfYffu3Vi6dKnW1TvFFd26NXHiRBw5cgQTJ04stUxaWhqCg4Ph7u6OmJgYrF27Funp6VqPglm6dCliY2OxcuVKrFu3DnFxcTh79mxFu1JLpV7LTkRERERERES1Q0xMDIYNGwYACAgIkF5Y5OfnJy1z8OBBuLm5oVmzZtK0CxcuwNfXV6uskgNFlTFx4kT07t0bAPDaa69h8ODBuHr1KlxdXbF27Vp4enpi7ty50vJlPSNn5MiR0u+PP/445syZg1GjRuH+/fuoV68ebty4AXd3d3h5eQF4+EiVIjdv3kTr1q3RuXNnyGQyvYM9wMNbt+RyOezs7KTbuDIyMrSW+e677+Dh4YEZM2ZI0xYtWoRevXrh8uXLaNKkCWJiYrB06VLp7edLlixBr169DPSYcTjgQ0RERERERGThLl26hPj4eKxcuRIAYG1tjaCgIGzZskVrwEfX7VwuLi749NNPtabdunULISEhJmmbUqmUfi8aPLl79y5cXV2RmJiIwMBAo8s6d+4coqOjcf78edy7d08amLp58ybatWuHcePG4bXXXsO5c+fQo0cP9O/fH506dQIADB8+HBMnTkRgYCACAgLQu3dv+Pv7V3i7EhISEBsbW2qwDHj4/J8HDx5ApVJpvYXbyckJLi4uFa6zOA74EBEREREREVm4mJgYFBYWar1lSggBa2trZGZmwtHRESqVCocPH8ZLL72kta5CoUDr1q21psnlcoN1ymSyUlcCFd2qVbL84usAgEajAfDwLdzGys3NxcSJE9GjRw988MEHaNCgAW7evInQ0FCoVA8fct2rVy/8/vvvOHDgAI4ePYrx48fj+eefx+zZs+Hh4YF9+/bh0KFDOHr0KMLCwuDn54cVK1YY3YbiNBoN+vTpg5kzZ5aa5+zsjKtXr1aoXGNV6TN8iIiIiIiIiKhmFRYWYvv27QgPD8e2bdukn+3bt6N58+bSm6djY2NRv359uLu7m6Tehg0bIi0tTfr7ypUryMvLK1cZSqUSx44dM2rZS5cuISMjAzNnzkSXLl3g6uqq9cDm4u0aMWIEli1bhoiICK03Z9vb2yMoKAgLFixAVFQU9uzZg3v37pWrzUU8PDzwzz//oEWLFmjdurXWj52dHVq1agWFQoHTp09L62RmZuLKlSsVqq8kXuFDRNXOwVaO3h2d4GAr1/l38d+p4kr2qzmoaJvqKKxgW0cu/V5T7bAklekD9p/5M+eMytu2qtoWXeWaQ7+xDebD1J899GgQqgKzrOfAgQPIzMzEyJEj4eDgoDUvMDAQMTExCA4Oxv79+036sOannnoK33zzDXx8fKDRaLBs2bJyv8V7ypQpGDp0KObOnYuxY8dCoVAgNjYWgYGBaNiwodayzZs3h0KhwMaNGzFu3DhcuHABn3zyidYyH3/8MTw8PNC+fXsUFBTgwIEDcHV1BQBs2LABzs7O6NChA6ysrLB79244Ozujfv36Fdr+5557Dps3b8aMGTMwadIkNGjQAFevXsXOnTuxYMEC1KtXD//5z3+kq5EaNWqEqKgo6SqnyuKADxFVOwc7a/TxaaD37+K/U8WV7FdzUNE2NaqvQPjY1tLvNdUOS1KZPmD/mT9zzqi8bauqbdFVrjn0G9tgPkz92UOWTWZjB5mtA0ReNoRaVT112jpAZmNn1LIxMTHw8/MrNdgDAAMHDsRnn32GhIQE7N+/H4sWLTJZG2fPno2IiAgEBwejSZMmiIiIQEJCQrnKcHFxwfr167F8+XKMGjUKdevWhbe3N4YMGVJq2YYNG2LJkiVYvnw5Nm7cCA8PD8yePRvTpk2TllEoFFi+fDmuX7+OunXronPnzli+fDkAwM7ODmvWrMHVq1dhZWUFLy8vrF69GlZWFRv0bdq0Kb777jssW7YMoaGhKCgoQPPmzREQECCVOWvWLOTm5mLatGmoV68eJkyYgJycnArVV5JMmPLR2lRrqdVqnD59Gj4+Pkbdi/moYL+YL2ZjvpiN+WI25ovZmDfmY76YjfkylE1tzi4/Px+XL1+Gi4uL1vNlNPczIQpyq60dMhs7WNVzNFl5CQkJePHFF3Hs2LFyX4VD1Uff/qcLr/AhIiIiIiIiqiSreo6ACQdgqptarUZkZCQHeywIB3yIiIiIiIiIHnHe3t7w9vau6WaQCfHpY0REREREREREFoYDPkREREREREREFoYDPkREREREREREFoYDPlRraPKyUZBwAJq87JpuChEREZFe/M5CxuK+QkRViQM+VGuI/BwUJByEyM+p6aYQERER6cXvLGQs7itEVJU44ENEREREREREZGH4WnYiIiIiIiKiSspWZSNfk1dt9dW1soWDwqHa6qPahwM+RERERERERJWQrcrGF5fX4H5h9d2eV8/aHhNcJnPQp4LCw8ORlZWFTz75pKabUmU44ENERERERERUCfmaPNwvzIG1lQIKmaLK61MJFe4X5iBfkwcHGDfgEx4ejh9//BEAYG1tDUdHRyiVSgwePBgjRoyAlVX1PPElJCQEHTp0wJw5c6qlvtTUVPTr1w/btm2Du7u7NH3OnDkQQlRLG2oKB3yIiIiIiIiITEAhU6COvE7VV6QGCqEq92oBAQFYvHgxNBoN7ty5g8OHD2PhwoXYs2cPPv30U1hb154hApVKBYWi4oNrDg6Wf2UUH9pMRERERERE9AiwsbGBs7MzmjZtCg8PD0ydOhWffPIJDh06JF39k52djbfffhvdu3dHp06d8MILL+D8+fNSGefPn0dISAh8fX3RqVMnjBgxAvHx8QCAjIwMzJgxAz179kTHjh0xdOhQ/Pzzz9K64eHhiIuLw1dffQWlUgmlUonU1FRs3boVXbp00Wrrb7/9BqVSKf0dHR2NZ555BjExMejXrx+8vLwghMChQ4cwbtw4dOnSBd26dcNLL72ElJQUab1+/foBAJ599lkolUqEhIRIbXn55Zel5QoKCrBgwQJ0794dXl5eGDduHP7++29pfmxsLJRKJY4dO4YRI0agY8eOGDt2LC5dulTpXKoKB3yIiIiIiIiIHlHdu3dHhw4dsHfvXgghMGXKFNy+fRurV6/G1q1b4eHhgRdffBH37t0DAMycOROPPfYYYmJisHXrVkyePFm60qagoAAeHh74/PPP8fPPP2P06NGYNWsWzpw5A+DhbVS+vr4YPXo0jhw5giNHjqBZs2ZGtzUlJQW//PILoqOjsW3bNgBAXl4eJkyYgJiYGGzYsAEymQyvvPIKNBoNAOCHH34AAGzYsAFHjhxBdHS0zrKXLl2KPXv2YMmSJfjxxx/RunVrTJo0SdruIlFRUQgPD8eWLVsgl8sRERFhdPurW+25XouIiIiIiIiITK5t27ZISkrC8ePHceHCBRw7dgw2NjYAgNmzZ+O3337Dnj17MGbMGNy4cQOhoaFwdXUFALRp00Yqp2nTpggNDZX+DgkJweHDh7F792507NgRDg4OUCgUqFu3LpydncvdTpVKhQ8++AANGzaUpg0aNEhrmUWLFqF79+64ePEi3NzcpGWdnJz01pmbm4vvv/8eixcvRq9evQAA8+fPxx9//IGYmBhMmjRJWvb111/Hk08+CQCYMmUKpkyZggcPHqBOnWq4la+cOOCD6n1olFKpxKpVq9C/f38AQHJyMt566y0kJiaibdu2WLVqlc4HSpVXdT8Ii4iIiIiIiGonIQRkMhkSEhKQm5uLbt26ac3Pz8+XbpOaMGECIiMjsX37dvj5+SEwMBCtWrUCAKjVaqxevRq7du1CWloaCgoKUFBQAFtbW5O0s3nz5lqDPcDDq34+/vhjnD59GhkZGdKDmG/evAk3Nzejyk1JSYFKpUKnTp2kaQqFAt7e3khOTtZatvhtZkUDSOnp6WjevHmFtqkqVWjA59SpU3j++efh5+eHdevW6Vzm+vXrGDRoEI4fP44vvvgCv/32G7Zv3661jL6nZVuyI0eOwNHRUfo7Ojoatra22L17N+zs7FC/fn0cOXIEDRo0qMFWEhERERER0aMiOTkZLVu2hEajgbOzMzZu3FhqmaKHHE+fPh1DhgzBwYMHcejQIaxYsQJRUVEYMGAA1q9fjw0bNiAiIgJKpRK2trZYtGgRVKqyHzBtZWVV6o1ZutbRNXA0depUNGvWDAsWLECTJk2g0WgwZMgQg3XqIpPJtP4uGggrrviDrYvmFd0+Zm4q9AyfLVu2IDg4GKdOncKNGzd0LrNv3z5069YN9vb2lWqgpXF2dpYujQMejiR27twZLVq0QIMGDSCXy+Hs7Fyrno5OREREREREtdOxY8dw4cIFDBw4EB4eHrhz5w7kcjlat26t9VP8yhoXFxeMHz8e69evx8CBA7FlyxYAwMmTJ9GvXz8888wz6NChAx5//HFcuXJFqz6FQlFqgKRBgwa4f/8+cnNzpWnFHxStT0ZGBpKTkzFt2jR0794drq6uyMzMLFUf8PDqI31atWoFhUKBkydPStNUKhXOnj0r3bpWG5V7VCE3Nxe//PILYmJicOfOHWzduhWvvvpqqeX27duHgQMHVrqBJW+BAoAuXbogIiICI0aMkK4Sio6OxsaNG/H333+jdevWmDdvHnx9faV1Tp48iaioKMTHx8PGxgbe3t5Yvny51tU2RbZv344vv/wSly9fhp2dHZ566ilERESgUaNGAIDMzEy89957+OOPP5Cbm4vHHnsML730Ev7zn/+goKAAS5Yswd69e5GZmQlnZ2eMGTMGL730UqntKboULCEhAatWrcKrr76K4cOHl7rq6eLFi3j//fdx4sQJ2NraokePHnjrrbekAy43Nxdz587Fr7/+inr16mHixIkV7u+yDoKaplGrIYSARq0GqqmdRf1hzv3yqGI25ovZmC9mY76YjXkrbz418Z3lUVXbjx1L3lcMZVNbMzNEJVRANWyaSpT/6hXg4UOVb9++rfVa9s8//xx9+vTBs88+CysrK/j4+OCVV17BzJkz4eLigrS0NBw8eBD9+/dH+/btsXTpUgwaNAgtW7bEv//+i/j4eOnf/q1atcLevXtx6tQpODo64osvvsCdO3e0Bk1atGiBM2fOIDU1FXZ2dnByckLHjh1ha2uL5cuXIyQkBH///Te2bt1qcHscHR3h5OSETZs2wdnZGTdu3MCHH36otUyjRo1Qt25dHD58GI899hjq1KlT6pXsdnZ2GDduHJYuXQpHR0c0b94ca9euRX5+PkaOHFmhvjYH5R7w2bVrF1xcXNC2bVsMGzYM8+fPxyuvvKJ1mVNWVhZOnjyJJUuWmLSxZYmKisLs2bPRunVrREVF4Y033sDevXthbW2NxMREjB8/Hv/5z38QGRkJuVyO2NhYvScZlUqF//73v2jbti3S09OxePFihIeHY82aNQCAjz/+GMnJyVizZg0aNGiAlJQU5OfnAwA2btyI/fv346OPPkKzZs1w8+ZN/PvvvzrrOXLkCCZMmICAgABMnDgRdnZ2yMjI0FomLS0NwcHBGD16NMLDw/HgwQMsW7YMYWFh+OqrrwA8fJp4bGwsVq5cicaNGyMqKgpnz55Fhw4dyt2PRa/TM0fWuXfRKCsTlxITUWh3q1rrNud+edQxG/PFbMwXszFfzMa8GZtPTX5neVTV1mPnUdhXams25VXXyhb1rO1xvzAHhajYYEx51bO2R12r8j0b5/Dhw/D394e1tTXq16+PDh06IDIyEsOHD4eV1cMbgFavXo2PPvoIERERyMjIQOPGjdGlSxc0btwYVlZWuHfvHmbPno07d+6gQYMGGDhwIF577TUAwMsvv4zU1FSEhobC1tYWo0ePRv/+/ZGdnS21YeLEiQgPD8fgwYORn5+Pffv2oWXLlvjggw+wdOlSbN68GX5+fpg+fTrefvvtMrfHysoKUVFRWLBgAYYMGQIXFxdERkZKr14HHt6CFRkZiVWrVmHFihXo0qWLzlvWZs6cCSEEZs2ahfv378PT0xNr167VeZFIbVHuAZ+YmBgMGzYMABAQEIDc3FwcO3YMfn5+0jIHDx6Em5ub1uvVLly4oHXFDYBS9+hVxsSJE9G7d28AwGuvvYbBgwfj6tWrcHV1xdq1a+Hp6Ym5c+dKy7dv315vWcVH8B5//HHMmTMHo0aNwv3791GvXj3cuHED7u7u8PLyAgC0bNlSWv7mzZto3bo1OnfuDJlMhhYtWuitx9nZGXK5HHZ2dtLDnkoO+Hz33Xfw8PDAjBkzpGmLFi1Cr169cPnyZTRp0gQxMTFYunQpevToAQBYsmSJ9GTx8vLy8oJcLq/QulVNk3ET+Tf+QFN3d1g1MP7VfZWhVqsRHx9v1v3yqGI25ovZmC9mY76YjXkrbz418Z3lUVXbjx1L3lcMZVM031I4KBwwwWUy8jV51VZnXStbOCgcDC/4P0uWLDHqogx7e3tERkYiMjJS5/zly5frXdfJyQmffPJJmeW7uLhg06ZNpab3799f684eABg9erT0+/Tp0zF9+vRS6/n5+WHXrl1a05KSkrT+HjVqFEaNGqU1rWRf1KlTp8zt7tatW6ly3d3dS00zJ+Ua8Ll06RLi4+OxcuXKhytbWyMoKAhbtmzRGvDZt28f+vbtq7Wui4sLPv30U61pt27d0hp5qwxdT8q+e/cuXF1dkZiYiMDAQKPLOnfuHKKjo3H+/Hncu3dP6ynf7dq1w7hx4/Daa6/h3Llz6NGjB/r37y89zXv48OGYOHEiAgMDERAQgN69e8Pf37/C25WQkIDY2NhSg2XAw+f/PHjwACqVCj4+PtJ0JycnuLi4VKg+uVxuvh+WcjlkMhmsaqCNZt0vjzhmY76YjfliNuaL2Zg3o/Opwe8sj6pae+w8AvtKrc2mAhwUDnCA8QMwRFWtXAM+MTExKCwsRM+ePaVpQghYW1sjMzMTjo6OUKlUOHz4sPTMmiIKhQKtW7fWmmbMgS+TyUpdCVRYWFhquaIHMRWtA/z/k7Lr1q1rsJ4iubm5mDhxInr06IEPPvgADRo0wM2bNxEaGio95btXr174/fffceDAARw9ehTjx4/H888/j9mzZ8PDwwP79u3DoUOHcPToUYSFhcHPzw8rVqwwug3FaTQa9OnTBzNnziw1z9nZGVevXq1QuURERERERERkuYx+S1dhYSG2b9+O8PBwbNu2TfrZvn07mjdvjh07dgAAYmNjUb9+fZO9Zr1hw4ZIS0uT/r5y5Qry8sp3mZxSqcSxY8eMWvbSpUvIyMjAzJkz0aVLF7i6uiI9PV1nu0aMGIFly5YhIiJC65I0e3t7BAUFYcGCBYiKisKePXtw7969crW5iIeHB/755x+0aNGi1FPS7ezspKeJnz59WlonMzOz1JPQiYiIiIiIiOjRYfQVPgcOHEBmZiZGjhxZ6onWgYGBiImJQXBwMPbv31/qdq7KeOqpp/DNN9/Ax8cHGo0Gy5Yt07qaxxhTpkzB0KFDMXfuXIwdOxYKhQKxsbEIDAzUerUcADRv3hwKhQIbN27EuHHjcOHChVL3IH788cfw8PBA+/btUVBQgAMHDkhPHd+wYQOcnZ3RoUMHWFlZYffu3XB2dkb9+vUrtP3PPfccNm/ejBkzZmDSpElo0KABrl69ip07d2LBggWoV68e/vOf/0hXIzVq1AhRUVFaD9EmIiIiIiIiokeL0Vf4xMTEwM/Pr9RgDwAMHDgQiYmJSEhIwP79+9GvXz+TNXD27Nlo1qwZgoODMXPmTEycOLFct2gBD58ftH79epw/fx6jRo3C2LFjsW/fPlhblx7vatiwIZYsWYLdu3cjKCgIa9aswezZs7WWUSgUWL58OYYNG4bg4GBYWVlJD66ys7PDmjVrMHLkSIwcORLXr1/H6tWrpSeel1fTpk3x3XffQaPRIDQ0FEOGDMHChQvh4OAglTlr1ix06dIF06ZNw4QJE9C5c2d4enpWqD4iIiIiIiIiqv1kwoSvykpISMCLL76IY8eOlfsqHKpZarUap0+fho+Pj9k+VE2dcRN5v66G7YApkFfjW7rMvV8eVczGfDEb88VszBezMW/lzacmvrM8qmr7sWPJ+4qhbGpzdvn5+bh8+TJcXFzKfTECUWWVZ/+r2GUneqjVakRGRnKwh4iIiIiIiIioBpXrLV2GeHt7w9vb25RFEhERERERERFROZl0wIeIiIiIiIjoUVSYlQVNfn611WdVty6sK/hyIHo0cMCHiIiIiIiIqBIKs7Jw/bPPoM7JqbY65fb2aDF1Kgd9SC8O+BARERERERFVgiY/H+qcHMgUClhVwzNtNSoV1Dk5D68oMnLAJzw8HD/++CMAQC6Xo0mTJujVqxdmzJgBR0fHqmxuucTGxuKFF17QOe/IkSNwdnaulnakpqaiX79+2LZtG9zd3aulTlPjgA8RERERERGRCVgpFLCqU6da6lKrVOVeJyAgAIsXL4ZarcbFixcRERGB7OxsLF++vApaWDm7d++Gvb291rRGjRrVUGtqJ5O+pYuIiIiIiIiIzJONjQ2cnZ3x2GOPwd/fH0FBQfjjjz+0ltmyZQuefvppeHl5ITAwEN988400r6CgAO+99x78/f3h5eWFvn374vPPP5fmK5VKfPvtt5g0aRK8vb3Rt29f/PLLLxVqa6NGjeDs7Kz1Y2VlhcOHD8PLywtZWVlayy9YsADBwcHS36dOncLzzz8Pb29v9OrVCwsWLEBubq40v2/fvvjss8/w1ltvwdfXF71798amTZuk+f369QMAPPvss1AqlQgJCanQdtQkDvhQrSGraw8bj16Q1bU3vDARERFRDeF3FjIW9xWqSdeuXcPhw4dhbf3/N/5s3rwZUVFReP3117Fr1y7MmDEDK1askG4F27hxI/bv34+PPvoIu3fvxtKlS9GiRQutcj/++GMMGjQI27dvx7Bhw/DGG28gOTnZZO328/ND/fr1sWfPHmmaWq3GL7/8gqFDhwIAkpKSEBoaigEDBuCnn35CVFQUTp48ifnz52uV9cUXX8DT0xPbtm3Dc889h7lz50pt/eGHHwAAGzZswJEjRxAdHW2ybaguvKWLag0rWwfYePSu6WYQERERlYnfWchY3Feouh04cAC+vr5Qq9V48OABAOCtt96S5n/yyScIDw/HwIEDAQCPP/44Ll68iE2bNmH48OG4efMmWrdujc6dO0Mmk5Ua7AGAwMBAjBo1CgAQFhaGo0ePYuPGjZg7d2652tqrVy+tv5s0aYI9e/ZALpfj6aefxs8//yzVc+zYMWRmZiIwMBAAsG7dOgwdOhTjx48HALRp0wZz5sxBSEgI5s6dizr/u+2uZ8+eeP755wEAkydPxoYNGxAXFwdXV1c0bNgQAODk5FRtzw0yNQ74EBERERERET0CunXrhrlz5yIvLw8xMTG4fPmydBvU3bt3cfPmTcyZMwdvv/22tE5hYSEcHBwAAMOHD8fEiRMRGBiIgIAA9O7dG/7+/lp1+Pr6av3t4+ODxMTEcrf1m2++Qb169aS/5XK59PuwYcMwZswY3Lp1C02bNsWOHTvQq1cv6eHTCQkJuHr1Knbs2CGtI4SARqNBamoqXF1dATy8Ba2ITCZD48aNkZ6eXu62misO+BARERERERE9AmxtbdG6dWsAQGRkJEJCQrBy5UqEhYVBo9EAAObPn4+OHTtqrWdl9fBpMB4eHti3bx8OHTqEo0ePIiwsDH5+flixYkWZ9cpksnK3tWXLlqiv5w1k3t7eaNWqFXbt2oVx48bh119/xeLFi6X5Go0GY8eO1fncnWbNmkm/F7+draidQohyt9VcccCHiIiIiIiI6BH06quvYvLkyRg3bhyaNm2Kpk2b4tq1axg2bJjedezt7REUFISgoCAMGjQIkyZNwr179+Dk5AQAOH36NJ599llp+TNnzlTJa82HDBmCHTt2oGnTprCyskLv3r2leU888QT++ecfaXCrIhQKBYCHzweqrTjgQ0RERERERGQCmgq8Kr0m6+nWrRvatWuHzz//HO+88w6mT5+OBQsWwN7eHj179kRBQQHOnj2LrKwsTJgwARs2bICzszM6dOgAKysr7N69G87OzlpX4uzevRuenp7o3LkzduzYgb///hsLFy6U5r/44osYMGCA1hu1dElPT5eeM1TEyclJGogZOnQoVq5cic8++wyDBg2SnssDPHwez5gxYzBv3jyMHj0atra2SE5OxtGjR7VuVytLo0aNULduXRw+fBiPPfYY6tSpI93aVltwwIdqlXsF9wAATjZONdoOqjxmWfXMtY/NtV2PoopmwQxrB+ZUNvaPfuyb6sO+thxWdetCbm8PdU4O1NU06CO3t4dV3bqVLmfChAl46623MHnyZIwaNQp169bFunXr8MEHH8DOzg5ubm548cUXAQB2dnZYs2YNrl69CisrK3h5eWH16tXSLV8AMH36dOzatQvz5s2Ds7Mzli1bhnbt2knzr127hoyMDIPtKnoAc3GbNm2Cj48PgIcPYvby8kJ8fDwiIiK0luvQoQM2btyIjz76CM899xyAhw+gDgoKMrpfrK2tERkZiVWrVmHFihXo0qULNm7caPT65kAmLOkGNaowtVqN06dPw8fHR+thWObkXsE9fHF5DQBggsvkavlgrA39UhuVzFJhpcC5rLN4or4nAEi/17Oup7cMZlO2mjheipSVTUXbdb/wvlH7hbFMXV5tUTybbHV2hbKoyX3Lkpn6nGauOVXk2KuK41Vf/+irqyL5VLTdNX1+Mtd9R5+q/D5Q1VnUtr4uL0PZ1Obvcvn5+bh8+TJcXFxQt9iAS2FWFjT5+dXWDqu6dWGt5xk3NUWpVGLVqlXo379/TTfFYunb/3ThFT5Ua6hEAfLVedLvVHuVzFKlLsCJu3FoU88FAKTfH6V/iJuauR4vFW1Xrvq+SfcLU5dXG1U0C3Pdt0ibueZUkWOvKo5Xff1jyroqWlZNn5/Mdd+pCVWdBfva8ljXrw+Y2QAMPdqsDC9CRERERERERES1Ca/wISIiIiIiIqJKS0pKqukmUDG8woeIiIiIiIiIyMJwwIeIiIiIiIionPj+I6oJ5dnveEsXERERERERkZEUCgVkMhlu374NZ2dnyGSymm4SPSKEELh9+zZkMhkUCoXB5TngQ0RERERERGQkuVyOli1bIjU1FVeuXKnp5tAjRiaToWXLlpDL5QaX5YAPERERERERUTnY29ujffv2UKlUNd0UesQoFAqjBnsADvgQERERERERlZtcLjf6H95ENYEPbTYz4eHhePnll2u6GURERERERERUi9X4FT7h4eH48ccfAQDW1tZwdHSEUqnE4MGDMWLECFhZVc+YVEhICDp06IA5c+ZUS32pqano168ftm3bBnd3d2n6nDlz+LR3IiIiIiIiIqqUGh/wAYCAgAAsXrwYGo0Gd+7cweHDh7Fw4ULs2bMHn376KaytzaKZRlGpVEY9LVsfBwcHE7aGiIiIiIiIiB5FZnFLl42NDZydndG0aVN4eHhg6tSp+OSTT3Do0CHp6p/s7Gy8/fbb6N69Ozp16oQXXngB58+fl8o4f/48QkJC4Ovri06dOmHEiBGIj48HAGRkZGDGjBno2bMnOnbsiKFDh+Lnn3+W1g0PD0dcXBy++uorKJVKKJVKpKamYuvWrejSpYtWW3/77TcolUrp7+joaDzzzDOIiYlBv3794OXlBSEEDh06hHHjxqFLly7o1q0bXnrpJaSkpEjr9evXDwDw7LPPQqlUIiQkRGpL8Vu6CgoKsGDBAnTv3h1eXl4YN24c/v77b2l+bGwslEoljh07hhEjRqBjx44YO3YsLl26VOlciIiIiIiIiKh2MttLZ7p3744OHTpg7969GDlyJKZMmQJHR0esXr0aDg4O2LRpE1588UXs2bMHTk5OmDlzJtzd3TF37lzI5XIkJiZKV9oUFBTAw8MDkydPhr29PQ4cOIBZs2bh8ccfR8eOHTFnzhxcuXIF7du3x2uvvQYAaNiwodFtTUlJwS+//ILo6GjpFrS8vDxMmDABbm5uyMvLw8cff4xXXnkF27dvh5WVFX744QeMGjUKGzZsQLt27fReFbR06VLs2bMHS5YsQYsWLbB27VpMmjQJe/fuhZOTk7RcVFQUwsPD0bBhQ7z77ruIiIjA999/X+5+V6vV5V6nuqjVGq3fq6OtRXWYc7/URiWzBAAhRKnfy+p3ZlO2mjhe/r8+/dlUtF1qtcao/cL4Npq2vNqieDaVyaIi61HZTH1OM9ecKnLsVcXxqq9/9NVVkXwq2u6aPj+Z676jT1V+H6jqLGpbX5eXoWwsbXuJzJHZDvgAQNu2bZGUlITjx4/jwoULOHbsGGxsbAAAs2fPxm+//YY9e/ZgzJgxuHHjBkJDQ+Hq6goAaNOmjVRO06ZNERoaKv0dEhKCw4cPY/fu3ejYsSMcHBygUChQt25dODs7l7udKpUKH3zwgdYg0aBBg7SWWbRoEbp3746LFy/Czc1NWtbJyUlvnbm5ufj++++xePFi9OrVCwAwf/58/PHHH4iJicGkSZOkZV9//XU8+eSTAIApU6ZgypQpePDgAerUqVOubSm6KsocZSETucgDACQmnsN1OFZb3ebcL7VRySwfTstCYpb278ZkzGx0q8njpYiubCrarixklmu/qO7yapv4+PhKZVHT+5YlM9U5zVxzqsixVxXHq77+MVRXefKpaLtr+vxkrvuOIVXxfaCqs6itfV1e/K5GVHPMesBHCAGZTIaEhATk5uaiW7duWvPz8/Ol26QmTJiAyMhIbN++HX5+fggMDESrVq0APBw9Xr16NXbt2oW0tDQUFBSgoKAAtra2Jmln8+bNS10RlJKSgo8//hinT59GRkaG9CDmmzdvws3NzahyU1JSoFKp0KlTJ2maQqGAt7c3kpOTtZYtfptZ0QBSeno6mjdvXq5t8fLyMttXC95+cBvHrxwBALi3eQLOdco/OFdearUa8fHxZt0vtVHJLAEg8fpZuLfQ/r2sjJlN2WrieClSVjYVbdftB7eN2i+MZeryaovi2dwtvFvhLGpq37Jkpj6nmWtOFTn2quJ41dc/+uqqSD4VbXdNn5/Mdd/Rpyq/D1R1FrWtr8vLUDZF84mo6pj1gE9ycjJatmwJjUYDZ2dnbNy4sdQyRQ85nj59OoYMGYKDBw/i0KFDWLFiBaKiojBgwACsX78eGzZsQEREBJRKJWxtbbFo0SKoVKoy67eysir1xixd6+gaOJo6dSqaNWuGBQsWoEmTJtBoNBgyZIjBOnWRyWRafxcNhBVX/MHWRfM0Gg3KSy6Xm+0/nuVyK63fq7Od5twvtVHJLIGH+23J343pc2ajW00eL/9fb+lsKtouudyqXPtFdZdX28jlcshFxbOoyHpkHFOd08w1p4oce1VxvOrrH0N1lSefira7ps9P5rrvGFIV3weqOova2tflxe9qRDXHLB7arMuxY8dw4cIFDBw4EB4eHrhz5w7kcjlat26t9VP8yhoXFxeMHz8e69evx8CBA7FlyxYAwMmTJ9GvXz8888wz6NChAx5//HFcuXJFqz6FQlFqgKRBgwa4f/8+cnNzpWnFHxStT0ZGBpKTkzFt2jR0794drq6uyMzMLFUfUPa9q61atYJCocDJkyelaSqVCmfPnpVuXSMiIiIiIiIiKsksrvApKCjA7du3tV7L/vnnn6NPnz549tlnYWVlBR8fH7zyyiuYOXMmXFxckJaWhoMHD6J///5o3749li5dikGDBqFly5b4999/ER8fj4EDBwJ4OHCyd+9enDp1Co6Ojvjiiy9w584drUGTFi1a4MyZM0hNTYWdnR2cnJzQsWNH2NraYvny5QgJCcHff/+NrVu3GtweR0dHODk5YdOmTXB2dsaNGzfw4Ycfai3TqFEj1K1bF4cPH8Zjjz2GOnXqlHolu52dHcaNG4elS5fC0dERzZs3x9q1a5Gfn4+RI0eaoOeJiIiIiIiIyBKZxYDP4cOH4e/vD2tra9SvXx8dOnRAZGQkhg8fLr31avXq1fjoo48QERGBjIwMNG7cGF26dEHjxo1hZWWFe/fuYfbs2bhz5w4aNGiAgQMHSm/cevnll5GamorQ0FDY2tpi9OjR6N+/P7Kzs6U2TJw4EeHh4Rg8eDDy8/Oxb98+tGzZEh988AGWLl2KzZs3w8/PD9OnT8fbb79d5vZYWVkhKioKCxYswJAhQ+Di4oLIyEjp1evAw1uwIiMjsWrVKqxYsQJdunTRecvazJkzIYTArFmzcP/+fXh6emLt2rVwdLTMh7oRERERERERUeXV+IDPkiVLsGTJEoPL2dvbIzIyEpGRkTrnL1++XO+6Tk5O+OSTT8os38XFBZs2bSo1vX///ujfv7/WtNGjR0u/T58+HdOnTy+1np+fH3bt2qU1LSkpSevvUaNGYdSoUVrTSvZFnTp1ytzubt26lSrX3d291DQiIiIiIiIienSY7TN8iIiIiIiIiIioYjjgQ0RERERERERkYTjgQ0RERERERERkYTjgQ0RERERERERkYTjgQ0RERERERERkYTjgQ0RERERERERkYTjgQ0RERERERERkYTjgQ0RERERERERkYaxrugFExlLIbFBXbiv9TrVXySwVVgp0afgk7OT1AEDrd6oYcz1eKtouO3k9k+4Xpi6vNqpoFua6b5E2c82pIsdeVRyv+vrHlHVVtKyaPj+Z675TE6o6C/Y1EVU1mRBC1HQjqOap1WqcPn0aPj4+kMvlNd0cve4V3AMAONk4VUt9taVfaqPKZslsDKvu46WIoWxqql1UOpuKZsEMTa8qzmnMqWzl6Z9H7TOnNu07tT2b2tTX5WUom9qeHVFtwCt8qFaxxA/DRxWzrHrm2sfm2q5HUUWzYIa1A3MqG/tHP/ZN9WFfE1FV4jN8iIiIiIiIiIgsDAd8iIiIiIiIiIgsDAd8iIiIiIiIiIgsDAd8iIioVlBlZECVkWHyZcmyMHuqrUruu9yXzQvzIKLaiA9tJouizslBTnw87L28ILe3N225587B3ssLALTqUOfkIOvPPwEA9bt21aq3qD22bdsi79KlMttlqrYXtUfz4AGs6tRB/a5dAUBnG0u2r2Q7K9MmXeuWnFbZ8uVJSVC3awfI5VWSuzkrvt/Ve+IJnbnZtm2L++fOaS1TfFrRvmGo74zNTar3iSf+/+9z54za/3XVU3x65vHjyDp+HJDL0WLqVCgaNNC7niojA9c/+wxCrYbjU0/B8amnSpWn75itSbr6uax2VuT4Kbh1C4oDB5Dn6Aj17dsVPmaK1w1A7/6mr3xd65dctuDWLaTv2QOngAAU/PuvtGzJ81vxdYqyB1BqPzF2u0r2eUXPU1X1eVRehvq6PO3U9Zlx/9w5KY/iueuqy1CbKtq+ss6HZbXf2GzUOTm4FxsL+eXLuHfvHpy6ddN57tP3HcHQPNu2bZETH4+s48chADg+9RTqdeiAmxs3AtC/L5f1OVvyXK9vXy5+nOVfuVLqu4Oh47Q8avKYKHlsA8Z99hWtY9e+vVYeVgpFmZ+DFT0GdOWk77taefdjIno08Qofsijq3FxkHT8OdW5ulZVbsg51bi6yYmORFRdXqt6iZVV37xpsl6naLrXnzz+lNulrY8n2lWxnZdqka12dfVeJ8q0vXNCZyaOgeKb6clPdvVtqmeLTjO07Y3PTt5wx+7+hcrNPnIA6NxeavDwIlarM9YRKBU1eHjT37yP75End7dRzzNak8pxbdC1vDNXdu7C+eBEF//5bqWNG1zlR1/6mr/yyzqnF25p94gQe3LypvWyJ81txUvY69hOjt6tEn1f0/GIu5yVDfV2edur8zCiWR/HcyypXX5sq2r6yzodltd/YbNS5ucj+809YX7yI7D//LPPcV9b5sqxzpHSO+995qzA72+C+XFZ/lTzX61te6zjT9d3BiDyNVZPHRMlju7z7Vck8jPkcrMgxUHJe8b9Lflcr735MRI8mDvgQEREREREREVkYDvgQEREREREREVkYDvgQEREREREREVkYDvgQEREREREREVkYDvgQEREREREREVkYDvgQEREREREREVkYDvgQEREREREREVkYDvgQEREREREREVkYDvgQEREREREREVkYsx/wCQ8Ph1KphFKpxBNPPIHevXvj3XffRWZmZk03TUtsbKzUzpI/t2/frrZ2pKamQqlUIjExsdrqJCIiIiIiIiLzYl3TDTBGQEAAFi9eDLVajYsXLyIiIgLZ2dlYvnx5TTetlN27d8Pe3l5rWqNGjWqoNURERERERET0KKoVAz42NjZwdnYGADz22GMICgrCjz/+qLXMli1bsHbtWqSmpqJFixYICQnB888/DwAoKCjAkiVLsHfvXmRmZsLZ2RljxozBSy+9BABQKpV49913sX//fsTFxaFx48Z488038fTTT5e7rY0aNUL9+vVLTT98+DBefvll/PHHH1rzFyxYgPPnz+Prr78GAJw6dQoffvgh4uPj0aBBAwwYMAAzZsyAnZ0dAKBv374YPXo0rl69it27d8PR0RHTpk3DmDFjAAD9+vUDADz77LMAgCeffBIbN240uv1qtbrc22xO1Go1xP/+a4ptKSpDU6xcAFp1FNUJIUrVW7w9htplqrYXlSOEgPhfm4raXLKNutqna9sq0iZd65qyfE2xbIq2z1S51wYl9zt9/aprmeLTAMN9Z2xuRdOLZ2Ps/q+rnpLTBQBZGfOLt6+IKOO41HXM1iR9/ayvnRU5fnRlU5HtL143gDL3N13l61u/ZE4AoNFoSi1b/Pymax3oKK8821W8zyt6nirvesXPk6ZkqK/L0059nxnF8zCUa1ltqmj7jN339H3WGaJWqyGEeNg+A5/1JbfB2HnFz3HFP7sB/e3UtR36zvX69uWSx5mu7w7GflYY1Y+VLENfucX/W1bdFfnsg4489K1f2WNAV076jruq6k9TMpSNubabyJLUigGf4q5du4bDhw/D2vr/m75582asWLEC77zzDtzd3ZGYmIi3334bdnZ2GD58ODZu3Ij9+/fjo48+QrNmzXDz5k38+++/WuV+/PHHmDlzJubMmYPt27fjjTfegJubG1xdXU3Sbj8/P9SvXx979uzBqFGjADw8yf3yyy947bXXAABJSUkIDQ3Ff//7XyxcuBB3797F/PnzMX/+fCxevFgq64svvsBrr72GqVOnYs+ePZg7dy66dOkCV1dX/PDDDxg1ahQ2bNiAdu3aQaFQlKud8fHxJtnemiLLzIRNZibuJCZC3LhhsnKTLlyQygWgVYcsMxM22dmATIa7Jeotak96cjIUBtplqrZL7VGrgYIC3C1qs442lmxfyXZWpk261i05rdLl42E2AKokd3NWfL/L0JNbenIyFCWWKT7tro79WW9dRuQmTb9wAXB0lI4bY/Z/XfWU3FZZXh6EXI5EffUWb19u7sNjQC7XfVzqOWZrks7tKKOdFTl+rFJTUQcPb/+1rsQxU7xuAHr3N33l61q/5LJWqamoo1Ih5epVqa0ASp3fSmWbmwsApfYTo7erRJ9X9DxV0fVM/TlsqK/L006dnxnF8iieu666DLWpou0r63xYVvuNzUaWmQmbnBwAwP3798s8B5XcBmPmFfWjLC/v4QCDXP5wOwzsy2V9zpY81+vbl7WOM13fHYzI01hV9R2tSFnHTsljGzDys6/4flUsD33rG3NuM7Scvs/ckt/Vyrsf16Ta/u8LotqsVgz4HDhwAL6+vlCr1Xjw4AEA4K233pLmf/LJJwgPD8fAgQMBAI8//jguXryITZs2Yfjw4bh58yZat26Nzp07QyaToUWLFqXqCAwMlAZiwsLCcPToUWzcuBFz584tV1t79eql9XeTJk2wZ88eyOVyPP300/j555+leo4dO4bMzEwEBgYCANatW4ehQ4di/PjxAIA2bdpgzpw5CAkJwdy5c1GnTh0AQM+ePaWrlyZPnowNGzYgLi4Orq6uaNiwIQDAyclJuiqqPLy8vCCXy8u9nrkoSEvD7TNn4OzuDpsmTSpdnlqtRnx8PJRubkj/X7kAtOooSEvDrbg4AEDTEvUWtcfJ1RX3Ll0qs12mantRezQFBbCysUHT/7VZVxtLtq9kOyvTJl3rlpxWmfLzb97E5UOHoHRzg5VcbtLca4Pi+11DPbk5ubpKX2wbFsu4aFpTHfuzvrqMya1oeiM3N5y/dUs6bozZ/3XVU3JbC4WAlbU1XPXUW7x9Nw8cgFCpILe313lc6jtma5Ku7SirnRU5frKtrXEDQMuWLZGbllbhY6Z43QD07m/6yte1fsll79epg38VCjzWujVy/tdWAKXObyWzvXngAACU2k+M3a6SfV7R81R51yv6vDH157Chvi5PO3V9ZtxNTJTyKJ67rroMtami7SvrfFhW+43NpiAtDf/GxuJ+Zibq1atX5jmo5DYYM6+oHwuFgEwIyO3t0dDVFXdOngSgf18u63O25Lle375c/DjLunat1HcHQ8dpeZj6O1oRY46dksc2YNxnX/H9qnge+tY35txmaDl9n7klv6uVdz+uCYayKZpPRFWnVgz4dOvWDXPnzkVeXh5iYmJw+fJlBAcHAwDu3r2LmzdvYs6cOXj77beldQoLC+Hg4AAAGD58OCZOnIjAwEAEBASgd+/e8Pf316rD19dX628fH58KPfj4m2++Qb169aS/i5/chg0bhjFjxuDWrVto2rQpduzYgV69esHR0REAkJCQgKtXr2LHjh3SOkIIaDQapKamSlcbKZVKab5MJkPjxo2Rnp5e7rbqIpfLa/WAj1wuhwym3w6rYuUC0KqjqE7IZKXqLd4eQ+0yVduLypHJZJD9r01FbS7ZRl3t07VtFWmTrnVNWb7V/5a3qmQ5tVXJ/U5fv+papvg0AOXeN/X1d9H04tkYu//rqqfkdFmxv/UdZyXnyco4LnUdszVJXz/ra2dF9ntd2VRk+4vXDaDM/U1X+frWL5kTAFhZWZVatvj5Tdc60FFeebareJ9X9PxSmfVMuU8a6uvytFPfZ0bxPAzlWlabKto+Y/c9fZ91hsjlcshkD89AZZ1TdG2DsfOKn+OKf3YD+tupazv0nev17csljzNd3x2M/awwqh8rWYah8o3dRwDjP/ugIw9961f2GNCVk77jrqr705RqQxuJLFWtGPCxtbVF69atAQCRkZEICQnBypUrERYWBo1GAwCYP38+OnbsqLWeldXDl5B5eHhg3759OHToEI4ePYqwsDD4+flhxYoVZdZb9OFeHi1bttT5DB8A8Pb2RqtWrbBr1y6MGzcOv/76q9atWhqNBmPHjkVISEipdZs1ayb9Xvx2tqJ2Ft1bTkRERERERERUKwZ8Snr11VcxefJkjBs3Dk2bNkXTpk1x7do1DBs2TO869vb2CAoKQlBQEAYNGoRJkybh3r17cHJyAgCcPn1aetAxAJw5cwbu/7vM0pSGDBmCHTt2oGnTprCyskLv3r2leU888QT++ecfaXCrIoqe2cOHoBERERERERE9uqxqugEV0a1bN7Rr1w6ff/45AGD69OlYvXo1vvzyS1y+fBlJSUnYsmULvvjiCwDAhg0bsHPnTiQnJ+Py5cvYvXs3nJ2dta7E2b17t3S72IoVK/D3339Lt40BwIsvvii9Sass6enpuH37ttaPSqWS5g8dOhQJCQn47LPPMGjQIOm5PMDD5/GcPn0a8+bNQ2JiIq5cuYJ9+/Zh/vz5RvdNo0aNULduXRw+fBh37txBdna20esSERERERERkWWolVf4AMCECRPw1ltvYfLkyRg1ahTq1q2LdevW4YMPPoCdnR3c3Nzw4osvAgDs7OywZs0aXL16FVZWVvDy8sLq1aulW76Ah4NGu3btwrx58+Ds7Ixly5ahXbt20vxr164hIyPDYLuKHsBc3KZNm+Dj4wPg4YOYvby8EB8fj4iICK3lOnTogI0bN+Kjjz7Cc889B+DhA6iDgoKM7hdra2tERkZi1apVWLFiBbp06VKu17ITERERERERUe1n9gM+S5Ys0Tl96NChGDp0qN6/ixs9ejRGjx5dZj1NmzbF+vXr9c7fv39/met369YNSUlJZS5TJCYmRu88b2/vcrdj+/btWn+PGjVKehMYERERERERET16auUtXUREREREREREpB8HfIiIiIiIiIiILIzZ39JVHYy9FYuIiIiIiIiIqDbgFT5ERERERERERBaGAz5ERERERERERBaGAz5ERERERERERBaGAz5ERERERERERBaGD20miyK3s0P9p56C3M6uSsst/rvczg71u3WTfte1nqJhQ4PtMlXbi9qjefAAVnXq/H+bdbSxZPtKtrMybdK1bslplS2/0M0Ncjs7yOXyKsndnBXf7/TlpmjYsNQyxafp2p/11mVEbvqWM2b/N1SuQ5cuyDp+HJDLIVMoylxPplDAytYWwsYGDp07626nnmO2JunsvzLaWZHjR9GwIQrbtYPNY49BXoljRtc5Udf+pq/8ss6pxdvq0KUL6jRrBlnxZXWc34oUZV/0e4W2q0SfV/Q8VVWfR+VlqK/L006dnxnF8iiZu75yy2pTRdpX1vmwrPYbm43czg4OXbvi3uXLcHBxMXjuK+t8qe8cWXSOEwAcOneGtYODwX25rM9ZXed6XcsXP850fncwIk9j1eQxoevYLs9+VTIPK4XCqM/BihwDhj5L9X1nIyLSRSaEEDXdCKp5arUap0+fho+PD+RyeU03x2ywX8wXszFfVZWNKiMDAKBo0MCkyz5KHoXjprZm/yhkU5tVRz4l993aui9Xt+o6dphH+RnKhuc9oqrHK3yIiKhWKM+XbH4hf3Qxe6qtSu673JfNC/MgotqIz/AhIiIiIiIiIrIwHPAhIiIiIiIiIrIwHPAhIiIiIiIiIrIwfIYPAQCKnt2tVqtruCXmpag/2C/mh9mYL2ZjvpiN+WI25o35mC9mY74MZVM0ne8QIqo6fEsXAQAKCgoQHx9f080gIiIiIqJHiJeXF2xsbGq6GUQWiQM+BADQaDQoLCyElZUVZDJZTTeHiIiIiIgsmBACGo0G1tbWsLLik0aIqgIHfIiIiIiIiIiILAyHUomIiIiIiIiILAwHfIiIiIiIiIiILAwHfIiIiIiIiIiILAwHfIiIiIiIiIiILAwHfIiIiIiIiIiILAwHfIiIiIiIiIiILAwHfIiIiIiIiIiILAwHfIiIiIiIiIiILAwHfIiIiIiIiIiILAwHfMjifP755/jPf/4DX19fdO/eHS+//DIuXbqktUx0dDQCAwPh4+ODrl27Yvz48Thz5ozO8vr27YtDhw4BAJKSkhAcHAxvb28EBARg5cqVEEJoLV9QUICoqCj06dMHnp6e6N+/P2JiYqpmY2sh5mO+mI35Yjbmi9mYN+ZjvpiN+WI2RJbDuqYbQGRqcXFxeP755+Hl5QW1Wo2oqCiEhoZi586dsLOzAwC0adMG77zzDh5//HHk5+djw4YNmDhxIn799Vc0bNhQKuv8+fO4d+8ennrqKeTk5GDixIno1q0bYmJicOXKFYSHh8POzg4TJ06U1vnvf/+L9PR0LFy4EK1atcLdu3dRWFhY7f1grpiP+WI25ovZmC9mY96Yj/liNuaL2RBZEEFk4dLT04Wbm5uIi4vTu0x2drZwc3MTR48e1Zq+cuVKMX36dCGEEN98843o3LmzePDggTT/888/F/7+/kKj0QghhDh48KDo3LmzyMjIMP2GWCjmY76YjfliNuaL2Zg35mO+mI35YjZEtRdv6SKLl52dDQBwdHTUOb+goACbNm2Cg4MDlEql1rz9+/ejX79+AIDTp0+ja9eusLGxkeb7+/sjLS0Nqamp0vKenp5Yu3YtAgICMGjQILz//vvIz8+vik2zCMzHfDEb88VszBezMW/Mx3wxG/PFbIhqL97SRRZNCIHFixejc+fOcHNz05r3+++/Y8aMGcjLy4OzszPWr1+vdQnqrVu3kJSUhF69egEA7ty5gxYtWmiV0ahRI2ne448/jmvXruHkyZOoU6cOVq1ahYyMDMybNw/37t3D4sWLq3hrax/mY76YjfliNuaL2Zg35mO+mI35YjZEtRuv8CGL9t577+HChQtYvnx5qXndunXDtm3b8P333yMgIABhYWFIT0+X5u/btw++vr5wcnKSpslkMp31FE0XQkAmk2HZsmXw9vZGr169EB4ejh9//JH/Z0IH5mO+mI35Yjbmi9mYN+ZjvpiN+WI2RLUbB3zIYs2fPx/79+/Hl19+iccee6zUfDs7O7Ru3Ro+Pj5YtGgRrK2ttd4AUPwSVABo3Lgxbt++rVVG0Yda0f+dcHZ2RtOmTeHg4CAt4+rqCiEE/v33X5NuX23HfMwXszFfzMZ8MRvzxnzMF7MxX8yGqPbjgA9ZHCEE3nvvPezduxdffvklHn/8caPXKygoAADcv38fsbGxWh9SPj4+OHHihLQMABw5cgRNmjRBy5YtAQCdOnVCWloa7t+/Ly1z+fJlWFlZ6fygfBQxH/PFbMwXszFfzMa8MR/zxWzMF7MhsiBV9zxooprx7rvvis6dO4vY2FiRlpYm/eTl5QkhhLh//7748MMPxV9//SVSU1PF2bNnRUREhPD09BQXLlwQQgjxyy+/iCFDhmiVm5WVJfz8/MSMGTNEUlKS2Lt3r+jUqZNYt26dtExOTo7o2bOnmD59uvjnn39EXFycGDhwoJgzZ071dYCZYz7mi9mYL2ZjvpiNeWM+5ovZmC9mQ2Q5ZEIIUdODTkSmVPLtAEUWL16MESNG4MGDB3jjjTdw5swZZGRkwMnJCV5eXpg2bRq8vb0BAG+++SaaN2+O119/XauMpKQkvPfee/j777/h6OiIsWPH4pVXXtG6Hzk5ORkLFizAqVOn4OTkhKeffhphYWGoW7du1W10LcJ8zBezMV/MxnwxG/PGfMwXszFfzIbIcnDAh6gEtVoNPz8/rFmzRvrQIvPBfMwXszFfzMZ8MRvzxnzMF7MxX8yGyHzwGT5EJdy7dw8vvvgivLy8aroppAPzMV/MxnwxG/PFbMwb8zFfzMZ8MRsi88ErfIiIiIiIiIiILAyv8CEiIiIiIiIisjAc8CEiIiIiIiIisjAc8CEiIiIiIiIisjAc8CGL9c0336Bv377w8vLCiBEjcOLECWne3r17ERoaim7dukGpVCIxMdGoMpOSkhAcHAxvb28EBARg5cqVKPkYrLi4OIwYMQJeXl7o168fvvvuO5Nul6XQl49KpcIHH3yAoUOHwsfHB/7+/pg1axZu3bplsEzmYxplHTvR0dEIDAyEj48PunbtivHjx+PMmTMGy2Q2plFWNsW98847UCqV2LBhg8EymY1plJVNeHg4lEql1s/o0aMNlslsTMPQcZOcnIypU6eic+fO8PX1xejRo3Hjxo0yy2Q2plNWPiWPm6KftWvXllkm8zGNsrK5f/8+3nvvPfTs2RPe3t54+umn8e233xosk9kQVTNBZIF27twpPDw8xObNm8XFixfFggULhI+Pj7h+/boQQogff/xRREdHi82bNws3Nzdx7tw5g2VmZ2cLPz8/8frrr4ukpCSxZ88e4evrK9atWyctk5KSIjp27CgWLFggLl68KDZv3iw8PDzE7t27q2xba6Oy8snKyhLjx48XO3fuFMnJyeKvv/4So0aNEsOHDy+zTOZjGoaOnZ9++kn88ccfIiUlRVy4cEFERESITp06ifT0dL1lMhvTMJRNkV9//VUMGzZM+Pv7iy+++KLMMpmNaRjKZvbs2SI0NFSkpaVJPxkZGWWWyWxMw1A2V69eFU8++aR4//33RUJCgkhJSRG///67uHPnjt4ymY3pGMqn+DGTlpYmYmJihFKpFCkpKXrLZD6mYSibOXPmiP79+4vjx4+La9euie+//164u7uLX3/9VW+ZzIao+nHAhyzSyJEjxTvvvKM1LTAwUCxbtkxr2rVr14we8Pnmm29E586dxYMHD6Rpn3/+ufD39xcajUYIIcTSpUtFYGCg1npvv/22GD16dEU3xSIZm0+RM2fOCDc3t1L/sC2O+ZhGebPJzs4Wbm5u4ujRo3rLZDamYUw2//77rwgICBAXLlwQffr0MTjgw2xMw1A2s2fPFtOmTStXmczGNAxlExYWJmbOnFmuMpmN6ZT3M2fatGnihRdeKLNM5mMahrIZPHiwWLlypdb84cOHi6ioKL1lMhui6sdbusjiFBQUICEhAf7+/lrTe/Togb/++svocsLDwxESEiL9ffr0aXTt2hU2NjbSNH9/f6SlpSE1NVVapkePHlrlBAQE4OzZs1CpVBXZHItTkXxycnIgk8lQv359aRrzMb3yZlNQUIBNmzbBwcEBSqVSms5sTM+YbDQaDd58802Ehoaiffv2OsthNqZn7HETFxeH7t27Y9CgQYiMjER6errW8szG9Axlo9FocODAAbRp0wahoaHo3r07Ro0ahd9++01reWZTNcr7mXPnzh0cPHgQI0eO1JrOfEzPmGw6deqE/fv349atWxBC4Pjx47h8+bLWOsyGqOZxwIcsTkZGBtRqNRo1aqQ1vXHjxrh9+7bR5Tg7O6NZs2bS33fu3EHjxo21limq486dO2UuU1hYiIyMjHJth6Uqbz4PHjzAsmXLMGTIENjb20vTmY/pGZvN77//Dl9fX3h7e2PDhg1Yv349GjZsKM1nNqZnTDZr1qyBtbU1XnjhBb3lMBvTMyabnj17YtmyZfjyyy8xe/ZsxMfH48UXX0RBQYG0PLMxPUPZpKenIzc3F2vWrEFAQADWr1+PAQMG4NVXX0VcXJy0PLOpGuX9PvDjjz+iXr16GDhwoNZ05mN6xmQTGRmJdu3aoWfPnvD09MSkSZPw7rvvokuXLtLyzIao5lnXdAOIqopMJtP6WwhRalpZ3njjDYNl6pquq96y1n1UGZOPSqXC66+/DiEE5s6dqzWP+VQdQ9l069YN27ZtQ0ZGBjZv3oywsDD88MMP0pc2ZlN19GVz9uxZfPXVV9i6dWuZ/cVsqk5Zx01QUJA03c3NDZ6enujbty8OHDgg/eOV2VQdfdloNBoAQL9+/TB+/HgAgLu7O06dOoXvv/8eTz75JABmU9WM/b62ZcsWDB06FHXq1NGaznyqTlnZbNy4EadPn8ann36K5s2b48SJE5g3bx6aNGkCPz8/AMyGyBzwCh+yOA0aNIBcLpf+T0GR9PT0Uv/HoDx0/R+nokvyi/6hq2uZu3fvwtraGk5OThWu25IYm49KpUJYWBhSU1Oxfv16rat7dGE+lWdsNnZ2dmjdujV8fHywaNEiWFtbIyYmRm+5zKbyDGVz4sQJpKeno0+fPnjiiSfwxBNP4Pr163j//ffRt29fveUym8qryGdOkyZN0Lx5c1y5ckVvucym8gxl06BBA1hbW8PV1VVrvqura5lv6WI2plGeY+fEiRO4fPkyRo0aZbBc5lN5hrLJz89HVFQU3nrrLfTt2xcdOnRAcHAwgoKCsG7dOr3lMhui6scBH7I4NjY28PDwwB9//KE1/ejRo/D19a1wuT4+Pjhx4oTWJfhHjhxBkyZN0LJlS2mZo0ePaq135MgReHp6QqFQVLhuS2JMPkWDPVevXsWGDRvQoEEDg+Uyn8qr6LEjhNDq95KYTeUZyuaZZ57BTz/9hG3btkk/TZo0QWhoaJmvL2Y2lVeR4yYjIwM3b95EkyZN9JbLbCrPUDY2Njbw8vLC5cuXteZfuXIFLVq00FsuszGN8hw7MTEx8PDwQIcOHQyWy3wqz1A2hYWFUKlUpa64kcvlpV6xXhyzIaoB1fuMaKLqUfQqyR9++EFcvHhRLFy4UPj4+IjU1FQhhBAZGRni3Llz4sCBA8LNzU3s3LlTnDt3TqSlpUllLFu2TLz55pvS31lZWcLPz0/MmDFDJCUlib1794pOnTrpfJXkokWLxMWLF8UPP/zAV0nqUFY+KpVKTJ06VfTs2VMkJiZqvY61+FsdmE/VKCub+/fviw8//FD89ddfIjU1VZw9e1ZEREQIT09PceHCBakMZlM1DJ3XStL1li5mUzXKyiYnJ0csWbJEnDp1Sly7dk0cP35cjBkzRgQEBIjs7GypDGZTNQwdN3v37hUeHh5i06ZN4sqVK2Ljxo3C3d1d/Pnnn1IZzKbqGHNey87OFh07dhTffvutzjKYT9UwlE1wcLAYPHiwOH78uEhJSRFbtmwRXl5e4ptvvpHKYDZENY8DPmSxvv76a9GnTx/h4eEhhg8fLuLi4qR5W7ZsEW5ubqV+VqxYIS0ze/ZsERwcrFXm+fPnxXPPPSc8PT1Fjx49RHR0tPQaySKxsbHi2WefFR4eHqJPnz56v6A86vTlc+3aNZ3ZuLm5iePHj0vrM5+qoy+b/Px88corrwh/f3/h4eEhevToIaZOnSrOnDmjtT6zqTplnddK0jXgw2yqjr5s8vLyxMSJE8VTTz0lPDw8RO/evcXs2bPFjRs3tNZnNlXH0HHzww8/iAEDBggvLy8xbNgw8euvv2rNZzZVy1A+33//vfD29hZZWVk612c+VaesbNLS0kR4eLjw9/cXXl5eYtCgQWL9+vVa/cxsiGqeTIgyrrsjIiIiIiIiIqJah8/wISIiIiIiIiKyMBzwISIiIiIiIiKyMBzwISIiIiIiIiKyMBzwISIiIiIiIiKyMBzwISIiIiIiIiKyMBzwISIiIiIiIiKyMBzwISIiIiIiIiKyMBzwISIiIiIiIiKyMBzwISIiIiIiIiKyMBzwISIiIiIiIiKyMBzwISIiIiIiIiKyMP8HmsZUl3PtPNYAAAAASUVORK5CYII=",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "#| eval: false\n",
+ "sns.set_style('whitegrid')\n",
+ "\n",
+ "g = TimeSeriesFigure()\n",
+ "\n",
+ "channels_df = format_timeseries(channels_df).set_index('collection_timestamp')\n",
+ "g.plot(sns.lineplot, channels_df, x='collection_timestamp', y='heart_rate',\n",
+ " name='heart_rate') # Named axis 'heart_rate'\n",
+ "\n",
+ "# You can also use the `sharex` argument to share the x-axis between plots\n",
+ "# Named axes, such as 'heart_rate', can be referred to by name\n",
+ "g.plot(sns.lineplot, channels_df, x='collection_timestamp', y='spo2',\n",
+ " sharex='heart_rate')\n",
+ "\n",
+ "# You can increase the relative height of the plot by passing a `height` argument\n",
+ "g.plot(sns.lineplot, channels_df, x='collection_timestamp', y='respiratory_movement',\n",
+ " sharex='heart_rate', height=1.5)\n",
+ "\n",
+ "# You may add a plot to an existing axes by passing an `ax` argument to the plotting function\n",
+ "# Named axes, such as 'heart_rate', can be referred to by name\n",
+ "stage_events = ['Wake', 'Light Sleep', 'Deep Sleep', 'REM'] # Include only sleep stage events\n",
+ "g.plot(plot_events_fill, events_df, hue='event', y_include=stage_events,\n",
+ " ax='heart_rate')\n",
+ "\n",
+ "apnea_events = ['Resp. Event', 'Desaturation', 'A/H obstructive', 'A/H central', 'A/H unclassified']\n",
+ "g.plot(plot_events_bars, events_df, hue='event', y_include=apnea_events, height=1.5)\n",
+ "\n",
+ "# Control functions to conveniently modify all axes\n",
+ "g.set_periodic_ticks('1h')\n",
+ "g.set_axis_padding(0.05)\n",
+ "g.set_axis_properties(xlabel='')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#| hide\n",
+ "import nbdev; nbdev.nbdev_export()"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "python3",
+ "language": "python",
+ "name": "python3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/nbs/16_diet_plots.ipynb b/nbs/16_diet_plots.ipynb
new file mode 100644
index 0000000..a3d108f
--- /dev/null
+++ b/nbs/16_diet_plots.ipynb
@@ -0,0 +1,1105 @@
+{
+ "cells": [
+ {
+ "cell_type": "raw",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "output-file: diet_plots.html\n",
+ "title: Diet logging plots\n",
+ "---"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#| default_exp diet_plots"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#| hide\n",
+ "from nbdev.showdoc import *"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#| export\n",
+ "from typing import List, Tuple\n",
+ "\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "\n",
+ "import seaborn as sns\n",
+ "import matplotlib.pyplot as plt\n",
+ "import matplotlib.dates as mdates\n",
+ "from matplotlib.ticker import FuncFormatter\n",
+ "import matplotlib.patches as mpatches\n",
+ "import matplotlib.lines as mlines\n",
+ "import matplotlib.patches as Patch"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#| export\n",
+ "from pheno_utils.timeseries_plots import format_timeseries, format_xticks, plot_events_bars\n",
+ "from pheno_utils.config import DEFAULT_PALETTE, LEGEND_SHIFT\n",
+ "\n",
+ "\n",
+ "def plot_nutrient_bars(\n",
+ " diet_log: pd.DataFrame, \n",
+ " x: str='collection_timestamp',\n",
+ " label: str='short_food_name',\n",
+ " participant_id: int=None, \n",
+ " array_index: int = None,\n",
+ " time_range: Tuple[str, str]=None, \n",
+ " meals: bool=True,\n",
+ " summary: bool=False,\n",
+ " nut_include: List[str]=None,\n",
+ " nut_exclude: List[str]=None,\n",
+ " agg_units: dict={'kcal': 'sum', 'g': 'sum', 'mg': 'sum'},\n",
+ " legend: bool=True,\n",
+ " bar_width=np.timedelta64(15, 'm'),\n",
+ " palette: str=DEFAULT_PALETTE,\n",
+ " alpha: float=0.7,\n",
+ " ax: plt.Axes=None,\n",
+ " figsize: Tuple[float, float]=(14, 3),\n",
+ "):\n",
+ " \"\"\"\n",
+ " Plot a stacked bar chart representing nutrient intake for each meal over time.\n",
+ "\n",
+ " Args:\n",
+ " diet_log (pd.DataFrame): The dataframe containing the diet log data, with columns for timestamps, nutrients, and other measurements.\n",
+ " x (str): The name of the column in `diet_log` representing the x-axis variable, such as timestamps. Default is 'collection_timestamp'.\n",
+ " label (str): The name of the column in `diet_log` representing the labels for each meal. Default is 'short_food_name'.\n",
+ " participant_id (Optional[int]): The participant's ID to filter the diet log. If None, no filtering is done. Default is None.\n",
+ " array_index (Optional[int]): The array index to filter the diet log. If None, no filtering is done. Default is None.\n",
+ " time_range (Optional[Tuple[str, str]]): A tuple of strings representing the start and end dates for filtering the data. Format should be 'YYYY-MM-DD'. Default is None.\n",
+ " meals (bool): If True, includes individual meals in the plot. Default is True.\n",
+ " summary (bool): If True, includes a daily summary in the plot. Default is False.\n",
+ " nut_include (List[str]): A list of nutrients to include in the plot. Default is None.\n",
+ " nut_exclude (List[str]): A list of nutrients to exclude from the plot. Default is None.\n",
+ " agg_units (dict): A dictionary mapping nutrient units to aggregation functions. Only nutrients with units in this dictionary are plotted.\n",
+ " legend (bool): If True, includes a legend in the plot. Default is True.\n",
+ " bar_width (np.timedelta64): The width of the bars representing each meal on the time axis. Default is 15 minutes.\n",
+ " palette (str): The color palette to use for the stacked bars.\n",
+ " alpha (float): The transparency of the stacked bars. Default is 0.7.\n",
+ " ax (Optional[plt.Axes]): The Matplotlib axis on which to plot the bar chart. If None, a new axis is created. Default is None.\n",
+ " figsize (Tuple[float, float]): The size of the figure to create. Default is (14, 3).\n",
+ "\n",
+ " Returns:\n",
+ " None: The function creates a stacked bar chart on the specified or newly created axis.\n",
+ " \"\"\"\n",
+ " # Prepare the data for plotting\n",
+ " df, grouped_nutrients = prepare_meals(\n",
+ " diet_log,\n",
+ " participant_id=participant_id,\n",
+ " array_index=array_index,\n",
+ " time_range=time_range,\n",
+ " label=label,\n",
+ " return_meals=meals,\n",
+ " return_summary=summary,\n",
+ " y_include=nut_include,\n",
+ " y_exclude=nut_exclude,\n",
+ " agg_units=agg_units,\n",
+ " x_col=x,\n",
+ " )\n",
+ "\n",
+ " if ax is None:\n",
+ " fig, ax = plt.subplots(\n",
+ " len(grouped_nutrients), 1,\n",
+ " figsize=(figsize[0], figsize[1] * len(grouped_nutrients)),\n",
+ " sharex=True)\n",
+ " if len(grouped_nutrients) == 1:\n",
+ " ax = [ax]\n",
+ "\n",
+ " colors = sns.color_palette(\n",
+ " palette, sum([len(g) for g in grouped_nutrients.values()]))\n",
+ "\n",
+ " # Calculate the width in time units\n",
+ " bar_width_in_days = bar_width / np.timedelta64(1, 'D')\n",
+ "\n",
+ " unit_list = [g for g in grouped_nutrients if g != 'kcal']\n",
+ " if 'kcal' in grouped_nutrients:\n",
+ " # kcal is last to keep colours synced with the lollipop plot\n",
+ " unit_list.append('kcal')\n",
+ "\n",
+ " # Stacked bar plots for grouped nutrients\n",
+ " c = 0\n",
+ " for idx, unit in enumerate(unit_list):\n",
+ " bottom = pd.Series([0] * len(df))\n",
+ " for nut in grouped_nutrients[unit]:\n",
+ " if nut in ['weight_g']:\n",
+ " continue\n",
+ " ax[idx].bar(\n",
+ " df[x], df[nut], bottom=bottom, width=bar_width_in_days,\n",
+ " color=colors[c], alpha=alpha, label=nut)\n",
+ " bottom += df[nut]\n",
+ " c += 1\n",
+ " ax[idx].set_ylabel(f'Nutrients ({unit})', rotation=0, horizontalalignment='right')\n",
+ " if legend:\n",
+ " ax[idx].legend(loc='upper left', bbox_to_anchor=LEGEND_SHIFT)\n",
+ " ax[idx].grid(True)\n",
+ "\n",
+ " # Set x-tick labels for the bottom and top axes\n",
+ " format_xticks(ax[-1], df[x])\n",
+ " if label is not None:\n",
+ " secax = ax[0].secondary_xaxis('top')\n",
+ " secax.set_xticks(df[x])\n",
+ " secax.set_xticklabels(df[label], ha='center', fontsize=9)\n",
+ "\n",
+ " return ax\n",
+ "\n",
+ "\n",
+ "def plot_nutrient_lollipop(\n",
+ " diet_log: pd.DataFrame, \n",
+ " x: str='collection_timestamp',\n",
+ " y: str='calories_kcal',\n",
+ " size: str='total_g', \n",
+ " label: str='short_food_name',\n",
+ " participant_id: int=None, \n",
+ " array_index: int=None,\n",
+ " time_range: Tuple[str, str]=None, \n",
+ " meals: bool=True,\n",
+ " summary: bool=False,\n",
+ " nut_include: List[str]=None,\n",
+ " nut_exclude: List[str]=None,\n",
+ " legend: bool=True,\n",
+ " size_scale: float=5,\n",
+ " palette: str=DEFAULT_PALETTE,\n",
+ " alpha: float=0.7,\n",
+ " ax: plt.Axes=None,\n",
+ " figsize: Tuple[float, float] = (12, 3),\n",
+ "):\n",
+ " \"\"\"\n",
+ " Plot a lollipop chart with pie charts representing nutrient composition for each meal.\n",
+ "\n",
+ " NOTE: The y-axis is scaled to match the units of the x-axis, to avoid distortion of the pie charts.\n",
+ " Due to scaling, if you intend to change `xlim` after plotting, you must also provide `date_range`.\n",
+ " Use the `second_y` of g.plot() option to plot it with other y-axis data.\n",
+ "\n",
+ " Args:\n",
+ " diet_log (pd.DataFrame): The dataframe containing the diet log data, with columns for timestamps, nutrients, and other measurements.\n",
+ " x (str): The name of the column in `diet_log` representing the x-axis variable, such as timestamps. Default is 'collection_timestamp'.\n",
+ " y (str): The name of the column in `diet_log` representing the y-axis variable, such as calories. Default is 'calories_kcal'.\n",
+ " size (str): The name of the column in `diet_log` representing the size of the pie charts. Default is 'total_g'.\n",
+ " label (str): The name of the column in `diet_log` representing the labels for each meal. Default is 'short_food_name'.\n",
+ " participant_id (Optional[int]): The participant's ID to filter the diet log. If None, no filtering is done. Default is None.\n",
+ " time_range (Optional[Tuple[str, str]]): A tuple of strings representing the start and end dates for filtering the data. Format should be 'YYYY-MM-DD'. Default is None.\n",
+ " meals (bool): If True, includes individual meals in the plot. Default is True.\n",
+ " summary (bool): If True, includes a daily summary in the plot. Default is False.\n",
+ " nut_include (List[str]): A list of nutrients to include in the plot. Default is None.\n",
+ " nut_exclude (List[str]): A list of nutrients to exclude from the plot. Default is None.\n",
+ " legend (bool): If True, includes a legend in the plot. Default is True.\n",
+ " size_scale (float): The scaling factor for the size of the pie charts. Default is 5.\n",
+ " palette (str): The color palette to use for the pie slices. Default is DEFAULT_PALETTTE.\n",
+ " alpha (float): The transparency of the pie slices. Default is 0.7.\n",
+ " ax (Optional[plt.Axes]): The Matplotlib axis on which to plot the lollipop chart. If None, a new axis is created. Default is None.\n",
+ " figsize (Tuple[float, float]): The size of the figure to create. Default is (12, 6).\n",
+ "\n",
+ " Returns:\n",
+ " None: The function creates a lollipop plot with pie charts on the specified or newly created axis.\n",
+ " \"\"\"\n",
+ " # Prepare the data for plotting\n",
+ " df, grouped_nutrients = prepare_meals(\n",
+ " diet_log,\n",
+ " participant_id=participant_id,\n",
+ " array_index=array_index,\n",
+ " time_range=time_range,\n",
+ " return_meals=meals,\n",
+ " return_summary=summary,\n",
+ " y_include=nut_include,\n",
+ " y_exclude=nut_exclude,\n",
+ " x_col=x,\n",
+ " )\n",
+ "\n",
+ " if ax is None:\n",
+ " fig, ax = plt.subplots(nrows=1, ncols=1, figsize=figsize)\n",
+ "\n",
+ " # Convert nutrients in mg to grams\n",
+ " for nut in grouped_nutrients['mg']:\n",
+ " df[nut.replace('_mg', '_g')] = df[nut] / 1000\n",
+ " grouped_nutrients['g'] += [nut.replace('_mg', '_g')]\n",
+ "\n",
+ " pie_nuts = [nut for nut in grouped_nutrients['g']\n",
+ " if nut not in ['weight_g']]\n",
+ " df['total_g'] = df[pie_nuts].sum(axis=1)\n",
+ "\n",
+ " # Calculate unknown component and ensure all values are non-negative\n",
+ " df['other_g'] = (df['weight_g'] - df[pie_nuts].sum(axis=1)).clip(lower=0)\n",
+ " # pie_nuts += ['other_g']\n",
+ "\n",
+ " # Pre-set the x-axis limits based on the range of timestamps\n",
+ " if time_range is None:\n",
+ " min_x = mdates.date2num(df[x].min())\n",
+ " max_x = mdates.date2num(df[x].max())\n",
+ " else:\n",
+ " min_x = mdates.date2num(pd.to_datetime(time_range[0]))\n",
+ " max_x = mdates.date2num(pd.to_datetime(time_range[1]))\n",
+ "\n",
+ " # Pre-set the y-axis limits based on the range of the y-axis column\n",
+ " min_y = 0 # df[y_col].min()\n",
+ " max_y = df[y].max()\n",
+ "\n",
+ " # Calculate the aspect ratio between the x and y axes\n",
+ " # This is necessary to avoid distortion of the (circular) pie charts\n",
+ " x_range = max_x - min_x\n",
+ " y_range = max_y - min_y\n",
+ " aspect_ratio = x_range / y_range\n",
+ " y_delta = 0.1 * y_range\n",
+ "\n",
+ " # Scale the y-axis to match the aspect ratio of the x-axis\n",
+ " ax.set_xlim(min_x, max_x)\n",
+ " ax.set_ylim(min_y * aspect_ratio, (max_y + y_delta) * aspect_ratio)\n",
+ "\n",
+ " # Custom formatter to adjust the y-ticks back to the original scale\n",
+ " def ytick_formatter(y, pos):\n",
+ " return f'{y / aspect_ratio:.0f}'\n",
+ "\n",
+ " # Plotting the lollipop plot with pies using absolute figure coordinates\n",
+ " for idx, row in df.iterrows():\n",
+ " # Pie chart parameters\n",
+ " size_value = np.sqrt(row[size]) * aspect_ratio * size_scale\n",
+ " position = mdates.date2num(row[x])\n",
+ " y_value = row[y] * aspect_ratio # Scale y-value\n",
+ "\n",
+ " # Plot the stem (lollipop stick)\n",
+ " ax.plot([position, position], [0, y_value], color='gray', lw=1, zorder=1)\n",
+ "\n",
+ " # Plot the pie chart in figure coordinates (no distortion)\n",
+ " wedges = draw_pie_chart(ax, position, y_value, row[pie_nuts].fillna(0.).values, size_value, palette, alpha)\n",
+ "\n",
+ " if legend:\n",
+ " # Create a custom legend\n",
+ " ax.legend(handles=wedges, labels= pie_nuts, loc='upper left', bbox_to_anchor=LEGEND_SHIFT)\n",
+ "\n",
+ " # Format x-axis to display dates properly\n",
+ " ax.set_ylabel(y.replace('_', ' ').title(), rotation=0, horizontalalignment='right')\n",
+ " ax.grid(True)\n",
+ "\n",
+ " # Set y-ticks and x-ticks\n",
+ " ax.yaxis.set_major_formatter(FuncFormatter(ytick_formatter))\n",
+ " ylim = ax.get_ylim()\n",
+ " yticks = np.arange(0, ylim[1] / aspect_ratio, 100, dtype=int)\n",
+ " ax.set_yticks(yticks * aspect_ratio)\n",
+ " ax.set_yticklabels(yticks)\n",
+ "\n",
+ " format_xticks(ax, df[x])\n",
+ " if label is not None:\n",
+ " secax = ax.secondary_xaxis('top')\n",
+ " secax.set_xticks(df[x])\n",
+ " secax.set_xticklabels(df[label], ha='center', fontsize=9)\n",
+ "\n",
+ " return ax\n",
+ "\n",
+ "\n",
+ "def prepare_meals(\n",
+ " diet_log: pd.DataFrame,\n",
+ " participant_id: int=None,\n",
+ " array_index: int=None,\n",
+ " time_range: Tuple[str, str]=None,\n",
+ " label: str='short_food_name',\n",
+ " return_meals: bool = True,\n",
+ " return_summary: bool = False,\n",
+ " y_include: List[str] = None,\n",
+ " y_exclude: List[str] = None,\n",
+ " agg_units: dict={'kcal': 'sum', 'g': 'sum', 'mg': 'sum', 'unknown': 'first'},\n",
+ " x_col: str='collection_timestamp'\n",
+ ") -> pd.DataFrame:\n",
+ " \"\"\"\n",
+ " Prepare the diet log data for plotting meals and/or daily summaries.\n",
+ "\n",
+ " Args:\n",
+ " diet_log (pd.DataFrame): The dataframe containing the diet log data, with columns for timestamps, nutrients, and other measurements.\n",
+ " participant_id (Optional[int]): The participant's ID to filter the diet log. If None, no filtering is done. Default is None.\n",
+ " array_index (Optional[int]): The array index to filter the diet log. If None, no filtering is done. Default is None.\n",
+ " time_range (Optional[Tuple[str, str]]): A tuple of strings representing the start and end dates for filtering the data. Format should be 'YYYY-MM-DD'. Default is None.\n",
+ " label (str): The name of the column in `diet_log` representing the labels for each meal. Default is 'short_food_name'.\n",
+ " return_meals (bool): If True, includes individual meals in the plot. Default is True.\n",
+ " return_summary (bool): If True, includes a daily summary in the plot. Default is False.\n",
+ " y_include (List[str]): A list of nutrients (regex) to include in the plot. Default is None.\n",
+ " y_exclude (List[str]): A list of nutrients (regex) to exclude from the plot. Default is None.\n",
+ " agg_units (dict): A dictionary mapping nutrient units to aggregation functions.\n",
+ " x_col (str): The name of the column in `diet_log` representing the x-axis variable, such as timestamps. Default is 'collection_timestamp'.\n",
+ "\n",
+ " Returns:\n",
+ " pd.DataFrame: A dataframe containing the prepared data for plotting.\n",
+ " \"\"\"\n",
+ " diet_log = format_timeseries(\n",
+ " diet_log, participant_id, array_index, time_range,\n",
+ " x_start=x_col, x_end=x_col, unique=True)\n",
+ "\n",
+ " units = extract_units(diet_log.columns)\n",
+ " grouped_nutrients = {}\n",
+ " import re # Add this line to import the re module\n",
+ "\n",
+ " agg_dict = {}\n",
+ " for nut, unit in units.items():\n",
+ " if unit not in agg_units:\n",
+ " continue\n",
+ " if y_include is not None and not any([re.match(inc, nut) for inc in y_include]):\n",
+ " continue\n",
+ " if y_exclude is not None and any([re.match(exc, nut) for exc in y_exclude]):\n",
+ " continue\n",
+ " if unit not in grouped_nutrients:\n",
+ " grouped_nutrients[unit] = []\n",
+ " grouped_nutrients[unit].append(nut)\n",
+ " agg_dict[nut] = agg_units[unit]\n",
+ " nut_list = list(agg_dict.keys())\n",
+ " if label is not None:\n",
+ " agg_dict[label] = lambda x: '\\n'.join(x)\n",
+ "\n",
+ " df = diet_log\\\n",
+ " .dropna(subset=['short_food_name'])\\\n",
+ " .drop_duplicates()\\\n",
+ " .groupby([x_col])\\\n",
+ " .agg(agg_dict)\\\n",
+ " .reset_index()\n",
+ "\n",
+ " if return_summary:\n",
+ " # Add daily summary by grouping by date and summing up the nutrients\n",
+ " daily_df = df.groupby(df[x_col].dt.date)[nut_list]\\\n",
+ " .sum().reset_index()\n",
+ " if label is not None:\n",
+ " daily_df[label] = daily_df[x_col].astype('string') + '\\nDaily Summary'\n",
+ " daily_df[x_col] = pd.to_datetime(daily_df[x_col] + pd.Timedelta(hours=24))\n",
+ " if time_range is not None:\n",
+ " daily_df = daily_df[(time_range[0] <= daily_df[x_col]) & (daily_df[x_col] <= time_range[1])]\n",
+ " if return_meals:\n",
+ " # God knows why, but the two refuse to concat without this\n",
+ " df = pd.DataFrame(np.vstack([df, daily_df]), columns=df.columns)\n",
+ " else:\n",
+ " df = daily_df\n",
+ "\n",
+ " return df, grouped_nutrients\n",
+ "\n",
+ "\n",
+ "def extract_units(column_names: List[str]) -> dict:\n",
+ " units = {}\n",
+ " for col in column_names:\n",
+ " if '_' in col:\n",
+ " unit = col.split('_')[-1]\n",
+ " units[col] = unit\n",
+ " else:\n",
+ " units[col] = 'unknown'\n",
+ " return units\n",
+ "\n",
+ "\n",
+ "def draw_pie_chart(\n",
+ " ax: plt.Axes, \n",
+ " x: float, \n",
+ " y: float, \n",
+ " data: List[float], \n",
+ " size: float, \n",
+ " palette: str = DEFAULT_PALETTE,\n",
+ " alpha: float = 0.7,\n",
+ "):\n",
+ " \"\"\"\n",
+ " Draw a pie chart as an inset (in absolute figure coordinates) within the given axes\n",
+ " at the specified data coordinates.\n",
+ " What this solves is the issue of y-axis and x-axis scaling being different, which\n",
+ " distorts the pie chart when drawn directly on the axes.\n",
+ "\n",
+ " Args:\n",
+ " ax (plt.Axes): The axis on which to draw the pie chart.\n",
+ " x (float): The x-coordinate in data coordinates where the pie chart's center will be placed.\n",
+ " y (float): The y-coordinate in data coordinates where the pie chart's center will be placed.\n",
+ " data (List[float]): The data values to be represented in the pie chart.\n",
+ " size (float): The size (radius) of the pie chart in axes-relative coordinates.\n",
+ " palette (str): The color palette to use for the pie slices.\n",
+ "\n",
+ " Returns:\n",
+ " List[plt.Patch]: A list of wedge objects representing the pie chart slices.\n",
+ " \"\"\"\n",
+ " # Convert the position from data coordinates to axes coordinates\n",
+ " axes_coords = ax.transData.transform((x, y))\n",
+ " axes_coords = ax.transAxes.inverted().transform(axes_coords)\n",
+ "\n",
+ " # Create a new inset axis to draw the pie, using axes-relative coordinates\n",
+ " inset_ax = ax.inset_axes([axes_coords[0] - size, axes_coords[1] - size, 2 * size, 2 * size])\n",
+ "\n",
+ " # Plot the pie chart using the calculated position and scaled radius\n",
+ " colors = [(r, g, b, alpha) for r, g, b in sns.color_palette(palette, len(data))]\n",
+ " wedges, _ = inset_ax.pie(data, radius=1, startangle=90, wedgeprops=dict(edgecolor='none'), normalize=True,\n",
+ " colors=colors)\n",
+ "\n",
+ " # Hide the axes for the inset (pie chart)\n",
+ " inset_ax.set_axis_off()\n",
+ "\n",
+ " return wedges\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#| export\n",
+ "SHORT_FOOD_CATEGORIES = {\n",
+ " 'beef, veal, lamb, and other meat products': 'meat products',\n",
+ " 'milk, cream cheese and yogurts': 'milk products',\n",
+ " 'nuts, seeds, and products': 'nuts and seeds',\n",
+ " 'eggs and their products': 'eggs',\n",
+ " 'pulses and products': 'pulses',\n",
+ " 'fruit juices and soft drinks': 'juices and soft drinks',\n",
+ " 'low calories and diet drinks': 'low cal. drinks',\n",
+ " 'poultry and its products': 'poultry',\n",
+ " 'pasta, grains and side dishes': 'grains',\n",
+ " 'industrialized vegetarian food ready to eat': 'industrialized veg.',\n",
+ "}\n",
+ "\n",
+ "def plot_meals_hbars(\n",
+ " diet_log: pd.DataFrame, \n",
+ " x: str='collection_timestamp',\n",
+ " y: str='short_food_category',\n",
+ " size: str='weight_g', \n",
+ " hue: str='short_food_category',\n",
+ " participant_id: int=None, \n",
+ " array_index: int=None,\n",
+ " time_range: Tuple[str, str]=None, \n",
+ " y_include: List[str] = None,\n",
+ " y_exclude: List[str] = None,\n",
+ " rename_categories: dict=SHORT_FOOD_CATEGORIES,\n",
+ " legend: bool=True,\n",
+ " size_legend: List[int]=[100, 200, 500],\n",
+ " size_scale: float=5,\n",
+ " palette: str=DEFAULT_PALETTE,\n",
+ " alpha: float=0.7,\n",
+ " ax: plt.Axes=None,\n",
+ " figsize: Tuple[float, float] = (12, 6),\n",
+ "):\n",
+ " \"\"\"\n",
+ " Plot a diet chart with bars representing meals and their size over time.\n",
+ "\n",
+ " Args:\n",
+ " diet_log (pd.DataFrame): The dataframe containing the diet log data, with columns for timestamps, nutrients, and other measurements.\n",
+ " x (str): The name of the column in `diet_log` representing the x-axis variable, such as timestamps. Default is 'collection_timestamp'.\n",
+ " y (str): The name of the column in `diet_log` representing the y-axis variable, such as food categories. Default is 'short_food_category'.\n",
+ " size (str): The name of the column in `diet_log` representing the size of the bars. Default is 'weight_g'.\n",
+ " hue (str): The name of the column in `diet_log` representing the color of the bars. Default is 'short_food_category'.\n",
+ " participant_id (Optional[int]): The participant's ID to filter the diet log. If None, no filtering is done. Default is None.\n",
+ " time_range (Optional[Tuple[str, str]]): A tuple of strings representing the start and end dates for filtering the data. Format should be 'YYYY-MM-DD'. Default is None.\n",
+ " y_include (List[str]): A list of strings representing the categories to include in the plot. Default is None.\n",
+ " y_exclude (List[str]): A list of strings representing the categories to exclude from the plot. Default is None.\n",
+ " rename_categories (dict): A dictionary mapping original food categories to shorter names. Default is SHORT_FOOD_CATEGORIES.\n",
+ " legend (bool): If True, includes a legend in the plot. Default is True.\n",
+ " size_legend (List[int]): A list of integers representing the sizes to include in the size legend. Default is [100, 200, 500].\n",
+ " size_scale (float): The scaling factor for the size of the bars. Default is 5.\n",
+ " palette (str): The palette to use for the bars.\n",
+ " alpha (float): The transparency of the bars. Default is 0.7.\n",
+ " ax (Optional[plt.Axes]): The Matplotlib axis on which to plot the lollipop chart. If None, a new axis is created. Default is None.\n",
+ " figsize (Tuple[float, float]): The size of the figure to create. Default is (12, 6).\n",
+ " \"\"\"\n",
+ " diet_log = format_timeseries(\n",
+ " diet_log, participant_id, array_index,\n",
+ " time_range, x_start=x, x_end=x, unique=True)\n",
+ "\n",
+ " diet_log['event_end'] = diet_log[x] \\\n",
+ " + size_scale * pd.to_timedelta(diet_log[size], unit='s')\n",
+ "\n",
+ " # Categories\n",
+ " diet_log['short_food_category'] = diet_log['food_category'].str.lower()\n",
+ " for s, t in rename_categories.items():\n",
+ " diet_log['short_food_category'] = diet_log['short_food_category'].str.replace(s, t, regex=False)\n",
+ " diet_log['short_food_category'] = diet_log['short_food_category']\\\n",
+ " .str.replace(' and ', ' & ', regex=False)\\\n",
+ " .str.replace('_wholewheat', ' (whole/w)', regex=False)\n",
+ "\n",
+ " # User events plot to plot meals\n",
+ " ax = plot_events_bars(\n",
+ " diet_log,\n",
+ " x_start=x, x_end='event_end',\n",
+ " y=y, hue=hue,\n",
+ " y_include=y_include, y_exclude=y_exclude, alpha=alpha,\n",
+ " ax=ax, figsize=figsize, palette=palette, legend=legend)\n",
+ "\n",
+ " format_xticks(ax, diet_log[x].drop_duplicates())\n",
+ "\n",
+ " add_size_legend(ax, size_legend, size_scale, alpha)\n",
+ "\n",
+ " return ax\n",
+ "\n",
+ "\n",
+ "def add_size_legend(ax: plt.Axes, sizes: List[int], size_scale: float, alpha: float, shift: int=0):\n",
+ " \"\"\"\n",
+ " Add a size legend to a plot_meals_hbars plot using broken_barh.\n",
+ " \"\"\"\n",
+ " if len(sizes) == 0:\n",
+ " return\n",
+ "\n",
+ " # Manually add size legend using broken_barh\n",
+ " sec2day = 1 / (60 * 60 * 24) # Convert seconds to days\n",
+ " size_durations = [\n",
+ " s * size_scale * sec2day\n",
+ " for s in sizes]\n",
+ " max_duration = max(size_durations)\n",
+ "\n",
+ " # Calculate the xlim to place the legend bars right at the end\n",
+ " xlim = ax.get_xlim() # These are in days\n",
+ " y_start_legend = ax.get_ylim()[0] - 1 - shift\n",
+ " x_bar_start = \\\n",
+ " xlim[1] - \\\n",
+ " 1.5 * max_duration\n",
+ "\n",
+ " # Add a bounding box around the text and bars\n",
+ " ax.add_patch(mpatches.Rectangle(\n",
+ " (x_bar_start - 1.5*(max_duration + 10 * sec2day), y_start_legend - len(sizes) + 0.25),\n",
+ " 3 * (max_duration + 10 * sec2day), len(sizes) + 0.5,\n",
+ " edgecolor='gray', facecolor='white', lw=1))\n",
+ "\n",
+ " for i, (s, duration) in enumerate(zip(sizes, size_durations)):\n",
+ " # Plot the bar\n",
+ " ax.broken_barh(\n",
+ " xranges=[(x_bar_start, duration)],\n",
+ " yrange=(y_start_legend - i - 0.4, 0.8), \n",
+ " facecolors='gray', alpha=alpha\n",
+ " )\n",
+ "\n",
+ " # Add text next to the bar\n",
+ " ax.annotate(f'{s}g', \n",
+ " (x_bar_start - 10 * sec2day, y_start_legend - i),\n",
+ " va='center', ha='right', fontsize=10)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#| export\n",
+ "from pheno_utils.timeseries_plots import TimeSeriesFigure, plot_events_fill\n",
+ "from pheno_utils.sleep_plots import plot_sleep_channels, get_sleep_period\n",
+ "\n",
+ "def plot_diet_cgm_sleep(\n",
+ " diet: pd.DataFrame=None,\n",
+ " cgm: pd.DataFrame=None,\n",
+ " sleep_events: pd.DataFrame=None,\n",
+ " sleep_channels: pd.DataFrame=None,\n",
+ " cgm_grid: List[int] = [0, 54, 70, 100, 140, 180],\n",
+ " channel_filter: List[str]=['heart_rate', 'actigraph', 'spo2'],\n",
+ " participant_id=None,\n",
+ " array_index=None,\n",
+ " time_range: Tuple[str, str]=None,\n",
+ " figsize=(14, 10),\n",
+ " nutrient_kws: dict={},\n",
+ " meals_kws: dict={},\n",
+ " cgm_kws: dict={},\n",
+ " events_kws: dict={},\n",
+ " channels_kws: dict={},\n",
+ ") -> TimeSeriesFigure:\n",
+ " \"\"\"\n",
+ " Plot diet, CGM and sleep data together.\n",
+ "\n",
+ " Arg:\n",
+ " diet (pd.DataFrame): Diet logging data. Set to None to remove from figure.\n",
+ " cgm (pd.DataFrame): CGM data. Set to None to remove from figure.\n",
+ " sleep_events (pd.DataFrame): Sleep events data. Set to None to remove from figure.\n",
+ " sleep_channels (pd.DataFrame): Sleep channels data. Set to None to remove from figure.\n",
+ " cgm_grid (List[int]): CGM grid lines. Default: [0, 54, 70, 100, 140, 180].\n",
+ " channel_filter (List[str]): Which sleep channels to include in the plot. Default: ['heart_rate', 'actigraph', 'spo2'].\n",
+ " participant_id (int): Participant ID.\n",
+ " array_index (int): Array index.\n",
+ " time_range (Tuple[str, str]): Time range to plot.\n",
+ " figsize (Tuple[int, int]): Figure size.\n",
+ " nutrient_kws (dict): Keyword arguments for diet nutrients lollipop plot.\n",
+ " meals_kws (dict): Keyword arguments for diet meals plot.\n",
+ " cgm_kws (dict): Keyword arguments for CGM plot.\n",
+ " events_kws (dict): Keyword arguments for sleep events plot.\n",
+ " channels_kws (dict): Keyword arguments for sleep channels plot.\n",
+ "\n",
+ " Returns:\n",
+ " TimeSeriesFigure: Plot.\n",
+ " \"\"\"\n",
+ " g = TimeSeriesFigure(figsize=figsize)\n",
+ "\n",
+ " # Add diet\n",
+ " if diet is not None:\n",
+ " g.plot(plot_nutrient_lollipop, diet,\n",
+ " second_y=True if cgm is not None else False,\n",
+ " participant_id=participant_id, array_index=array_index, time_range=time_range,\n",
+ " size_scale=10, name='diet_glucose', height=1.5, **nutrient_kws)\n",
+ " g.plot(plot_meals_hbars, diet,\n",
+ " participant_id=participant_id, array_index=array_index, time_range=time_range,\n",
+ " name='diet_bars', sharex='diet_glucose', height=3, **meals_kws)\n",
+ "\n",
+ " # Add CGM\n",
+ " if cgm is not None:\n",
+ " if diet is None:\n",
+ " g.add_axes(name='diet_glucose')\n",
+ " cgm = format_timeseries(\n",
+ " cgm,\n",
+ " participant_id=participant_id, array_index=array_index, time_range=time_range,\n",
+ " )\n",
+ " ax = g.get_axes('diet_glucose', squeeze=True)\n",
+ " ax.plot(cgm['collection_timestamp'], cgm['glucose'], label='glucose', color='#4c72b0', **cgm_kws)\n",
+ " ax.scatter(cgm['collection_timestamp'], cgm['glucose'], s=10, color='#4c72b0', **cgm_kws)\n",
+ " ax.set_ylabel('Glucose', rotation=0, horizontalalignment='right')\n",
+ " ax.set_yticks(cgm_grid)\n",
+ " ax.yaxis.grid(True)\n",
+ "\n",
+ " # Add sleep\n",
+ " if sleep_channels is not None:\n",
+ " plot_sleep_channels(\n",
+ " sleep_channels,\n",
+ " x='collection_timestamp', y='values', row='source', hue=None,\n",
+ " participant_id=participant_id, array_index=array_index, time_range=time_range,\n",
+ " y_include=channel_filter,\n",
+ " fig=g, height=1, **channels_kws,\n",
+ " )\n",
+ " if sleep_events is not None:\n",
+ " g.plot(plot_events_fill, sleep_events,\n",
+ " participant_id=participant_id, array_index=array_index, time_range=time_range,\n",
+ " y_include=[\"Wake\", \"REM\", \"Light Sleep\", \"Deep Sleep\", \"Sleep\"],\n",
+ " hue='event', ax=['sleep_channels'], sharex='sleep_channels', alpha=0.3, **events_kws)\n",
+ " if cgm is not None or diet is not None:\n",
+ " g.plot(plot_events_fill, get_sleep_period(sleep_events),\n",
+ " participant_id=participant_id, array_index=array_index, time_range=time_range,\n",
+ " y_include=[\"Wake\", \"REM\", \"Light Sleep\", \"Deep Sleep\", \"Sleep\"], legend=False,\n",
+ " hue=None, palette='gray', label='event',\n",
+ " ax=['diet_glucose'], sharex='sleep_channels', alpha=0.3, **events_kws)\n",
+ "\n",
+ " # Tidy up\n",
+ " g.set_axis_padding(0.03)\n",
+ " if time_range is not None:\n",
+ " g.set_time_limits(*time_range)\n",
+ " g.set_periodic_ticks('2H', ax='sleep_channels')\n",
+ "\n",
+ " return g"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This module provides functions for plotting diet data, as well as a function for plotting diet, CGM and sleep data together.\n",
+ "\n",
+ "First, we will load the time series data for diet, CGM and sleep. (See also the dedicated modules for sleep and CGM.)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Warning: index is not unique for diet_logging\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/home/ec2-user/projects/pheno-utils/pheno_utils/pheno_loader.py:610: UserWarning: No date field found\n",
+ " warnings.warn(f'No date field found')\n",
+ "/home/ec2-user/projects/pheno-utils/pheno_utils/pheno_loader.py:610: UserWarning: No date field found\n",
+ " warnings.warn(f'No date field found')\n",
+ "/home/ec2-user/projects/pheno-utils/pheno_utils/pheno_loader.py:610: UserWarning: No date field found\n",
+ " warnings.warn(f'No date field found')\n"
+ ]
+ }
+ ],
+ "source": [
+ "#| eval: false\n",
+ "from pheno_utils import PhenoLoader\n",
+ "\n",
+ "pl = PhenoLoader('sleep')\n",
+ "channels_df = pl.load_bulk_data('channels_time_series') # contains: heart_rate, spo2, respiratory_movement\n",
+ "events_df = pl.load_bulk_data('events_time_series')\n",
+ "\n",
+ "diet_df = PhenoLoader('diet_logging').dfs['diet_logging']\n",
+ "cgm_df = PhenoLoader('cgm').dfs['cgm']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
"
+ ],
+ "text/plain": [
+ " glucose\n",
+ "participant_id collection_timestamp \n",
+ "0 2020-06-22 00:14:00+03:00 106.2\n",
+ " 2020-06-22 00:29:00+03:00 100.8\n",
+ " 2020-06-22 00:44:00+03:00 97.2\n",
+ " 2020-06-22 00:59:00+03:00 95.4\n",
+ " 2020-06-22 01:14:00+03:00 93.6"
+ ]
+ },
+ "execution_count": null,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#| eval: false\n",
+ "cgm_df.head(5)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Next, we will use `plot_diet_cgm_sleep` to plot the data together."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": null,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABhcAAAUbCAYAAAAtZfE/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3yN5//H8Vd2IglCImZrtIJakUOE2KPEqtHiS5SiQo2aVW1QpHZT1K5SbfWrtWp2aFGjRipFrNokYs8k4mSc3x9+7m9PBYmGRL2fj0cedd/XdV/X5z45PffJ/bmv67KxWCwWRERERERERERERERE0sk2qwMQEREREREREREREZGni5ILIiIiIiIiIiIiIiKSIUouiIiIiIiIiIiIiIhIhii5ICIiIiIiIiIiIiIiGaLkgoiIiIiIiIiIiIiIZIiSCyIiIiIiIiIiIiIikiFKLoiIiIiIiIiIiIiISIYouSAiIiIiIiIiIiIiIhmi5IKIiIiIiIiIiIiIiGSIkgsiIiIiIsL69eupW7duVochIiIiIiJPCfusDkBERERERCA4OJjIyEgcHBwAKFiwIL1796Zx48ZZHJmIiIiIiMi9lFwQEREREckmBg0aROfOnbFYLGzatInevXtTvnx5ChUqZFUvOTkZe3t9lRcRERERkayjaZFERERERLIZGxsbateujbu7OydOnGDHjh2YTCYWLVpE7dq1adu2LQDbtm2jTZs2mEwmmjRpws8//2y0sWXLFlq1aoWfnx+BgYGMHDmSxMREo/zcuXO88cYbVKpUiVatWnH06NEnfp4iIiIiIvL00uNOIiIiIiLZTGpqKr/88gu3b9+mTJkyHDlyhPj4eA4dOsS6desAOHToEP369WPq1Kn4+/uze/duevTowbfffkvx4sVxdnZmzJgx+Pj4cPbsWd58803mz59Pz549ARg4cCCFCxdm69atnD17lu7du2flKYuIiIiIyFNGIxdERERERLKJjz76CJPJRMWKFenTpw89e/YkT548wJ2Ew6BBg3BxccHFxYXFixfTsmVLAgICsLW1xWQyUbt2bSP5YDKZKFOmDHZ2dhQpUoS2bduyc+dOAGJjY4mIiGDIkCG4uLhQokQJ2rVrl2XnLSIiIiIiTx+NXBARERERySYGDBhA586dATh16hQhISG4u7tTrFgxXF1dyZkzp1E3JiaG7du3s2zZMmNfSkoKbm5uAOzdu5ePPvqIP//8k8TERFJSUihWrBgAFy5cwMnJibx58xrH/n1dBxERERERkQdRckFEREREJBt6/vnnqV27Nhs3bqRYsWLY2loPOs6fPz+dOnVi0KBBaR4/cOBAWrVqxYwZM8iRIwcLFixg+fLlAOTLl4/bt29z+fJlI8Fw9uzZx3tCIiIiIiLyr6JpkUREREREsqGYmBg2bdpEyZIl0yxv164dy5YtY/v27aSkpGA2m4mMjOTYsWMAxMXFkTNnTnLkyMGxY8f4+uuvjWMLFChApUqVmDRpEomJiRw/fpzFixc/kfMSEREREZF/ByUXRERERESyiUmTJuHr64uvry/t27enWrVqvPXWW2nWLVOmDJMnT+bjjz8mICCAGjVqMGXKFMxmMwCjRo1i3rx5+Pr6MmLECJo0aWJ1/OTJkzl37hwBAQEMGjSI1q1bP/bzExERERGRfw8bi8ViyeogRERERERERERERETk6aGRCyIiIiIiIiIiIiIikiFKLoiIiIiIiIiIiIiISIYouSAiIiIiIiIiIiIiIhmi5IKIiIiIiIiIiIiIiGSIkgsiIiIiIiIiIiIiIpIhSi6IiIiIiGSx4OBgypYti6+vL76+vjRp0oR169al69hly5bRokULq33Tpk2jV69ejyNUERERERERAOyzOgAREREREYFBgwbRuXNnLBYLmzZtonfv3pQvX55ChQo98VgsFgupqanY2dk98b5FREREROTpoJELIiIiIiLZiI2NDbVr18bd3Z0TJ06kOTKhRYsWLFu2jAMHDjBixAj+/PNPY9TDihUrmD17Nhs3bjT2wZ2EwcKFC2nUqBEmk4ng4GCOHTtmtFm3bl1mz57Na6+9RoUKFTh69OgTPW8REREREXm6aOSCiIiIiEg2kpqayi+//MLt27cpU6YMFy5cuG/dMmXK8MEHH/D555/z3XffGfvPnDnDwYMHmTFjhrFv0aJFLFmyhFmzZlG4cGEWLVpESEgIa9aswdHREbgzxdLMmTN5/vnnSUlJeXwnKSIiIiIiTz2NXBARERERyQY++ugjTCYTFStWpE+fPvTs2ZM8efJkWvuLFi2ib9++FC1aFHt7ezp16kRiYiJ79+416rRv357ixYtjZ2dnJBxERERERETSopELIiIiIiLZwIABA+jcuTMAp06dIiQkBHd390y7yR8TE8PgwYOt1lFISkri3LlzxnbBggUzpS8REREREfn3U3JBRERERCSbef7556lduzYbN27klVdeITEx0ar80qVLxr9tbe8djGxjY3PPvvz58zNs2DBq1qx5337TaktERERERCQt+utBRERERCSbiYmJYdOmTZQsWZLSpUtz5swZIiIiSE5OZu7cuVy7ds2omzdvXi5evGiVgPD09OTs2bNW6yZ06NCBqVOncvz4cQDi4uJYv349cXFxT+y8RERERETk30MjF0REREREsoFJkyYxZcoUANzd3WnYsCFvvfUWTk5ODB48mL59+5KamkpwcDAvvPCCcVzVqlWpUKECNWvWJDU1lZUrV9KoUSNWr15N1apVsVgsRERE0LFjR2xtbenTpw+xsbG4urri5+dH1apVs+qURURERETkKWZjsVgsWR2EiIiIiIiIiIiIiIg8PTQtkoiIiIiIiIiIiIiIZIiSCyIiIiIiIiIiIiIikiFKLoiIiIiIiIiIiIiISIYouSAiIiIiIiIiIiIiIhmi5IKIiIiIyANER0fj4+PDjRs3sjoUERERERGRbEPJBRERERF55kVERNCtWzcqV66MyWSiefPmzJ07F7PZnNWhpSk7JDyCg4NZsGBBlvUvIiIiIiJZS8kFEREREXmmbdiwge7duxMYGMgPP/xAREQE4eHhHDt2jIsXL2Z6f8nJyenaJyIiIiIikp3ZWCwWS1YHISIiIiKSFSwWC/Xr16d169b06tUrzTrR0dHUq1eP8ePHM336dK5evUr9+vUZPXo0Dg4OAOzfv59x48Zx+PBhcuXKRffu3XnttdcAmDZtGlFRUeTPn59169bRqlUrrl27hq2tLfHx8WzevJmuXbsya9Ys1q5dS5EiRQC4ffs2gYGBzJs3j/Lly1vFFBAQwJUrV8iRIwcAH3zwAc2bN2fLli1MmjSJM2fO8NxzzzF48GCqVasGwNChQ7Gzs+PmzZts3ryZggULEh4ezu+//87MmTMxm8306dOHDh06AHDgwAFGjx7NsWPHsLW1pVq1aoSGhuLh4cG4ceP4/PPPsbOzw8HBAT8/Pz799FMuXbrE6NGj2bFjB87OzrRo0YI+ffpgb2//0Ndp//79fPDBBxw9ehQHBwd8fX2ZNWtWZv66RUREREQkE2nkgoiIiIg8s06ePEl0dDRNmzZ9aN1NmzaxfPly1qxZw7Zt21i1ahUAFy9e5I033qB9+/b89ttvTJ8+nalTp/Lbb78Zx27evJkKFSqwbds2+vXrB8CaNWto06YNERERvPHGG9SpU4cVK1YYx/z000/ky5fvnsQCwLfffmvEFBkZSfPmzTl9+jS9evWiV69e7Nixgx49etCzZ0/OnDljHLdu3To6derErl27KFu2LD179uTUqVOsX7+eyZMnM3bsWC5dugSAra0tAwcOZOvWraxevZrz588zefJk4E6iwmQyMWjQICIjI/n0008BGDhwIPb29vz888989dVXrF+/3ih72Os0evRo6tSpQ0REhJFwERERERGR7EvJBRERERF5Zl25cgUAb2/vh9bt3bs3bm5ueHt7U7NmTfbv3w/Ad999h8lkIigoCDs7O0qWLEnr1q2N5APAiy++SKtWrbC3t8fFxQWA6tWrU6NGDWxtbXFxcaF169asWLGCuwOLly9fTqtWrdJ9LmvWrKFKlSo0bNgQe3t7GjVqhJ+fH2vWrDHq1KpVC5PJhL29PUFBQZw9e5Z+/frh6OhI9erVcXd3588//wSgVKlSmEwmHBwc8PT0pEuXLuzcufO+/Z8/f57t27czdOhQXF1dKVSoECEhISxfvjxdr5O9vT1nz57lwoULODo6Urly5XSfu4iIiIiIPHn2WR2AiIiIiEhW8fDwAO7cGH/uueceWNfLy8v4t4uLCzdv3gQgJiaGTZs2YTKZjPKUlBSr7QIFCtzTXsGCBa22a9SoQXJyMjt37qRo0aLs3LmT8ePHp/tczp07R6FChaz2FS5cmHPnzhnbnp6exr+dnZ1xdXU1kh13zyshIQGAU6dOMW7cOPbt20dCQgIWi8WY3uh+/Ts5OVm9TkWKFDH6f9jr9OGHH/LJJ5/QqlUrcubMSceOHenYsWO6z19ERERERJ4sJRdERERE5JlVrFgxChUqxJo1a+jZs+cjtVGgQAEaNGhAeHj4fevY2t47YNjGxuaeOq+88grLly+nWLFiBAYGWiUDHtZe/vz5+f333632xcTEPPIIgBEjRlC0aFHGjx9Pzpw5Wb9+PUOHDr1v/Pnz5+f27dtcunTJiDs6Opr8+fMDD3+dnnvuOSZMmIDFYuH333+nS5cuVKxYkbJlyz5S/CIiIiIi8nhpWiQREREReWbZ2NgQGhrKnDlz+OKLL7h69SoAJ06cYNiwYcTExDy0jRYtWrB9+3Z++OEHkpKSSEpK4uDBg+zduzfD8bRp04Yff/yRJUuW0Lp16/vWy5MnD7a2tpw+fdrYFxQUxM6dO1m/fj0pKSn8+OOPRERE0KRJkwzHARAXF4erqytubm7ExsYaayfc5enpabWeg7e3N/7+/owfP56EhATOnj3L7NmzeeWVV4CHv04rVqzg0qVL2NjYkCtXLmxtbR84UkJERERERLKWkgsiIiIi8kyrU6cOc+fOZePGjTRo0ACTyUTfvn0pXry41RQ/9+Pt7c28efNYvHgxgYGBVK9enQ8++ID4+PgMx1KkSBHKli1LXFwctWrVum89Z2dn3nrrLbp3747JZGLVqlU8//zzTJs2jWnTplG5cmWmT5/OJ598QpEiRTIcB9xZtHnjxo34+fnRq1cvXn75Zavy119/nW3btmEymejRowcAkydP5vbt29SpU4f27dtTq1YtunXrBjz8ddq2bRstWrTA19eXnj17MmTIEEqVKvVIsYuIiIiIyONnY7m7YpyIiIiIiGS5d999l5w5c/Luu+9mdSgiIiIiIiL3pXHGIiIiIiLZxOnTp/n+++9ZtmxZVociIiIiIiLyQEouiIiIiIhkA8OHD2fVqlV0796dYsWKZXU4IiIiIiIiD6RpkUREREREREREREREJEO0oLOIiIiIiIiIiIiIiGSIkgsikmWGDx/OxIkTM62eiIiIPHk7duzAZDI98vELFiwgODg4EyMSEREREZEnQWsuiMg/EhwcTGRkJA4ODjg4OFCyZEneeecdypUr99BjR40ala4+0ltPREQkswQHB1OvXj06d+5std/Hx4cVK1ZQunTprAnsMdmzZw+TJk3i0KFDWCwWChQoQJcuXWjVqlVWhyYiIiIiItmURi6IyD82aNAgIiMj2bJlC+XLl6dPnz5ZHZKIiIikU1xcHN26dSMoKIht27bx22+/ERYWRt68ebM6NBERERERycaUXBCRTOPo6EjLli2JjY3lypUrnD17li5dulC1alUqV67Mm2++SXR0tFF/6NChhIWFAWA2m3n33Xfx9/fHz8+Ppk2bsnfv3nvqRUdHG0+NNmjQAJPJxNChQ0lKSgLg2rVrvPXWW1SpUgWTyUSrVq2IiYl5wq+EiIg8C/56fQK4ceMGPj4+xrVu6NChvPfee/Tt2xdfX1+aNGnCn3/+yddff03NmjWpWrUqX331lXH8tGnTCAkJYfjw4fj5+VG3bl22b9/OTz/9RIMGDahcuTLh4eFW9Xv16mUVk8lkYseOHQDs37+f1157jUqVKuHv709ISEia53HixAlu3bpF27ZtjZGI5cuXp1atWkadCRMmUKdOHXx9fQkKCmLdunX3fV1WrlxJ06ZN8fX1pXbt2nz88cdYLBaj/MiRI7z22mv4+voSHBzMhQsX0vNyi4iIiIhINqPkgohkmsTERJYsWYKHhwc5c+YkNTWVzp07s2nTJjZs2ICzszOhoaFpHrt8+XIOHz7MTz/9REREBNOmTcPLy+u+fW3atInly5ezZs0atm3bxqpVqwD47LPPSElJYdOmTezYsYOwsDBcXV0fy/mKiIg8zLp16+jUqRO7du2ibNmy9OzZk1OnTrF+/XomT57M2LFjuXTpklF/y5YtVKtWjZ07d9KsWTMGDx7M+vXr+e6771i0aBHz5s1j//796ep79OjR1KlTh4iICDZv3kzXrl3TrFesWDHc3d3p378/69ev5+LFi/fUKVWqFEuWLCEiIoK33nqLIUOGcObMmTTby5UrF9OmTWP37t3MnDmTb775xrhOJycn07NnTwICAtixYwcDBgxgyZIl6TofERERERHJXpRcEJF/7KOPPsJkMlGxYkXWrFnDJ598gr29PYULF6ZWrVo4OTnh5uZGz5492bVrF6mpqfe0YW9vT3x8PMeOHcNisVCsWDEKFChw3z579+6Nm5sb3t7e1KxZ07jRYm9vz7Vr1zh16hR2dnaULl2a3LlzP65TFxGRf7G717e//mRUrVq1MJlM2NvbExQUxNmzZ+nXrx+Ojo5Ur14dd3d3/vzzT6N+mTJlaNSoEXZ2djRr1owLFy7w5ptvkiNHDl588UVKlSrFgQMH0tW3vb09Z8+e5cKFCzg6OlK5cuU067m5ufHf//6XXLlyMW7cOGrUqMGrr75qlcRo3rw5efPmxc7OjiZNmlC8eHEiIyPve87FihXDxsaG0qVL06RJE3bu3AnAH3/8wdWrV+nduzeOjo74+vrSuHHj9L6cIiIiIiKSjWhBZxH5xwYMGEDnzp05f/48PXv25PDhw5hMJq5cuUJYWBgRERHcvHkTgKSkJOLj43F3d7dqo0WLFly8eJERI0Zw7tw56taty5AhQ8iTJ0+aff51VIOLi4vRfteuXbl9+zb9+vUjLi6Oxo0bM2jQIJydnR/T2YuIyL/V3evbX/n4+GSoDU9PT+Pfzs7OuLq64uLiYuxzcXEhISHhvvXh3mtefHx8uvr+8MMP+eSTT2jVqhU5c+akY8eOdOzYMc26zz//PKNGjQLg/PnzTJgwgZ49e7Jp0yZsbGxYsGAB3377LefOncPGxoaEhASuXr2aZlubN29m+vTpnDhxguTkZMxmMzVr1gTgwoUL5MuXDwcHB6N+oUKFOH78eLrOSUREREREsg+NXBCRTOPt7c3o0aOZNGkS58+fZ/Lkydy6dYvly5eze/duY17pv867fJe9vT0hISGsXLmStWvXcvbsWaZPn57hGFxdXRk8eDA//PAD//3vf9m+fTuLFi36x+cmIiLydzly5CAxMdHYTms6oSfZ/61bt4iLizO2n3vuOSZMmMDWrVsZM2YM48ePJyoq6qHtent78+abb3L+/HmuXbtmTFc4fvx4du3aRUREBC+++GKa13Oz2UyfPn1o27Ytmzdv5vfff6ddu3ZG3Xz58nHhwgVjrSSAs2fP/pOXQUREREREsoiSCyKSqV566SWqVKnC7NmziYuLw8XFBXd3d65evconn3xy3+N+++03Dh48SHJyMi4uLjg5OWFnZ5fh/jds2MCJEydITU3Fzc0Ne3v7R2pHRETkYcqUKcOWLVu4cOECcXFxD7zOPa7+IyMjOXbsGLdv32by5MnY2NgY5StWrODSpUvY2NiQK1cubG1tsbe/d+DysWPHmDNnDtHR0aSmpnLjxg2++uorihYtioeHB/Hx8djb25MnTx5SU1NZsmQJR44cSTMms9nM7du3yZ07N46OjuzZs4fVq1cb5RUqVCB37tzMmDEDs9nMnj17Hrg4tIiIiIiIZF+aFklEMl1ISAidOnVi/vz5jBs3jipVquDt7U2XLl1Yv359msdcvnyZUaNGce7cOZycnKhWrRq9e/fOcN+nTp1izJgxXL58mRw5ctCwYUPat2//T09JRETkHs2bN2fnzp00btwYDw8Pevfuzdq1a59Y/wEBAbRr14727dvj7OxMnz59cHV1Ncq3bdvGxIkTSUhIIG/evAwZMoRSpUrd046bmxsHDx7kq6++4saNG7i4uFCpUiVmzZoFQI0aNWjYsCHNmjXD0dGRFi1aUKlSpTRjcnNzY/jw4YSGhpKQkECVKlUICgoiNjYWAAcHB2bMmMH777/PggULKFu2LK1atUrXiAoREREREclebCxpjWcWERERERERERERERG5D02LJCIiIiIiIiIiIiIiGaLkgoiIiIiIiIiIiIiIZIiSCyIiIiIiIiIiIiIikiFKLoiIiIiIiIiIiIiISIYouSAimWLZsmW0aNEiq8Mw9OrVi2nTpmV1GCIiIo9FdHQ0Pj4+3LhxA4ChQ4cSFhb22Pp73O2LiIiIiMjTR8kFEcmwd999Fx8fH44dO5bVoYiIiKRbcHAwPj4+bNu2zWr/p59+io+PzzN98zwxMZHw8HAaNmxIxYoVqVmzJn379iUqKiqrQxMRERERkWxKyQURyZD4+Hi+//57cufOzZIlS7I6HBERkQwpVqwYS5cutdq3fPlyihcvnkURpS05OfmJ9ZWUlMQbb7zBzp07CQ8PZ9euXXz//fc0aNCAn3766YnFISIiIiIiTxclF0QkQ9auXYuLiwuDBg1ixYoVJCUlpVmvbt26zJ49m9atW1OxYkW6devGtWvXGDlyJCaTiYYNG7J7926jflxcHKGhoQQGBhIYGMjw4cNJSEgA/jf1w4oVK2jQoAEmk4mhQ4da9f3DDz/QoEED/Pz8eP/990lJSTHKrl27xltvvUWVKlUwmUy0atWKmJiYx/QKiYhIdtakSRM2b97MzZs3AdizZw8Wi4UKFSpY1du3bx/t2rXDZDIRFBTE6tWrjTJ/f398fX2Nn1KlSrFs2TLmz59vtb9cuXLUrVsXgAMHDtC+fXuqVKlC1apVGTBgAFevXjXaDA4OZsKECbzxxhtUrFiRX3/9lfj4eEaNGkXt2rUJCAhgyJAhRtwPM2jQIAIDA6lUqRKtWrVi+/bt9627evVqjh07xuzZs3nppZdwcHAgR44cNGvWjP79+xv1bt26Rf/+/fH19eXll19mx44dRllSUhJTpkyhfv36+Pv7ExISwvnz543yy5cvM3DgQOM6HxYWhtlsBh58nX5YuyIiIiIiknWUXBCRDFmyZAnNmjUjKCiIxMRENmzYcN+6q1evZtq0afz666/Exsby6quvUrVqVXbs2EFQUBAjRoww6oaFhXHq1ClWrVrFypUrOXHiBGPHjrVqb9OmTSxfvpw1a9awbds2Vq1aBcDJkycZOHAg7777Ljt27OCll15i8+bNxnGfffYZKSkpbNq0iR07dhAWFoarq2smvzIiIvI0cHd3p0aNGkayYOnSpbRq1cqqzo0bN+jWrRtNmjTht99+Y+TIkYSGhvL7778DsGPHDiIjI4mMjGTkyJF4eXlRrVo1unTpYuzfunUrJUqUMNYjsrW1ZeDAgWzdupXVq1dz/vx5Jk+ebNXv8uXLefvtt4mMjKRatWoMGzaM69evs3LlSn7++WeSk5MZNWpUus4zICCAdevWGdfcfv36ERcXl2bdLVu2ULNmTXLmzPnANtesWcNrr71GREQELVq04N133zXKwsPD2b17N4sWLWLz5s0UK1aMAQMGAGCxWOjZsydeXl789NNPrFq1ikOHDjFjxgzgwdfpB7UrIiIiIiJZS8kFEUm3o0eP8scff9CyZUtcXV2pX7/+A6dG+s9//kPBggXJmTMntWrVwsPDg0aNGmFnZ0fTpk05cuQIZrOZ1NRUVq9ezcCBA/Hw8CBPnjz079+fFStWkJqaarTXu3dv3Nzc8Pb2pmbNmuzfvx+4c7MjICCAunXrYm9vT/v27Xn++eeN4+zt7bl27RqnTp3Czs6O0qVLkzt37sf2OomISPbWqlUrli1bRmJiIj/88IORALhr48aN5MmTh+DgYBwcHKhSpQpNmzZlxYoVVvUiIiIICwtjxowZ5M+f39ifmprKgAEDKFasGH379gWgVKlSmEwmHBwc8PT0pEuXLuzcudOqvaZNm1K+fHlsbGxISEjgxx9/JDQ0lJw5c5IjRw769u3LunXrrEbn3U/r1q1xd3fHwcGBbt26kZqayuHDh9Ose+XKFby9vR/a5t0RFHZ2drRu3ZqYmBiuXr2KxWLh66+/5t133yVfvnw4Ojry9ttvs3v3bmJjY9m3bx+nTp1iyJAhuLi44OHhQUhIiJHgud91+mHtioiIiIhI1rLP6gBE5OmxZMkSSpUqRalSpQBo2bIl3bp1u+/0BF5eXsa/XVxc8PT0NLadnZ2xWCwkJiZiNpsxm80UKlTIKC9SpAhms9lqyoi/t3d3aogLFy5QsGBBq77/ut21a1du375tPLXZuHFjBg0ahLOz86O8DCIi8pQLCAjg/fffZ8aMGfj6+lpdXwDOnTtndU2CO9elXbt2GdunT5+mT58+hIWFUa5cOau6Y8eO5erVq0yZMgUbGxsATp06xbhx49i3bx8JCQlYLBbs7a2/iv/12hUdHU1qair169e3qmNjY8OlS5ceeH6pqalMmTKFdevWcenSJWxtbYmLi7O6pv6Vh4dHuqYa+ut13MXFBbizFpPFYiEhIYEOHToY5wvg4OBAbGws58+f58aNG1SpUsUos1gsxgME97tOJyQkPLDdAgUKPDRmERERERF5fJRcEJF0SUpK4rvvviMhIYHq1asDd24MpKSksGzZsnQ98Xg/efLkwcHBgZiYGOPGRXR0NI6Ojnh4eHDr1q0HHp8vXz7++OMPq32xsbFUrFgRAFdXVwYPHszgwYM5c+YMPXv2ZNGiRbzxxhuPHLOIiDy9bG1tadGiBbNmzWLq1Kn3lOfPn/+etXmio6ON0QnXr1/nzTffpGvXrjRo0MCq3qJFi/j555/59ttvcXJyMvaPGDGCokWLMn78eHLmzMn69esZOnSo1bF/vYFeoEABbG1t2bx5s3Ej/+/x3M+qVatYtWoV8+bNo2jRotjY2FC5cuX71g8MDGTChAncvHkTd3f3+9a7n9y5c+Pi4sI333xDiRIl7in/448/yJs3L1u2bEnz+Ptdpzt37vzAdkVEREREJGtpWiQRSZdffvmFuLg4li1bxooVK1ixYgXfffcdvXr1YunSpVgslkdu29bWlmbNmhEeHs61a9e4evUq4eHhtGjRAlvbh39MNW7cmN9++42NGzeSnJzMN998w8mTJ43yDRs2cOLECVJTU3Fzc8Pe3h47O7tHjldERJ5+nTt35rPPPqNOnTr3lNWqVYsrV67w1VdfkZycTEREBKtWraJFixYkJyfTp08fTCYT3bp1szpuy5YtTJkyhTlz5pA3b16rsri4OFxdXXFzcyM2NpZPP/30gfF5eXlRv359Ro0axZUrVwC4ePEiP/3000PPLS4uDgcHBzw8PEhKSuKTTz6573oLAM2aNaN48eKEhIRw4MABkpOTSUxMZO3atXz88ccP7c/W1pZ27doxfvx4Y7qiq1evsnbtWgDKlStHgQIFCA8PJy4uDovFQkxMDJs2bQLuf51+WLsiIiIiIpK1lFwQkXRZsmQJTZs2pUSJEnh5eRk/wcHBXLhw4R8lFwDee+89ChUqRJMmTWjatCnPP//8PU903k/x4sWZMGECY8aMwd/fnz179lCjRg2j/NSpU3Tr1o1KlSrRpEkTKlasSPv27f9RvCIi8nTLnTs31apVw8HB4Z6yXLlyMXfuXFatWoW/vz+hoaGMHDkSk8nEuXPn2LFjB6tXr8bX19f4WblyJatXryYuLo5XX33V2N+kSRMAhg4dysaNG/Hz86NXr168/PLLD41x7Nix5MyZkzZt2lCpUiU6dOhAVFTUQ49r2bIlL774InXq1KFevXo4Ozs/cAohBwcH5s2bh8lkol+/fvj5+dGwYUO+//77e0Zm3M+AAQOoWLEir7/+Or6+vrRu3doYqWBnZ8esWbO4cOECQUFB+Pn50aNHD06fPg08+Dr9oHZFRERERCRr2Vj+6R1BERERERERERERERF5pmjkgoiIiIiIiIiIiIiIZIiSCyIiIiIiIiIiIiIikiFKLoiIiIiIiIiIiIiISIYouSAiIiIiIiIiIiIiIhmi5IKIPFOCg4NZsGBBVochIiKSLezYsQOTyZTVYYiIiIiIyFNIyQURyZBt27bxn//8B19fX/z8/OjWrRv79+9P17G6gSEiIk+DiIgIunXrRuXKlTGZTDRv3py5c+diNpsfeuy0adPo1auX1b6hQ4cSFhb2uMIVERERERHJEkouiEi6/fzzz7z11lu0bNmSLVu28Msvv1ClShU6duzIvn37sjo8ERGRf2zDhg10796dwMBAfvjhByIiIggPD+fYsWNcvHgxq8MTERERERHJNpRcEJF0sVgshIWF8eabb/Lqq6/i6upKrly5ePPNNwkKCmLChAkATJgwgTp16uDr60tQUBDr1q0D4OrVq3Tv3p2bN2/i6+uLr68vERERLFu2jBYtWjB16lT8/f2pXr06a9eu5ffff6dp06b4+fkxbNgwUlNTjVj2799PcHAwVapUoUGDBnzzzTdG2YEDB2jfvj1VqlShatWqDBgwgKtXrz7ZF0tERJ5KFouFMWPG0L17dzp37kyePHkAKFGiBOPGjaNQoUIA7Nu3j3bt2mEymQgKCmL16tUArF+/ntmzZ7Nx40bjWrdw4UJWrVrF119/ja+vL02aNAFg5cqVNG3aFF9fX2rXrs3HH3+MxWIxYjly5AivvfYavr6+BAcHM2HCBIKDg43yy5cvM3DgQAIDAwkMDCQsLOyBIyuioqLo1KmTcX0cPXq0Vfm3335LrVq18Pf3N67pd23bto02bdpgMplo0qQJP//8s9VrtnDhQho1aoTJZCI4OJhjx44Z5fPnz6d27dr4+vpSt25dvv3223S1KyIiIiIiTwGLiEg6HDt2zFKyZEnL6dOn7ynbtm2bpXTp0pZbt25ZvvvuO8ulS5csycnJltWrV1vKli1rHLN9+3aLn5+f1bFLly61lClTxjJ//nxLUlKSZfHixZZKlSpZevfubbly5Yrl3LlzloCAAMsPP/xgsVgslgsXLliqVKliWbNmjSU5Odly+PBhS/Xq1S3btm2zWCwWy8GDBy27du2ymM1my8WLFy3/+c9/LO+9957RX8eOHS3z589/TK+SiIg8zY4fP24pWbKk5dSpU/etc/36dUuVKlUsCxcutJjNZsuOHTssFStWtERERFgsFotl6tSplp49e1od884771jGjBljtW/jxo2W48ePW1JTUy0HDhywBAQEWL777juLxWKxmM1mS7169SzTpk2z3L592/LHH39YqlSpYunYsaPFYrFYUlNTLa+++qpl7NixloSEBMuVK1csHTt2tISHh6cZ87lz5yyVKlWyfPnll5bExERLQkKCZdeuXRaL5c61uVSpUpbRo0dbEhMTLUePHrVUqFDBsn37dovFcue6ajKZLNu2bbOkpKRYdu3aZalUqZLl2LFjFovFYvnyyy8tzZo1s5w4ccKSlJRk+fzzzy3169e33L5923L8+HFL+fLlLUePHrVYLBbLxYsXLQcPHkxXuyIiIiIikv1p5IKIpMvdp//z5ct3T1m+fPlISUnh+vXrNG/enLx582JnZ0eTJk0oXrw4kZGRD2zbw8ODzp07Y29vT7NmzYiLi+PVV1/Fw8MDb29vKleubKzr8N133xlPitrZ2VGyZElat27NqlWrAChVqhQmkwkHBwc8PT3p0qULO3fuzORXQ0RE/o2uXLkCgLe3933rbNy4kTx58hAcHIyDgwNVqlShadOmrFixIkN91apVi2LFimFjY0Pp0qVp0qSJcb3as2cP165dIyQkBEdHRypUqEBQUJBx7L59+zh16hRDhgzBxcUFDw8PQkJCjBEUf/fdd9/x0ksv0aFDB5ycnHBxcbFaA8lisTBw4ECcnJwoUaIEvr6+xnV38eLFtGzZkoCAAGxtbTGZTNSuXdsYmbho0SL69u1L0aJFsbe3p1OnTiQmJrJ3717s7OywWCwcPXqUxMREPD09KVWqVLraFRERERGR7M8+qwMQkaeDh4cHABcuXKBIkSJWZRcuXMDOzo5cuXKxYMECvv32W86dO4eNjQ0JCQkPnZYob968xr9dXFwA8PLystqXkJAAQExMDJs2bbK6KZKSkmJsnzp1inHjxrFv3z4SEhKwWCzY2+ujTkREHu7ute78+fM899xzadY5d+6cMT3SXUWKFGHXrl0Z6mvz5s1Mnz6dEydOkJycjNlspmbNmsCd66qXl5fV9atAgQIcPXoUuHMtvHHjBlWqVDHKLRaL1RSCf3X27FmKFi1631jc3NyM6y/cue7Gx8cbfW3fvp1ly5YZ5SkpKbi5uRnlgwcPxs7OzihPSkri3LlzmEwmxo0bx5dffsm7775LxYoVGTx4MKVLl35ouyIiIiIikv3pjpuIpEuxYsUoVKgQq1evpmfPnlZlq1evplKlSkRFRTFt2jQ+//xzypQpg62tLS1atDDmkLa1/eeDpQoUKECDBg0IDw9Ps3zEiBEULVqU8ePHkzNnTtavX8/QoUP/cb8iIvLvd/dat2bNmnuudXflz5+fmJgYq33R0dHkz58fABsbm3uO+fs+s9lMnz59GDFiBE2aNMHR0ZGwsDCj3Xz58nHp0iWSk5ONBENsbKxxfIECBcibNy9btmxJ13kVLFiQrVu3pqvu3+XPn59OnToxaNCg+5YPGzbMSIz8XVBQEEFBQSQmJjJlyhSGDBnCqlWrHtquiIiIiIhkf5oWSUTSxcbGhnfffZc5c+bw7bffEh8fz40bN5gzZw5r165l8ODBxMfHY29vT548eUhNTWXJkiUcOXLEaCNv3rzEx8cb0048ihYtWrB9+3Z++OEHkpKSSEpK4uDBg+zduxeAuLg4XF1dcXNzIzY2lk8//fQfn7uIiDwbbGxsCA0NZc6cOXzxxRfGyLsTJ04wbNgwYmJiqFWrFleuXOGrr74iOTmZiIgIVq1aRYsWLQDw9PTk7NmzpKSkGO16enpy5swZY9tsNnP79m1y586No6Mje/bssZrSqEKFCuTMmZPZs2eTlJTE3r17raYLKleuHAUKFCA8PJy4uDgsFosxsi8tzZs3Z+/evXz99deYzWZu3bpFREREul6Tdu3asWzZMrZv305KSgpms5nIyEhj0eYOHTowdepUjh8/Dty5Dq9fv564uDiOHz/O1q1bSUxMxMHBAVdXV2OEw8PaFRERERGR7E/JBRFJtwYNGjB16lSWLVtGYGAgtWvXZseOHXz++edUqFCBGjVq0LBhQ5o1a0aNGjU4evQolSpVMo4vXrw4bdq0oXHjxphMpnTf2Pgrb29v5s2bx+LFiwkMDKR69ep88MEHxvQNQ4cOZePGjfj5+dGrVy9efvnlTDt/ERH596tTpw5z585l48aNNGjQAJPJRN++fSlevDheXl7kypWLuXPnsmrVKvz9/QkNDWXkyJHG9HyNGjXCzc2NqlWrGvteffVVLly4QOXKlWnWrBlubm4MHz6c0NBQKlWqxMyZM63WVHBwcGD69Ols3LiRKlWqMHHiRJo3b46joyMAdnZ2zJo1iwsXLhAUFISfnx89evTg9OnTaZ5T/vz5WbBgAatXr6ZatWrUrVuX77//Pl2vR5kyZZg8eTIff/wxAQEB1KhRgylTpmA2mwHo2LEjLVu2pE+fPlSqVInGjRsbiZKkpCSmTJlCtWrV8Pf3Z/v27YwbNy5d7YqIiIiISPZnY7k7X4mIiIiIiGRLoaGhpKamEhYWltWhiIiIiIiIABq5ICIiIiKS7URERBAbG0tqaiq//fYbq1evplGjRlkdloiIiIiIiEELOouIiIiIZDNnzpyhf//+3LhxA29vb/r370+NGjWyOiwRERERERGDpkUSEREREREREREREZEM0bRIIiIiIiIiIiIiIiKSIUouiEi2ER0djY+PDzdu3MjqUOQptX79eurWrZvVYTySiIgIatas+dB6O3bswGQyPYGIRERERERERETuT8kFkWdAcHAwpUuX5tChQ8a+Gzdu4OPjQ3R0dLrbWLBgwWOK8OGWLl1K7dq1iYuLM/ZZLBaCg4MJCwt74vH4+Phw8ODBJ95vVoiIiKBbt25UrlwZk8lE8+bNmTt3LmazOatDyxBfX1/jp3Tp0pQtW9bY7tat2xOLY9myZZQuXdoqnnbt2mEymfj111+fWBwi8mjudz18lq4LIiIiIiIioAWdRZ4ZOXPm5KOPPmLOnDlZ0n9KSgq2trbY2Ng80vGtW7fmp59+4sMPP+TDDz8E4IsvvuDixYvMnTs3M0N9oOTkZOztn52Pzg0bNjBgwAD69evHhAkTyJMnD8eOHWPu3LlcvHiRQoUKZXWI6RYZGWn8Ozg4mHr16tG5c+csiaVkyZJ89913WdK3iEhanrXrm4iIiIiI/HMauSDyjPjPf/5DZGQku3btSrP8wIEDtG/fnipVqlC1alUGDBjA1atXARg3bhwRERFMmjTJ6invvz+luWDBAoKDg41tHx8fvvzyS5o2bUqFChWIj49n/vz5NGzYEF9fX+rXr8+XX36Z7nMYM2YMv/zyC5s2beLUqVNMmTKFCRMmYGdnx+TJk6lduzZVq1bl7bff5sqVK8ZxR44c4bXXXsPX15fg4GAmTJhgxJnWVExhYWEMHTrUqnzp0qU0aNCAmjVr0qZNGwDatWuHr68vs2bNSvc5PE0sFgtjxoyhe/fudO7cmTx58gBQokQJxo0bZyQWBg0aRGBgIJUqVaJVq1Zs377daGPZsmW0aNGC6dOnExAQQLVq1aye+J02bRohISGMGjUKk8lE7dq1Wbt2rVUMCxcupFGjRphMJoKDgzl27JhRfu7cOd544w2j76NHj2b4PNP7HlixYgUNGjTAZDIxdOhQkpKSAIiPj6dnz54EBATg5+dHhw4drEYJpdffpztauXKl8f9KjRo1mD59ulX9b7/9llq1auHv78+ECRMy3J+IPF5r1qyhWbNmmEwmWrduze7du42ylStX0rRpU3x9falduzYff/wxFosFuHOte/fdd63amjNnDl27duXQoUP4+voSHx9vlJ0/f56yZcty/vz5NOOIioqiU6dOxvV99OjRwP8+cxYtWkTt2rVp27YtANu2baNNmzaYTCaaNGnCzz//bLS1ZcsWWrVqhZ+fH4GBgYwcOZLExESjvG7dusyePZvWrVtTsWJFunXrxrVr1xg5ciQmk4mGDRtavQ4iIiIiIvJ0U3JB5BmRK1cuunXrxuTJk9Mst7W1ZeDAgWzdupXVq1dz/vx5o+7QoUMxmUwMGjSIyMhIPv3003T3u3r1aubNm8fu3bvJkSMHBQsW5PPPP2f37t2MGTOGCRMm8Pvvv6erLU9PT0aMGEFoaCjvvPMOHTt2pHz58syePZuNGzeyaNEifv75Z2xsbBg0aBAASUlJ9OzZk5o1a7Jjxw4GDRrE0qVL0x3/Xb/88gtLly7l559/ZsmSJQD897//JTIykpCQkAy39zQ4efIk0dHRNG3a9IH1AgICWLduHTt27CAoKIh+/fpZTV919OhRnJyc+PXXXwkPD2fChAmcPn3aKN+yZQuVKlVix44dvP3227z33nvG8YsWLWLJkiXMmjWL7du306BBA0JCQowpmQYOHIiXlxdbt25l4sSJfPPNN4/hlbhj06ZNLF++nDVr1rBt2zZWrVoF3EmANGvWjJ9//plt27ZRunRp+vXrZ9wofBQJCQm8++67hIWFERkZyZo1a6hRo4ZRHh8fz+HDh/nxxx9ZtGgRixYtYseOHf/4HEUkc2zatInx48czbtw4du7cSY8ePejZs6eRtM+VKxfTpk1j9+7dzJw5k2+++cb4TGnRogU//PCD1U37lStX0qJFC0qVKkWxYsX44YcfjLIVK1ZQrVo1vL2974nj/PnzvP7667z88sts3ryZDRs20LhxY6M8Pj6eQ4cOsW7dOr788ksOHTpEv379GDhwIDt37uSDDz5gyJAhHD9+HABnZ2fGjBnDzp07+frrr9mxYwfz58+36nP16tVMmzaNX3/9ldjYWF599VWqVq1qXCNGjBiReS+0iIiIiIhkKSUXRJ4hr7/+OjExMaxfv/6eslKlSmEymXBwcMDT05MuXbqwc+fOf9xnt27d8Pb2xtHREVtbW15++WUKFCiAjY0NVatWJTAwMEP9NG7cmAoVKnD9+nV69+4N3Lnp0rNnTwoWLIirqytDhw5l69atnD9/nj179nDt2jVCQkJwdHSkQoUKBAUFZfg8evfuTc6cOXFxccnwsU+ru6M/0rph9VetW7fG3d0dBwcHunXrRmpqKocPHzbKc+fOTbdu3XBwcMDf35/ChQtbjXgpU6YMTZs2xc7OjhYtWpCUlMTJkyeBO8mFvn37UrRoUezt7enUqROJiYns3buX2NhYIiIiGDJkCC4uLpQoUYJ27dpl/gvx/3r37o2bmxve3t7UrFmT/fv3A+Dm5kZQUBA5cuTAycmJvn37cvLkSS5cuHDftv78809MJpPxk1ZSxN7enmPHjhEXF0fOnDkpX768UWaxWBg4cCBOTk6UKFECX19fIx4Refw++ugjq/+H/77I+ldffUXXrl156aWXsLW1pWHDhhQrVoxNmzYBUKtWLYoVK4aNjQ2lS5emSZMmxrWwXLlyFChQwBgxcODAAc6ePUuDBg0AaNOmDcuXLzf6Wr58Oa1atUozzu+++46XXnqJDh064OTkhIuLi1WsqampDBo0CBcXF1xcXFi8eDEtW7YkICAAW1tbY0TZunXrADCZTJQpUwY7OzuKFClC27Zt77mG/+c//6FgwYLkzJmTWrVq4eHhQaNGjbCzs6Np06YcOXLkqVuzR0RERERE0qaJVUWeIc7OzvTu3ZuPPvqIr776yqrs1KlTjBs3jn379pGQkIDFYsmUuZcLFChgtb1y5Urmz59PdHQ0FouFxMREChcunKE2S5YsSUpKCg4ODsCdqXH+Ovf/3WTG+fPnuXDhAl5eXlbnUqBAgQxPn/P383gWeHh4AHeefH3uuefSrJOamsqUKVNYt24dly5dwtbWlri4OOPpXLgz4uSvXFxcrKb0+Gu5jY0Nzs7ORnlMTAyDBw/Gzs7OqJOUlMS5c+dwcHDAycmJvHnzGmWPcw0ILy8vq3O4efMmAImJiYwbN45ff/2Va9euYWt7J29/9erV+yZm0lpz4a8jD3LkyMGsWbP47LPPmDhxIiVLlqRfv35UrVoVuJPQ+Gui6++vqYg8XgMGDLhnzRYfHx/j3zExMYSHhzNt2jRjX3JyspF03Lx5M9OnT+fEiRMkJydjNpupWbOmUbdFixasWLGCJk2asGLFCl5++WXj//lmzZoxYcIEzpw5w6VLl7h69Sp169ZNM86zZ89StGjR+56Hq6srOXPmtIp7+/btLFu2zNiXkpKCm5sbAHv37uWjjz7izz//JDExkZSUFIoVK2bV5t8/K//6Ge/s7Gxc+x0dHe8bl4iIiIiIPB2UXBB5xrRp04b58+ezYsUKq/0jRoygaNGijB8/npw5c7J+/XpjznkgzYWYc+TIwa1bt4ztixcv3lPn7o1WuHOTY+jQoXz66adUqVIFe3t7evXq9Y+mjwHInz8/MTExVKhQwYjDbDbj7e2N2Wzm0qVLVgtVxsbGWp0DwK1bt4wbLBcvXsTZ2fm+5wFpvx7/NsWKFaNQoUKsWbOGnj17plln1apVrFq1innz5lG0aFFsbGyoXLlypsWQP39+hg0bZnXT7a7Y2Fhu377N5cuXjQTD2bNnM9xHet8D9/PZZ5+xf/9+Fi1aRP78+blx4waVK1f+x+/rgIAAAgICSEpKYtGiRfTu3TtTRhOJyOOXP39+OnbsSPv27e8pM5vN9OnThxEjRtCkSRMcHR0JCwsjJibGqNO8eXOmTp3K+fPnWbNmDZMmTTLK3N3dqV+/PitWrODixYs0a9bsvjfqCxYsyNatW+8b59+vbfnz56dTp07G1IJ/N3DgQFq1asWMGTPIkSMHCxYssBpFISIiIiIizxZNiyTyjLGzs6N///73LEIcFxeHq6srbm5uxMbG3rOugqenJ2fOnLHaV6ZMGb777juSk5M5ePDgPU9i/93dERF58uTB1taWTZs2PfCmR3o1b96cWbNmERsbS3x8POPGjTPmn65QoQI5c+Zk9uzZJCUlsXfvXmN6B4A8efJQsGBBVqxYQWpqKtu3bzemrXgQT09Pq3UD/o1sbGwIDQ1lzpw5fPHFF8ZohBMnTjBs2DBiYmKIi4vDwcEBDw8PkpKS+OSTT6zWW/inOnTowNSpU435vuPi4li/fj1xcXEUKFCASpUqMWnSJBITEzl+/DiLFy/OcB+P+h64Ky4uDicnJ3LmzEl8fDwfffRRhmP4u0uXLvHTTz8RFxeHvb09bm5uVqM3RCR769ixI/PmzSMqKgqLxcKtW7fYtm0b586dw2w2c/v2bXLnzo2joyN79uxh9erVVsfnz58fPz8/hg0bZkwp91d3p0Zat24drVu3vm8czZs3Z+/evXz99deYzWZu3bpFRETEfeu3a9eOZcuWsX37dlJSUjCbzURGRnLs2DEAY5q2HDlycOzYMb7++ut/8CqJiIiIiMjTTskFkWfQyy+/zPPPP2+1b+jQoWzcuBE/Pz969erFyy+/bFX++uuvs23bNkwmEz169AAgNDSUP/74g8qVKzNp0iRatmz5wH5feOEFQkJCeP311/H392ft2rX3ncohI958800CAwNp27YtdevWJSkpiYkTJwLg4ODA9OnT2bhxI1WqVGHixIk0b97c6inPDz/8kGXLluHn58fixYtp0qTJQ/vs168fY8aMoXLlysyZM+cfn0N2VadOHebOncvGjRtp0KABJpOJvn37Urx4cby8vGjZsiUvvvgiderUoV69ejg7O2fqFFIdO3akZcuW9OnTh0qVKtG4cWOrm3CTJ0/m3LlzBAQEMGjQoAfeZHuQR3kP3NWlSxdsbW2pXr06zZo1o2LFio8Uw1+lpqaycOFCateujZ+fH1999RVTpky55yljEcme6tSpw8CBAwkNDaVy5crUq1ePhQsXkpqaipubG8OHDyc0NJRKlSoxc+bMNNcCeuWVV9iyZQvNmze/5/99f39/bG1tKVSoEKVLl75vHPnz52fBggWsXr2aatWqUbduXb7//vv71i9TpgyTJ0/m448/JiAggBo1ajBlyhRjjYRRo0Yxb948fH19jZEXIiIiIiLy7LKx/NN5G0REnjKhoaGkpqYSFhaW1aGIiIg8kk6dOlG/fn06deqU1aGIiIiIiMgzSo9Aisi/XkREBLGxsaSmpvLbb7+xevVqGjVqlNVhiYiIPJLIyEiioqJ45ZVXsjoUERERERF5hmlBZxH51ztz5gz9+/fnxo0beHt7079/f2rUqJHVYYmIiGRY165d2bNnD++9956xCL2IiIiIiEhW0LRIIiIiIiIiIiIiIiKSIZoWSURERERERNLk4+PD+vXrszoMEREREcmGlFwQkSwzbdo0evXqldVhiDzUjh07MJlMWR2GiIhIprt8+TLDhw+ndu3alC1blurVq9O1a1ciIyOzOjQRERERyeaUXBCRDJk3bx5t27a12jdw4EDKly/P7du3jX1ffPEFzZo1e2Jx6ebvkxcREUG3bt2oXLkyJpOJ5s2bM3fuXMxm80OPTSuxNHToUMLCwh5XuCIiT7Xg4GDKli2Lr6+v8ePv75/VYcm/QJ8+fTh06BDjxo3jhx9+YObMmVSpUoXr169ndWgiIiIiks0puSAiGeLv709UVBRxcXHGvl27dlG4cGH++OMPY9/OnTt10+NfbMOGDXTv3p3AwEB++OEHIiIiCA8P59ixY1y8eDGrwxMR+VcaNGgQkZGRxs+OHTuyOiR5yt24cYPff/+dQYMGUbVqVQoVKkT58uXp0aMHtWvXTvOY8+fP8/bbb1O5cmX8/f3p2bMn0dHRVnWWLl1K48aNKVeuHI0aNeKrr74yyqKjo/Hx8WHNmjW0a9eOcuXK0aRJE72fRURERJ5CSi6ISIaUKVOGHDly8PvvvwNw8uRJnJycrP4otFgs7Nq1i3LlytGzZ08CAgLw8/OjQ4cOHDp06L5t+/j48PXXX9O0aVMqVapESEgIN2/eBNIemdCrVy+mTZvG1atX6d69Ozdv3jSe5oyIiODMmTN07twZPz8/qlSpQrt27bh169ZjemWeHRaLhTFjxtC9e3c6d+5Mnjx5AChRogTjxo2jUKFCAOzbt4927dphMpkICgpi9erVAKxfv57Zs2ezceNG4/e1cOFCVq1axddff42vry9NmjQBYOXKlTRt2hRfX19q167Nxx9/jMViMWI5cuQIr732Gr6+vgQHBzNhwgSCg4ON8suXLzNw4EACAwMJDAwkLCzsgSMroqKi6NSpE1WqVKFq1aqMHj3aqvzbb7+lVq1a+Pv7M2HCBKuybdu20aZNG0wmE02aNOHnn3+2es0WLlxIo0aNMJlMBAcHc+zYMaN8/vz51K5dG19fX+rWrcu3336brnZFRODhn4UPK5dnV44cOciRIwfr169P18jDW7du0alTJ3LkyMGXX37JokWLyJEjB926dTOO/+abbwgPD6d///6sXbuWAQMGMHXqVJYvX27V1oQJE+jSpQsrVqzA19eXnj17cvXq1cdyniIiIiLyeCi5ICIZYmtri8lkYufOncCdEQpVqlShSpUqxr4///yT69evYzKZaNasGT///DPbtm2jdOnS9OvXz+rm8N+tXbuWBQsWsHHjRs6fP8+CBQseGpOHhwdz587F3d3deJrTZDLx8ccf89xzz7F9+3a2bt3KkCFDsLOzy5TX4Vl28uRJoqOjadq06X3r3Lhxg27dutGkSRN+++03Ro4cSWhoKL///jv169c3noi8+/vq1KkTzZo1o3379kRGRrJmzRoAcuXKxbRp09i9ezczZ87km2++YdWqVQAkJSXRs2dPatasyY4dOxg0aBBLly41YrBYLPTs2RMvLy9++uknVq1axaFDh5gxY0aaMZ8/f57XX3+dl19+mc2bN7NhwwYaN25slMfHx3P48GF+/PFHFi1axKJFi4yE2qFDh+jXrx8DBw5k586dfPDBBwwZMoTjx48DsGjRIpYsWcKsWbPYvn07DRo0ICQkBLPZzIkTJ/j444+ZN28ekZGRfPPNN5QrVy5d7YqIPOyz8GHl8myzt7dn3LhxrFixApPJRLt27fjoo4/u+zDImjVrsLGxISwsDB8fH0qUKMHYsWOJjY01vgfOmDGDoUOH0rBhQ4oUKULDhg15/fXXWbx4sVVbHTp04OWXX6ZEiRKMHDkSd3d3lixZ8tjPWUREREQyj5ILIpJh/v7+xk3VHTt2ULlyZSpUqMDBgwdJTExk586dlC5dmkKFChEUFESOHDlwcnKib9++nDx5kgsXLty37e7du+Pp6UnOnDlp2LAh+/fvf+Q47e3tuXjxIjExMTg4OFCpUiUcHR0fuT2548qVKwB4e3vft87GjRvJkycPwcHBODg4UKVKFZo2bcqKFSsy1FetWrUoVqwYNjY2lC5dmiZNmhg3L/bs2cO1a9cICQnB0dGRChUqEBQUZBy7b98+Tp06xZAhQ3BxccHDw4OQkBBjBMXffffdd7z00kt06NABJycnXFxcrEbLWCwWBg4ciJOTEyVKlMDX19d4fy5evJiWLVsSEBBgJOBq167NunXrgDvJhb59+1K0aFHs7e3p1KkTiYmJ7N27Fzs7OywWC0ePHiUxMRFPT09KlSqVrnZF5Nny0UcfYTKZjJ8uXbo89LPwYeUid5PqM2fOJDAwkJ07d9KqVSuWLVt2T939+/dz+vRpKlWqZLX2x+3btzl9+jRXrlwhNjaW9957z2p9kJkzZ3L69Gmrtnx9fY1/29vbU7ZsWSXPRURERJ4y9lkdgIg8fapWrcqECROIi4tj165dDBo0CEdHR8qUKUNkZKSx3kJiYiLjxo3j119/5dq1a9ja3slnXr169b43pr28vIx/u7i4EB8f/8hxDhkyhGnTptGlSxdsbGxo2bIlb731lhGHPBoPDw/gzpP+zz33XJp1zp07Z0yPdFeRIkXYtWtXhvravHkz06dP58SJEyQnJ2M2m6lZsyYAFy5cwMvLC3v7/13KChQowNGjRwGIiYnhxo0bVKlSxSi3WCykpqam2dfZs2cpWrTofWNxc3PDxcXF2P7r+zMmJobt27db3YhJSUnBzc3NKB88eLDVyJmkpCTOnTuHyWRi3LhxfPnll7z77rtUrFiRwYMHU7p06Ye2KyLPlgEDBtC5c2erfWvXrn3gZ+HDPitFAJycnKhevTrVq1end+/evPfee0ybNo1WrVpZ1UtNTeWll15i0qRJ97SRJ08ebt++DcDo0aOpUKGCVbm+f4mIiIj8+yi5ICIZ5uPjYwxdd3BwoECBAgBUrlyZ7du3s2vXLtq0acNnn33G/v37WbRoEfnz5+fGjRtUrlz5gdMi3U+OHDlITEzEYrFgY2MDwMWLFyldujSQ9h+sefPmZeTIkcCdqZq6dOlCyZIlefnllx/xzAWgWLFiFCpUiDVr1tCzZ8806+TPn5+YmBirfdHR0eTPnx/A+B3+1d/3mc1m+vTpw4gRI2jSpAmOjo6EhYUZ7ebLl49Lly6RnJxs3DSLjY01ji9QoAB58+Zly5Yt6TqvggULsnXr1nTV/bv8+fPTqVMnBg0adN/yYcOGGYmRvwsKCiIoKIjExESmTJnCkCFDWLVq1UPbFRF52Gfhw8pF0vLCCy+wfv36e/a/9NJLrFu3jrx586aZ6HZ3d8fb25szZ87QvHnzB/bxxx9/ULlyZQCSk5PZv38/HTp0yJwTEBEREZEnQo+PiEiG2djYUKVKFT799FOrp8IrV67M0qVLuXHjBn5+fsTFxeHk5ETOnDmJj4/no48+euQ+ixUrhoODA6tWrSIlJYU1a9Zw8OBBozxv3rzEx8cbU/bAnac5z549i8Viwd3dHVtbW625kAlsbGwIDQ1lzpw5fPHFF8biiydOnGDYsGHExMRQq1Ytrly5wldffUVycjIRERGsWrWKFi1aAODp6cnZs2dJSUkx2vX09OTMmTPGttls5vbt2+TOnRtHR0f27NljNaVRhQoVyJkzJ7NnzyYpKYm9e/daTRdUrlw5ChQoQHh4OHFxcVgsFmJiYti0aVOa59W8eXP27t3L119/jdls5tatW0RERKTrNWnXrh3Lli1j+/btpKSkYDabiYyMNBZt7tChA1OnTjWme4iLi2P9+vXExcVx/Phxtm7dSmJiIg4ODri6uhrv04e1KyLysM/Ch5XLs+3q1at06tSJ7777jkOHDnHmzBnWrVvHp59+Sr169e6p36xZMzw8POjZsycRERGcOXOGnTt3MmbMGM6dOwdAnz59mDNnDp9//jknTpzg8OHDLF26lPnz51u1tWjRIn766SeOHTvGqFGjuH79Oq1bt34i5y0iIiIimUMjF0Tkkfj7+/Pjjz9aJRd8fX25du0aZcuWxc3NjS5dujBw4ECqV6+Oh4cHffv25euvv36k/tzc3Bg9ejQTJ05k1KhRNG/enMDAQKO8ePHitGnThsaNG5OSksKsWbPYv38/48aN48aNG+TMmZM2bdqk+YeyZFydOnWYO3cuM2fOZMqUKcCdkQItWrTAy8sLR0dH5s6dy4cffshHH31Evnz5GDlypLGGQaNGjVi9ejVVq1bFYrEQERHBq6++yttvv03lypXJnz8/q1atYvjw4YSGhpKQkECVKlUICgoynrh1cHBg+vTphIaG8umnn1K2bFmaN29u3Hi3s7Nj1qxZTJo0iaCgIOLi4ihYsCBt27ZN85zy58/PggULmDBhApMnT8bBwYEmTZpYrbtwP2XKlGHy5Ml8/PHHHD9+3Fgj4p133gGgY8eO2Nra0qdPH2JjY3F1dcXPz4+qVauSlJTElClTOHr0KLa2tpQqVYpx48alq10RebZMmjTJ+My965dffnngZ+HDPivl2ebq6kqFChX4/PPPOX36NMnJyeTPn59XX32VkJCQe+q7uLjw5ZdfMmnSJHr37k18fDze3t4EBAQYIxleffVVnJ2dmTdvHhMnTiRHjhyULFmS119/3aqtgQMHMnfuXA4cOMBzzz3HjBkzyJMnzxM5bxERERHJHDaWR5mfREREJBsKDQ0lNTWVsLCwrA5FRCTLPOyzUJ+VkpWio6OpV68eK1asMKa3FBEREZGnk6ZFEhGRp1ZERASxsbGkpqby22+/sXr1aho1apTVYYmIPFEP+yzUZ6WIiIiIiDwOmhZJRESeWmfOnKF///7cuHEDb29v+vfvT40aNbI6LBGRJ+phn4X6rBQRERERkcdB0yKJiIiIiIiIiIiIiEiGaFokERERERERERERERHJECUXREREREREREREREQkQ5RcEBERERERERERERGRDFFyQUSyDbPZzLRp0zCbzVkdivyL6X0mIv9W+nyTrKL3noiIiMizSckFeSJ27dpFSEgIgYGB+Pj4sH79eqvy+Ph4Ro0aRc2aNSlfvjyNGzdm0aJFVnXMZjOjR4/G39+fihUrEhISwrlz557kachjZjab+eSTT/SHqTxWep+JyL+VPt8kq+i9JyIiIvJsUnJBnoiEhAR8fHwYPnx4muVjx45l8+bNTJw4kbVr19K5c2fGjBljlYQICwvjp59+Ijw8nEWLFpGQkECPHj1ISUl5UqchIiIikq3ciE/maEwCvx24zoY9NyjkXYBzu7dzc/dubp08ScqtW1kdooiIiIiI/EvZZ3UA8myoVasWtWrVum/5H3/8wSuvvIK/vz8Abdu2ZfHixURFRVG/fn1u3rzJ0qVLmTBhAtWqVQNg4sSJ1K5dm23btlGjRo0nch4iIiIiWe1aXBJ7j8cTdTKO81eTjP0pycl45nLn2tEDOF3//4cvbGxwzJePHKVK4VC+DM72zlkUtYiIiMizJTU1VaP65IlxcHDAzs7uifer5IJkC5UqVeKXX36hTZs25MuXjx07dnDixAmGDRsGQFRUFElJSVSvXt04xtvbmxdffJHIyMj7JhfMZrPVB7nZbCYlJQUnJydsbTVwJ7tJSEjAw8ODhISErA5F/sX0PhORp9XNWylsOxDHnuO3SE213FN+9zuOxZxC8l9GdiafPcs18002uG6jpGspKuT0xcnW6UmGLv9yt27domjRotzSSBkREfl/qamppKSk4OrqiqOjY1aH88SZzWZOnDhBampqVociz5DcuXOTP39+bGxsnlifSi5ItvD+++8TGhpKzZo1sbe3x8bGhjFjxmAymQC4dOkSDg4O5MqVy+o4T09PLl26dN92Z8+ezSeffGJs+/j4MGLEiMdzEpIppk+fzpkzZ7I6DPmX0/tMRJ42f56z4fcTNiQ/5O/TmjVrcuvmdeLjraeNPFzSlmtxCeyM287e83soT0VykfvxBSzPnA8//JDTp09ndRgiIpLNFC9e/JlLLlgsFmJjY7Gzs6NIkSJ6uFUeO4vFQkJCAhcuXACgQIECT6xvJRckW/jiiy/4448/mDlzJgULFiQiIoIPPviAfPnyGdMgpcViufepvb/q0aMHXbp0MbZv3brF6dOnKVq0KPb2evtnN6mpqRw/fpzixYvr4iuPjd5nIvI0SU6x8MPvN9gfm4iTMzxovIEFCySAh6s7OfjfdEkWF0fOv2DB1SaHse+gTRR+OStT2vWlxxi9PCvMZjMnT57E1tb2iT4pJyICd+4LpKamUrRo0WfuJnZ2lpyczMmTJ3FyevZGSyYnJ5OQkEDBggXJkSPHww8QyQQuLi4AXLhwgXz58j2xKZJ0d1WyXGJiIuHh4XzyySfUrl0bgFKlSnHw4EHmzZtHtWrV8PT0JCkpievXr1uNXrh8+TK+vr73bdvR0dHqy8Xdf7u7u+tLRzZ0d3HunDlzZsk8cfJs0PtMRJ4WKakWFm+4wOGzKdg7ODy0/t2HLpztHHCw/98DGJd88mLjeBV7rD/zIhN+55b9Lerkq5e5gcszJzExEbj3u7eIyJNgNptJTEzE3d0dZ2etLZRd3J2i+ll8sPPu35y6JsqTdjeZlZSU9MTud+iRTclyycnJJCUl3fOUk52dnfFHctmyZXFwcGDr1q1G+YULFzhy5MgDkwsiIiIiTyOLxcLyLRc5HJ3x9WFsU/4yd5KtLQcKxd+37qEbB9h1ZcejhCgiIiIiD6DRfPKkZcV77tlLH0qWiI+Pt5qDNTo6moMHD5IrVy4KFixIlSpVmDhxIs7OzhQsWJBdu3axYsUKhg4dCtwZadC6dWvGjx+Ph4cHuXLlYvz48ZQsWfKB0yaJiIiIPI12HLzBvhP3Two8iG3y/9ZbSCiSmxuONx5YP+LKTvI55eN512KP1J+IiIiIiDybNHJBnoioqCheeeUVXnnlFQDGjh3LK6+8wtSpUwH46KOPKFeuHIMGDaJJkybMmTOH/v370759e6ONYcOGUb9+fd5++23at2+Pi4sLs2bN0rQmIiIi8q9y6XoS63dffcSjbbH9y6rPx4s+eH2quzZc+JlbKRkfJSEiIiIi8iDBwcGEhYX9ozaWLVuGyWTKpIgef7vPEo1ckCfC39+fw4cP37fcy8uLsWPHPrANJycnQkNDCQ0NzezwRERERLKN73ddJiklfUmBv7Plfwvqpni4cTLnzXQddyvlFnuv7cE/b8Aj9SsiIiIiDzbi8xNPtL8PXteo1CclOjqaevXqsWLFCkqXLp3V4TxRGrkgIiIiIpJNnL9q5kjMrUc+3s72fyM6zxXP2KKWB65HkZya/Mh9i4iIiIjclZSUlNUh/GP/hnN43JRcEBERERHJJrZGXf9Hx9v+/9d7i6M9+73TN2rhrsTURA7fPPiP+hcRERGRp1dqaipz5syhQYMGlC1bltq1azNz5kwAJk6cyMsvv0yFChWoV68eH3/8sdXN92nTptGiRQuWLFlCvXr1KFeuHBbLndG4KSkpjBo1CpPJhL+/P+Hh4UYZwPXr1xkyZAiVK1emQoUKdOvWjZMnT94T3+bNm2ncuDG+vr507dqVCxcuALBr1y5eeuklLl68aFV/3LhxdOjQwdhetmwZtWvXpkKFCrz11ltcu3bNqv79zuHXX3+lffv2Rvw9evSwWlu2Xr16ALzyyiv4+PgQHBxslC1dupTGjRtTrlw5GjVqxFdffZXu38fu3btp0aIF5cqVo1WrVqxfvx4fHx8OHsw+39mVXBARERERyQaSUywcPP1oizjfZW9z5+v9jWK5MdulPKT2vfZd3/uP+hcRERF5FLt27SIkJITAwEB8fHxYv369VfmPP/5I165d8ff3v+/NVbPZzOjRo/H396dixYqEhIRw7tw5qzrXr19n8ODB+Pn54efnx+DBg7lx48ZjPbenyeTJk/n000/p1asXa9euZdKkSXh6egLg6urK2LFjWbNmDe+99x7ffvstCxYssDr+9OnTrFu3jmnTprFixQpj//Lly7Gzs+Obb77hvffe4/PPP+fbb781yocOHUpUVBQzZ85k8eLFWCwW3nzzTavkRWJiIp999hkTJkzgyy+/JDY2lvHjxwNQuXJlChcuzHfffWfUT05OZuXKlbRq1QqAPXv2MGzYMP7zn/+wYsUK/P39jcTJw87h1q1bdOnShSVLlrBgwQJsbGx46623SE29s9bZ3XNZsGABW7ZsYdq0aQB88803hIeH079/f9auXcuAAQOYOnUqy5cvf+jvIi4ujp49e1KyZEmWL19Ov379mDhx4kOPe9K05oKIiIiISHZw+STdc/7AObtCHErMz+G4PCRbMvYskN3/1z9UJPGRQrhqvkJCcjw57F0f6XgRERGRR5GQkICPjw+tWrWiT58+aZb7+vrSqFEj3n///TTbCAsLY8OGDYSHh5M7d27GjRtHjx49WLZsGXZ2d6aOHDhwIOfPn+fTTz8FYPjw4QwZMoRZs2Y9vpN7SsTFxbFw4UKGDx9Oy5YtAXjuueeMBY979epl1C1cuDDHjx9n7dq1dO/e3diflJTExIkTyZMnj1XbBQoUYNiwYdjY2FC8eHH+/PNPFixYwGuvvcbJkyf55Zdf+Prrr6lUqRIAkyZNonbt2qxfv57GjRsbbX/wwQc899xzAHTo0IEZM2YYfbRp04Zly5bRrVs3ADZu3MitW7eM4xcuXEhgYCBvvvkmAMWKFSMyMpLNmzdbxZrWObz88stWdT788EMCAgI4evQoJUuWNOrmzp0bLy8vo96MGTMYOnQoDRs2BKBIkSIcPXqUxYsXG6/x/axatQqAMWPG4OTkxAsvvMCFCxfu+/7PKkouiIiIiIhkA6mXo8lx6zzFOU9xoJGrI9ecC3PKUoioeG/OJeZ4aBt22HA7fy4uujz6CIjzt89TzL74Ix8vIiIiklG1atWiVq1a9y1/5ZVXgDsL56bl5s2bLF26lAkTJlCtWjXgzjQ+tWvXZtu2bdSoUYNjx46xefNmvvnmGypUqADA6NGjadu2LcePH6d48Wf7+8/x48cxm81UrVo1zfLvv/+ezz//nNOnT5OQkEBycjJubm5WdQoWLHhPYgGgQoUK2NjYGNsVK1Zk/vz5pKSkcOzYMezt7Y3fCYCHhwfFihXj2LFjxj4XFxcjsQCQL18+Ll++bGy3atWKKVOm8Mcff1CxYkVjOqIcOe58hz527Bj169e3iqtixYr3JBfSOofTp08bbV+9etWY0ik2NpaSJUum+XpduXKF2NhY3nvvPUJDQ439ycnJuLu7p3nMX504cQIfHx+cnJyMfeXKlXvocU+akgsiIiIiItlAarz1egu2KWbyxB8nD8fxtYHbuT244FCYY0kFiLrpya2Ue7/K26fC6WJ29+zPiOvma6CBCyIiIpIJ4uPjMZvNxrajoyOOjo6Z3k9UVBRJSUlUr17d2Oft7c2LL75IZGQkNWrUIDIyEnd3d6ub2BUrVsTd3Z3IyMhnPrnw15vYf/fHH38wYMAA+vTpQ2BgIO7u7qxZs4b58+db1XNxcclwv39de+Hv+/+akLC3t/7ua2NjY3Vs3rx5qVOnDsuWLaNIkSL8+uuvLFy48KH9/F1a5xASEkKBAgUYM2YM+fLlIzU1laZNmz5wwee7UyaNHj3a6j0HYGv78NHJfz//7ErJBRERERGRbMBy68Hz/TrdvkqR21cpwj5qOdkS51KQaJvCHLyVn+Px7liAZGc7/sxzFXj0P0RuJGveYREREckcderU4datW8Z2796905z26J+6dOkSDg4O5MqVy2q/p6cnly5dMurkzZv3nmPz5s1r1HmWFS1aFGdnZ7Zv306RIkWsynbv3k3BggXp2bOnse/s2bPpbnvPnj33bD///PPY2dnxwgsvkJyczJ49e4xpka5evcrJkycpUaJEhs6hTZs2DBgwAG9vb4oUKYKfn59R9sILL6QZx8NcvXqVY8eOGQtSA0RERFjVcXBwAO4sXH2Xp6cn3t7enDlzhubNm2foPACKFy/OqlWrMJvNRkJu3759GW7ncVNyQUREREQkO0g2P7zO/7OxpOKeEE1poikNJOfMwSWHwvyWehOLzT9JLYiIiIhkng0bNhg3XoHHMmrhQdLztPrT8oT44+bk5ET37t2ZOHEiDg4OVKpUiStXrnDkyBGee+45YmNjWbNmDeXKlWPjxo33LLr9ILGxsYwdO5a2bdty4MABvvzyS9555x3gTlKjXr16hIaG8sEHH+Dm5sakSZPw9vamXr16GTqHGjVq4O7uzsyZM+nbt69VWXBwMO3atWPu3LnUr1+frVu33jMlUlpy5cpF7ty5Wbx4MV5eXpw9e5bJkydb1cmbNy/Ozs5s3ryZ/Pnz4+TkhLu7O3369GHMmDG4ublRs2ZNzGYzUVFR3Lhxgy5dujyw32bNmvHxxx8TGhrKm2++ydmzZ/nss88AstX7NWMrxImIiIiIyONh/+h/bNsnJZDnWhQv7tuGR6LDww94ABe7jA9nFxEREUmLq6srbm5uxs/jSi54enqSlJTE9evW00xevnwZT09Po85f5+i/68qVK2mOaHgW9erViy5dujB16lSCgoLo378/V65coX79+rz++uuMGjWKFi1aEBkZaTWK4WFeeeUVEhMTefXVVxk1ahQdO3akbdu2RvnYsWN56aWXCAkJoW3btlgsFubMmWOVmEoPW1tbWrZsSWpqqrFOx10VK1ZkzJgxfPnll7zyyits2bIlXedga2tLeHg4+/fvp2nTpowdO5YhQ4ZY1bG3t+f9999n8eLF1KhRw1j8+tVXX2XMmDEsX76cZs2aERwczPLlyylcuPBD+3Vzc2PmzJkcPHiQFi1aEB4ezltvvQU8+STdg9hY0jvhlMi/gNlsZt++fZQrVy5b/Y8od6SkpBgL79jZ/bP5okXuR+8zEcmuErcvJfl01CMffyvxFmdOn8G7RHE2m57nqs2thx+UhhpetSibq/wjxyHPnsTERPbt24ezs7O+Y4vIE2c2m0lMTKRcuXI4OztndTjy//7J/RcfHx+mT59+z+K7cGdB53r16rFixQpKly5t7L958yYBAQFMmDCBoKAgAC5cuECtWrWYM2eOsaBzUFAQ3377LeXL3/mus2fPHl577TXWrVuXaWsuJCYmcuLECYoVK6b3ZBZ4//33uXTpErNmzcrqUDLdypUrGTZsGBEREWm+t7LivadpkUREREREsgFb98x5Ys4xKYm6h6/wQ6ncxHE7w8c7a+SCiIiIPGHx8fGcPn3a2I6OjubgwYPkypWLggULcu3aNWJjY7lw4QIAJ06cAO6MRvDy8sLd3Z3WrVszfvx4PDw8yJUrF+PHj6dkyZJUq1YNgBIlSlCjRg3ef/99Ro0aBUBoaCh16tR55hdz/je4efMm+/btY9WqVcyYMSOrw8kUK1asoHDhwnh7e3P48GEmTZpEo0aNslXSSskFEREREZFswDZPoUxrK0fCLeoec+CHEs7cJjlDx3o4eGRaHCIiIiLpERUVRadOnYztsWPHAtCyZUvGjRvHL7/8wrvvvmuU9+/fH7BeIHrYsGHY29vz9ttvk5iYSEBAAOPGjbMasT5p0iTGjBnDG2+8AUDdunUZPnz4Yz8/efx69erF3r17adu2LdWrV8/qcB5q1qxZzJ49O80yPz8/Pv30Uy5evMjUqVO5ePEiXl5eNGrUyHjvZxeaFkmeKZoWKXvTdDXyJOh9JiLZleV2AvErJ8Ejfj2/Oy1SkeeK4OJ8Z/TBJa88/FTEjmRS0tWGm707wUU7P1L/8uzStEgikpU0LVL29Czff9G0SJIe165du2eNkLucnZ3x9vbOcJuaFklERERE5Bll45QDO+/ipJw7lmltel68Qk1HbzZ6p5LKw5MWxd1KZFrfIiIiIiKStty5c5M7d+6sDuMfs83qAERERERE5A6H4pUyvc1CMecJuJK+J5fK5Hwp0/sXEREREZF/JyUXRERERESyCbtCpbDNlS/T2y1+MoZK8W4PrFPUtRgejnkyvW8RERGRh9m1axchISEEBgbi4+PD+vXrrcotFgvTpk0jMDCQ8uXLExwczJEjR6zqmM1mRo8ejb+/PxUrViQkJIRz585Z1bl+/TqDBw/Gz88PPz8/Bg8ezI0bNx77+Yn8Wym5ICIiIiKSTdjY2OLk2/ixtP3S4dOUvp0zzTInWydqeNV+LP2KiIiIPExCQgI+Pj73XVx57ty5zJ8/n+HDh7NkyRI8PT3p0qULcXFxRp2wsDB++uknwsPDWbRoEQkJCfTo0YOUlP+tPTVw4EAOHTrEp59+yqeffsqhQ4cYMmTIYz8/kX8rJRdERERERLIRu3xFsX++/GNp2+/ACYolu9+zP8AzEDf7B49sEBEREXlcatWqRf/+/WnYsOE9ZRaLhYULFxISEkLDhg0pWbIk48ePJzExkdWrVwNw8+ZNli5dytChQ6lWrRplypRh4sSJ/Pnnn2zbtg2AY8eOsXnzZsaMGYOvry++vr6MHj2aDRs2cPz48Sd6viL/FkouiIiIiIhkM06mpth6FMj0dm0sNgREnaFA6v8SCc/leJ7SOctkel8iIiIi8fHxxMXFGT9msznDbURHR3Px4kUCAwONfY6OjlSuXJnIyEgAoqKiSEpKonr16kYdb29vXnzxRaNOZGQk7u7uVKhQwahTsWJF3N3djToikjFKLoiIiIiIZDM2dg44V2+HjWuuTG/bLjWVmgdiyWvJQX7nAjTI/3Km9yEiIiICUKdOHWN9Az8/P2bPnp3hNi5evAhA3rx5rfZ7enpy6dIlAC5duoSDgwO5cuV6YJ2/t3G33bt1nmXBwcGEhYUBULduXRYsWJDuY6Ojo/Hx8eHgwYP3rbNjxw58fHy0xsW/jH1WByAiIiIiIveyzZETl7pdSdzyNalXYzO1bUdzEg2uuOFWuQUOtg6Z2raIiIjIXRs2bMDB4X/fNRwdHR+5LRsbG6tti8Xy0GPSW+fvbT8Ocd988Nj7+Cu310Y88rFLlizBxcUl3fULFCjAli1b8PDweOQ+5emkkQsiIiIiItmUrYs7LnU6Y/9c2Uxs1BaHUtXJXbmNEgsiIiLyWLm6uuLm5mb8PEpywcvLC+Ce0QWXL1/G09MTuDNCISkpievXrz+wzuXLl+9p/8qVK2mOaHiW5cmTJ0PJBTs7O7y8vLC313PszxolF0REREREsjEbe0ecq7bGObAdNm7/7Gkw27yFcKnXDafy9bGxtcukCEVEREQen8KFC+Pl5cXWrVuNfWazmV27duHr6wtA2bJlcXBwsKpz4cIFjhw5YtTx9fXl5s2b7N2716izZ88ebt68adSRO/4+LZKPjw+LFi2iW7dulC9fnrp167Ju3TqjPK1pkTZt2sTLL79M+fLlCQ4OJiYmJkMxfPPNN9SqVYsKFSrw1ltvMX/+fEwm0z8+N8lcSieJiIiIiDwF7Av6YFfgRVJiDpN0LIKUC8fh4SP9wdYOuwIv4viiP3b5ij7uMEVEREQyLD4+ntOnTxvb0dHRHDx4kFy5clGwYEE6derE7NmzKVq0KM8//zyzZ8/G2dmZpk2bAuDu7k7r1q0ZP348Hh4e5MqVi/Hjx1OyZEmqVasGQIkSJahRowbvv/8+o0aNAiA0NJQ6depQvHjxJ3/ST5kpU6YwaNAg3nvvPb777jsGDhxIyZIlKVGixD11Y2Nj6d27N+3ataN9+/ZERUUxfvz4dPf1+++/M2LECAYNGkTdunXZtm0bU6dOzczTkUyi5IKIiIiIyFPCxsYW+8KlsS9cGsvtBFIunSbl0mlS46+Reuk8109doFCuAth5FcDWPS92Xs9j5/kcNvaPPr+xiIiIyOMWFRVFp06djO2xY8cC0LJlS8aNG0f37t25ffs2H3zwAdevX6dChQp89tlnuLm5GccMGzYMe3t73n77bRITEwkICGDcuHHY2f1vtOakSZMYM2YMb7zxBnDnCf3hw4c/obN8ujVq1IhXX30VgLfffptt27bxxRdfMHLkyHvqfv311xQpUoRhw4ZhY2ND8eLF+fPPP5k7d266+vryyy+pWbMmXbt2BaBYsWJERkaycePGzDodySRKLsgTsWvXLubNm0dUVBQXL15k+vTp1K9fP826w4cPZ/Hixbz77rt07tzZ2G82mxk/fjyrV6/m9u3bVK1alZEjR5I/f/4ndBYiIiIi2YeNUw7sC5XCvlApAC5HR/Nr5BVe9GuNS+HCWRydiIiISPr5+/tz+PDh+5bb2NjQp08f+vTpc986Tk5OhIaGEhoaet86uXPnZtKkSf8o1mfV36eOqlixotU0SH917NgxKlSoYLVQdsWKFdPd14kTJ+65b1i+fHklF7IhrbkgT0RCQgI+Pj4PzQavX7+ePXv2kC9fvnvKwsLC+OmnnwgPD2fRokUkJCTQo0cPUlJSHlfYIiIiIiIiIiIikoa/Jg/+ymJJz9yd92exWO5p+5+2KY+HkgvyRNSqVYv+/fvTsGHD+9Y5f/48o0aNYtKkSTg4OFiV3bx5k6VLlzJ06FCqVatGmTJlmDhxIn/++Sfbtm173OGLiIiIiIiIiIg8s/744w+r7T179tx3rYoXXniBPXv23FM/vYoXL86+ffus9kVFRaX7eHlyNC2SZAupqakMHjyYrl278uKLL95THhUVRVJSEtWrVzf2eXt78+KLLxIZGUmNGjXSbNdsNmM2m43tpKQkAFJSUjTiIRu6+zvR70YeJ73PROTfKjU11fivPuPkSbr7frNYLHqqUESeuLufO/o7P3vR7+Lf5/vvv6ds2bL4+fmxatUq9u7dS1hYWJp127Vrx2effcbYsWNp27Yt+/fvZ/ny5enuq2PHjnTs2JH58+dTp04dtm/fzq+//nrfkRKSdZRckGxh7ty52NvbWy3e81eXLl3CwcGBXLlyWe339PTk0qVL92139uzZfPLJJ8a2h4cH06dP58CBA5kTuDwWf89OizwOep+JyL/N9evXATh69CgXL17M4mjkWWNra0tSUpLxMI+IyJNka2vLoUOHsjoM+Qfi4uKYMmUK69ev5/Lly5QpU4Zhw4ZRvnx54E4S6ZNPPmHx4sXcuHGDChUqMHz4cKsHVLVW5+PVp08f1q5dywcffICXlxeTJk3ihRdeSLNuwYIFmTZtGmPHjmXRokWUL1+e/v37M2zYsHT15efnxwcffMAnn3zCxx9/TGBgIJ07d+arr77KzFOSTKDkgmS5qKgoFi5cyLJlyzKcgXzYk1E9evSgS5cuxnZSUhLHjx+nTJkyODo6PlK88vikpKSwb98+ypUrh52dXVaHI/9Sep+JyL9VTEwMmzdv5oUXXqBQoUJZHY48QxITEzlw4ABOTk76ji0iT5zZbOb27duUKVMGZ2fnrA5H/p/ZbM7Qg53vv/8+R44cYcKECeTLl4+VK1fSpUsX1q5di7e3N3PnzmX+/PmMGzeOokWLMnPmTLp06cL333+Pm5sbcGetzg0bNhAeHk7u3LkZN24cPXr0YNmyZdnibz+310ZkdQgP9MUXXxj//uWXX+4p9/b25rPPPkvz2MKFC9+zIHedOnWoU6eO1b7WrVunO57XXnuN1157zdh+//33ee6559J9vDwZSi5IlouIiODy5ctWHzgpKSmMHz+ehQsX8ssvv+Dp6UlSUhLXr1+3Gr1w+fLle1ar/ytHR0erP3DuTpFkZ2eXLS4skjb9fuRJ0PtMRP5tbG1tjf/q802epLvvNxsbG01XICJP3N3PHX2/z14y8rtITEzkxx9/ZMaMGVSuXBm485T8+vXrWbRoEW+//TYLFy4kJCTEWMtz/PjxVKtWjdWrV9OuXTtjrc4JEyZQrVo1ACZOnEjt2rXZtm3bfafTfpiff/453XXr1av3SH1I2ubNm0f16tVxcXHh119/ZcWKFYwYkb0TNM8iJRcky7Vo0cL44L+ra9eutGjRglatWgFQtmxZHBwc2Lp1K0FBQQBcuHCBI0eOMHjw4Cces4iIiMiz4PCpK8RcjKeQlys+z+fJ6nBERETkKRMfH2+1FubfHwIFSE5OJiUlBScnJ6v9zs7O7N69m+joaC5evEhgYKBVO5UrVyYyMpJ27do98lqdD/PWW2+lq56NjQ0HDx58pD6eRd26deP3339Ps6xHjx6EhISwd+9ePv30U+Lj4ylSpAjvvfcer7766hOOVB5GyQV5IuLj4zl9+rSxHR0dzcGDB8mVKxcFCxbEw8PDqr6DgwOenp7GqvPu7u60bt2a8ePH4+HhQa5cuRg/fjwlS5a8JzEhIiIiIv/c/FVRLNt4zNhuXecFOjd9KQsjEhERkadNnTp1uHXrlrHdu3dv+vTpY1XHzc0NX19fZsyYQfHixfH09GT16tXs2bOH559/3lhLKm/evFbHeXp6cvbsWeDR1+p8GK3lccffpzz6p8LCwkhMTEyz7O7vcMqUKZnapzweSi7IExEVFWW1WPPYsWMBaNmyJePGjUtXG8OGDcPe3p63336bxMREAgICGDdunIY9ioiIiGSSRHMye49c4qedp9gedc6qbOmGowSUK6ARDCIiIpJuGzZswMHBwdi+39o8EyZMYNiwYdSsWRM7OzvKlClD06ZNrdZt+PvUew9bhzO9deTJ8/b2zuoQJJMouSBPhL+/f4aynGktHOPk5ERoaCihoaGZGZqIiIjIM+XvUx1dvHqLiIPn2HngPHuPXMScnHrfY2Muxiu5ICIiIunm6up634TCXz333HN8+eWXJCQkEBcXR758+Xj77bcpXLgwXl5ewJ3RCfny5TOOuXz5Mp6engCPvFZnRiUkJLBr1y7Onj1LUlKSVdlfH6oVeVYouSAiIiIi8oxYsHo/SzccNbZzuTlyPc5sVcfLw4UXi+Rm297Ye44v5OX62GMUERGRZ1eOHDnIkSMH169fZ8uWLQwePNhIMGzdupUyZcoAYDab2bVrF4MGDQKezFqdBw4c4M033+TWrVvcunWLXLlycfXqVVxcXMiTJ4+SC/JMUnJBREREROQZcPjUFavEAsD1ODM2NlDq+TxULuNNlTL5eS6/OzY2NvckIgBsba2nIxARERHJDJs3b8ZisVCsWDFOnz7NhAkTKFasGK1atcLGxoZOnToxe/ZsihYtyvPPP8/s2bNxdnamadOmwJNZq3Ps2LHUqVOHkSNHYjKZ+Oabb7C3t2fw4MFKLMgzS8kFEREREZFnQMzF+DT392hZnibVi92zv3PTlwgoV4CYi/Fs2n2G3YcvMmPJHib1q4WdkgwiIiKSiW7evMlHH33EuXPnyJ07Nw0bNqR///7Geg3du3fn9u3bfPDBB1y/fp0KFSrw2Wef4ebmZrTxuNfqPHjwIB988AF2dnbY2dlhNpspUqQIgwcP5p133qFhw4aZ0o/I00TJBRERERGRZ0AO57T/sH6hcK409wP4PJ8Hn+fz4FvSi57jf+Zo9HW+/+1kmskIERERkUcVFBRkTGeUFhsbG/r06UOfPn3uW+dxr9Vpb29vLCqdN29ezp49S4kSJXBzcyM29t7pJEWeBbZZHYCISHZ0+NQVfok4w+FTV7I6FBERkX8sOSWVpb8cvWd/67ovpGuBZo+czgQ3Lg3AF2sPcPVGYqbHKCIiIpKdlSlThqioKAD8/f2ZOnUqK1eu5MMPP6RkyZJZHJ1I1tDIBRGRv5m/KoplG48Z263rvEDnpi9lYUQiIiL/zBdrD3Lo1FVcne3p29aXRHMKhbxc05VYuKtRtWKs33Wao9HX+Wz1fgb+x+8xRiwiIiKSvfTv35/4+DvTTL799tu88847jBw5kueff54PP/zwocfPPDrtcYdopecL9x/l8TSoW7cunTp1onPnzlkdijyARi6IiPy/pOQUvlh3wCqxALB0w1GNYBARkafWrgPnWLbxzqiFvm19qVa+IHVNRTKUWACws7WhV5sK2NjAxt+j2Xv04uMIV0RERJ4xycnJhIeHU7duXcqXL0+9evX45JNPSE1NNepYLBamTZtGYGAg5cuXJzg4mCNHjli1YzabGT16NP7+/lSsWJGQkBDOnTuXaXGWK1eOqlWrApAnTx7mzp3L7t27Wb58OaVLl860fv5t6taty4IFCzJ83JIlS2jbtm3mBySZSskFEXnmXY+7zX9/OswbY37im/VH0qxzv0UwRUREsrOLV28R/nUkAE0Di1GtfMF/1N6LRTxoHFAUgJlL95KUnPrgA0REREQeYu7cufz3v/9l+PDhrF27lsGDBzNv3jy++OILqzrz589n+PDhLFmyBE9PT7p06UJcXJxRJywsjJ9++onw8HAWLVpEQkICPXr0ICUlJVPiPHPmDCdPnrxn/8mTJ4mOjs6UPp4mZrP5sbafJ08eXFxcHmsf8s8puSAiz4y/r6Nw5vxNPvn2D94Y/SNffX+Iazdvk8vNMc1jdx8+T2qq5UmGKyIiT5HsuFZPckoqE7+M4GaCmRcK5+KNZpkzxV9wUBlyuzkRfSGOFZvuXcdBREREJCP++OMP6tWrR+3atSlcuDCNGjUiMDDQWN/AYrGwcOFCQkJCaNiwISVLlmT8+PEkJiayevVqAG7evMnSpUsZOnQo1apVo0yZMkycOJE///yTbdu2ZUqc7777LpGRkffs37NnD++++26m9JGVgoODGTVqFKNGjcJkMuHv7094eDgWy517IXXr1mXGjBkMHToUPz8/Y+HsH374gSZNmlC2bFnq1q3LZ599ZtVmTEwMY8eOxcfHBx8fH6Ns9+7ddOjQgfLly1OrVi3GjBlDQkKCUf73EQ8+Pj58++23vPXWW1SoUIGGDRvy888/p/v8fv75Zxo2bGiMfFm+fDk+Pj7cuHHjUV8yQckFEXlGLFi9n0FTNxP+9W4GTd1M9w9/oteEX/hh+ynMyam8UCQ3gzv6sWD4y7Su88I9x2/aHcNHi3brCU0REbnH368xC1bvz+qQAPjq+0McPHmFHM72vNOpMg72dpnSrpuLA280v5Oo+O9Pf3Luskb3iYiISNri4+OJi4szftJ62t3Pz4/t27dz4sQJAA4dOsTvv/9OrVq1AIiOjubixYsEBgYaxzg6OlK5cmXjZn9UVBRJSUlUr17dqOPt7c2LL76YZkLgURw4cIBKlSrds79ixYocPHgwU/rIasuXL8fOzo5vvvmG9957j88//5xvv/3WKJ83bx4vvvgiy5Yto1evXkRFRfH2228TFBTEqlWr6N27N1OmTGHZsmUATJs2jfz589O3b1+2bNnCli1bADh8+DBdu3alQYMGrFy5kvDwcH7//XdGjx79wPg++eQTGjduzMqVK6lZsyaDBg3i2rVrDz2v6Oho+vXrR7169VixYgXt2rUjPDz80V8oMWhBZxH51zt86gpLN1g/WXnucgI2gH/Z/LxS6wXKFMuDjY0NAJ2bvkRAuQLEXIynkJcrMRfjmLr4DzZFRnMtLpFhnauQw9khC85ERESym7SuMUs3HKV00TxULpMfW1ubNI+5e43J6LoH6RVx8DxLfrkz1V/f13zJn9c1U9uvXakw63eeZu/RS8xdEUVoV/9MbV9ERET+HerUqcOtW7eM7d69e9Onj/VCw927d+fmzZs0btwYOzs7UlJS6N+/P02bNgXg4sU76zzlzZvX6jhPT0/Onj0LwKVLl3BwcCBXrlz31Ll06VKmnIuNjY2xoPNf3bx5M9OmXspqBQoUYNiwYdjY2FC8eHH+/PNPFixYwGuvvQZA1apV6dq1q1F/4MCBBAQE8NZbbwFQrFgxjh49yrx582jVqhW5c+fGzs4OV1dXvLy8jOPmzZtHs2bNjMWaixYtynvvvUdwcDAjR47EyckpzfhatmxpvC8GDBjAl19+yd69e6lZs+YDz+u///0vxYoV45133gEwzm3WrFmP9kKJQckFEfnXu996CZ2blqFVnRfTLPN5Po9xw8fn+Tzkdndm3Oc72XPkEkOnb2FEt6rkzaW5/0REnmVJySn8uON0mmVj5u/E0cGOgp6uFPRypZCXGwU93dhz5AIbd8cY9VrXeYHOTTNnuqK7rt28TfjX+wBoUr0Y1Sv8s3UW0mJjY0NIq/L0nbyBnQfOsT0qlqplC2R6PyIiIvJ027BhAw4O/3s4z9Hx3qmI165dy8qVK5k8eTIvvPACBw8eZOzYseTLl4+WLVsa9e4+EHjX3el6HiQ9ddLLZDIxe/ZsPvroI+zs7owITUlJYc6cOfj5+WVaP1mpQoUKVq9zxYoVmT9/vpE8KVu2rFX948ePU69ePat9lSpVYuHChaSkpBiv09/t37+fU6dOsWrVKmOfxWIhNTWV6OhoSpQokeZxf51WKUeOHLi6unLlysOnJT1x4sQ9sZcvX/6hx8nDKbkgIv96eXOlnfF+qXjeNPenpZJPPj7sFcgHn27nxNkbDJ62mQ+6B1DE2z2zwhQRkafE9bjbfL/9JGu2nODqzdtp1rGztcGclMLJ2BucjL3/PK5LNxwloFyBTB3B8OX3h7kRn0TxQpm3zkJaini707L2C3z78xHmrNhHxRe9cHbSnxciIiLyP66urmkmFP5qwoQJvPnmmzRp0gS4cwP57NmzzJ49m5YtWxpPvF+6dIl8+fIZx12+fBlPT0/gzgiFpKQkrl+/bjV64fLly/j6+mbKuQwePJgOHTrQqFEjTCYTABEREcTFxfH5559nSh/Z3d8XWH7U5E1qairt2rUjODj4nrICBe7/wMpfE1VwJ+GUmvrw6astFssjJafk4fTtX0T+1SwWS5pPlbau+0KGb+S8UDg3E/vUYMSc3zh7KZ4h0zYT2tUfO1ubxz69hYiIZI2/TmHk6uLAyl+P83PEGcxJd57eypvLmQJ5XYk6ftk4pnXdFwhuVJoLV28RczHO+Ik6dpkz52/e08eeI5cy5fpx+tydtk+cvY6LU07e6WTC0SFz1lm4n9fql2RTZAwXriQwY+keKpbMp+uhiIiIZEhiYuI9N37t7OyMm7+FCxfGy8uLrVu3UqZMGQDMZjO7du1i0KBBwJ0n6h0cHPg/9u48LKrq/wP4e4BhR/ZVVmVRZBEVF8Q1UzMrlxYtJckMLS0rTdNc0wQtrdwit9Q2+7llVqaWprmiooIiKm4sKvvOMMMwvz/4MjrMsAwMDOD79Tw8Oveee++5cOfOnfM553NOnDiBYcOGAQDS09Nx48YNzJw5UyP19PT0xL59+/DDDz/g2rVrMDQ0xAsvvIBx48bBwsJCI8fQtkuXLim9dnNzq3YEQvv27XHhwgWFZRcuXIC7u7t8G6FQqBQA8PX1xY0bN+Dm5qbB2levXbt2+PfffxWWVU4YTg3D4AIRtWp/nb6LY7Gp0NURYMroAAj1dBvU6OFgbYLl0/rg001nkHgvBx+vO4Hy8kfR7sZIb0FERNrx3f4rSvMpVGrvbI4R/TwRGugEPV0dlfMoONqYwNHGBN062gOoCFTM+Pq40r5+OJCAvKJSvDq4A0yM6jenz3f7r+DPfy/D17TidYCnNZxsTOu1L3UY6ushYqQ/Pt10BkfOp+DI+RQA/DwkIiKiuhswYAC++eYbODk5ydMibdmyBaNHjwZQ0Ts9LCwM0dHRcHd3h5ubG6Kjo2FoaCjPv29mZobRo0cjKioKlpaWMDc3R1RUFLy9vRESEtKg+hUWFsLUtOK5yt7eHh988IFSmVOnTqFXr14NOk5zcP/+fSxbtgyvvPIKrl69iu+//14+T4Eqb7zxBl588UWsXbsWw4YNw8WLF/HDDz9gwYIF8jJt27ZFTEwMnn32WQiFQlhZWWHSpEl45ZVXsGjRIrz88sswMjJCUlISTp48iXnz5mn8vF555RV89913WLFiBV588UUkJCRgz549AJTTbZF6GFwgolbrdloevt1bkXM6bFhHDOnprpH9mpsaYMmUECz49hSu3lbM7dcY6S2IiDSpKSYTbg1UTdQMAJ08rDDumY7o1M5a4YvI43P1VMfHzQqjB3gq7NfJ1gRpGUXYd+wWjl1IxYThvhjQ1UXlRNCqyGQy/HcxFbuO3ISxzqPlZ648ROLd7Cb5G5ubKKc64OchERER1dUnn3yCr776CosWLUJWVhbs7OzwyiuvyCcJBiomfS4tLcWiRYuQl5eHwMBAbN68Wd7oDwBz5syBnp4epk+fDpFIhF69eiEyMrLaXvd1FRERgc2bN1c7yfDp06fx9ttvIzY2tsb9TPGcVuP65mDEiBEQiUR46aWXoKuri3HjxuGVV16ptnynTp3w5Zdf4uuvv8b69etha2uLd999F6NGjZKXeffddzF//nwMGjQIYrEYiYmJ6NChA7Zv344vv/wSr776KgDAxcVFPupE01xcXPDVV18hKioK27ZtQ+fOnTF58mQsXLiw1rRdVDOBjAmm6AkiFosRFxcHf39/3jyaIalUiosXL6Jz584N/vAvFknwwZf/IjWjCN062mPeGz3q3FBTV4fP3sNXO5QfHt4f2wUDu7lo9Fg1UaehkI2Kmr3OiFqaqj3x2btcNZlMhi9+OI9/Y1OV1mniHl/1XnzhWjq+3XsZqRlFAIAObpaIGBUAT2cLlfdtSVk5rtzKRMzVh4i5+hD3syq2M9Yphq/pdVwt9EZxuXGTfR79cy4Zq366oLS8qT8PSXtEIhHi4uJgaGjIZ2wianJisRgikQj+/v4wNDTUdnXof1pT+8vw4cPh7OyMtWvXKn2HPHv2LCIiIvDiiy9i7ty5ACo+F2/fvg0PD48WdU2OHz8eHTp0kJ9Ha7d+/Xr8/PPPSumSWjJtXHscuUBErY5MJsO6nRWNNDbmhnh/bBeNBxYAwMVedbqJtrYmGj9WddRpKGSjItGT7XzCA6We+Oxdriy/SIwvf76AmKsPVa7XxD2+6iiHLh3ssHrGQOw7loSfDyXi2t0cfPDlv3B3bIPbaY8mg+7awQ4G+rqITcxASWmZfLmujgDScuX+Qk31eVTdcZry85CIiIiosWzatAmvvfYaZs2ahc8//1y+PCYmBhERERg1atQT0yDfkv3www/w9/eHpaUlzp8/L/+7UsMwuEBErc7BM/fwb2wKdHQEmDm+G9qoSNegCarSW5gYCeFg3TSNKapSduw6chPpOcWwNFOMUOcUiHD8YppSWTYqErV+yQ8L8OuxJByOUZ7cHgCu38vlfeB/rt7Owort55CZJ4JQTwed2lnj4vUM+frRAz0b7Xcl1NPB6IFe6N/VGZt/u4JjsakKgQUAOH8tXf5/CzMDBHe0R7CvPQK9bPHL4ev489/LTVLXqlR9Hnq0bcPrioiIiFoFe3t7bN68Ga+++iqWLFmCTz75BOfOncNbb72FF154oVHmCCD1zJ8/H7/99pvKdc899xwWL16Mu3fvYv369cjLy4OTkxPCw8MRERHRxDVtfRhcIKJW5c79fHy7p6JxZfwzHeHrYd2ox5swvBN6+TviRnIu/u/vG8jOF2HZ1hh8GhECoZ5O7TtogMr0GVVVDSLUtg82/hC1PjKZDJdvZGLvsSScS1DdA7/Sj39dg4u9KTp72zVR7Zqf8nIZdh25ge8PXEN5uQxONiaYFRaMdm3NmzydnLW5EWaO6wY7S2Ps/OeG0voefg54+SlveDpbKIzKmzC8E7wddHDo9+t475XOCOnWsdHr+rjKz8MzVx7g//6+gTtp+bh+LwferpZNWg8iIiKixuDq6oqNGzciLCwMhYWFOHToEJ577jksXLhQ21XTmO3bt2u7CvX23nvvYeLEiSrXVc7LMWfOHMyZM6cpq/VEYHCBiFqNktIyRG6NgbisHF072GFUf88mOW5leosATxvMXH0cV25lYd3OS3j3lc4Kk31q2u20PJXLn+rmAitzxZEL2Xki/H0uWaksU1YQtQ6VDeD2VkZ4mF2Mvf8myXu9CwRAj04OGNHPE2ev3Mfuo0ny7dqY6CO/SIz5357CS09549XBPtDVbdzAaHOTW1CKlT+eR+z/Rij07+KMKaMDYGwoBFC3iZobQ08/B5XBhZcGelXbYO/qYKbwb1Or/F1l5Ynwz7lkrN15CSvf6/vEXVNUN3fTS5CZK4aNhT7c7Iy0XR0iItKygQMHIjVVeb6rV199FQsWLIBMJsOaNWuwY8cO5OfnIzAwEPPnz4eXl5e8rFgsRlRUFPbv34/S0lL07NkTCxcuhIODQ4PqVlhYCABwdnbGihUrMHXqVAwaNAgzZ86UrwOgMLk0NS1ra2tYWzdu51JSjcEFImoVZDIZ1u26hNSMQlg34jwLNXF1aIOPxnfD4o2ncTjmHlzsTTFqgFftG9bDwTN3sfffJKXlowd6YsKzqudRsDAzUEhZYWFqADeHNo1SPyJqOlXnU6lkoK+Lp4Nd8VzfdnCyqfii06mdNUICnOQ98d2dzLHx13gcOHUHvxy+jiu3sjDjta6wsWjdDX2VwZgSkQQ7Dl9HTkEp9IW6mDzSH4O6uzZqYLiuVKUaaspURw0RPrwTzl55gFupefjj5B0816edtqtETSQ5Q4TcopIaAwZlUhn2/PcAZxIfdZLo52+J53rZV7tfBiKIiFq/nTt3QiqVyl/fuHED4eHhGDp0KABgw4YN2LJlCyIjI+Hu7o7169cjPDwcBw4ckDfqL126FEeOHMGqVatgYWGByMhIREREYPfu3UoTMaujW7duCs+HMpkMf/75Jw4cOCB/LRAIkJCQUO9jELVUDC4QUatw+Ow9HD3/v3kWxnWDuamBVurRtYM93nzBH9/ujcN3v1+Fo40pevk7avQYRy+kYM3/XQQAjOjXHr0DHJGWWVxryo7KlBVXb2djx+HryC0sxcqfLmB2WHCTB2KISDNUzb0CAMNC3DHumY4wM1aec6ZqT/x3XgyEf3trrPm/S7hyKwvvfnEU748NQrBvw3p4NVeqgjEu9maYFdat2QVcK+/bTZmWSRMszAwQ9qwv1u28hO8PJKB3oBOs2hjWviG1aIcv5uHktUcpG3t1NEdAuzbIyBMjI1eMjDwxMvPEyCqQQFZl/vF/43Jw8VYBHK0MYGuuDxtzfdia68PWQh8n4rNx9HKOvOyAQCs82+PJTeNGRNTSFBUVQSwWy1/r6+tDX1/5GdXKSvE559tvv4Wrqyu6d+8OmUyGbdu2YfLkyRg8eDAAICoqCiEhIdi/fz/GjBmDgoIC7Nq1C8uXL0dISAgAYMWKFejfvz9OnjyJPn361Psctm3bVu9tiVo7BheIqEVLvJuNSzcy8fOhRADAuKEd0KmddofCDQ/1QEp6Af44eQdf/Hgey6f2Qbu25hrZ94nLaVj10wXIZMAzIe5447lOEAgE6OBet3OubFT0cbPE3PUncSruPr4/kICwYb4aqR8RNa3q5l7xcbNSGVioTt8gZ3i6WGD59nNISsnD4k1nMLK/J3p2sseD7JIW1bBdk+qCMVNG+Te7wEIlbaVlaqghPdxw+OxdXL+Xi02/xmPm+G7arlKTaOo5OprL8a/cylIILADAqYQ8nEpQncJRlbyiMuQVleFasur7WqUjl7Lh52HGEQxERC3EgAEDUFJSIn89depUTJs2rcZtxGIx9u3bh/DwcAgEAiQnJyMjIwOhoaHyMvr6+ggODkZsbCzGjBmD+Ph4SCQS9O7dW17G3t4eXl5eiI2NbVBwoXv37vXelqi1Y3ChGfPx8cHatWsxaNAgbVelwWJiYrBp0ybEx8cjIyND6by0mTuPWq6qvU/trYwxupHSEKlDIBDgrRH+SMsswsXrGfh002l8Mb1fg3ttxlx9gM+/P4fychmeCnbB5JEB9U7d4ethjXdf6YyVP17A//19A21tTfFUsGuD6kdETc/Jxljl8vrMp+JkY4oV0/pg829XsP+/29hz9Cb2HH0sJc8AT0wYrjrtWktQLJLg50PXVa7LyBU1cW1aPx0dAaaMDsSHX/6LYxdT8XQP1xY7aXhdG+w37YtXSFlY03tGnSBAXctu+S1eYU6V2t6zdd1vdeUyc0sQk/AQZ688QGxiusptzYx04WJrBFsL/f+NSBCiVFKOLX8p59Qe2dseujoCxZEO+WKlUQ4AkHivkMEFIqIW4siRIxAKhfLXqkYtVHX48GEUFBRg5MiRAICMjIq5sarm1LexsUFaWhoAIDMzE0KhEObm5kplMjMzG3QORFQ9Bhe0JCMjA9HR0fj333/x4MEDmJmZwc3NDc8//zxGjBgBI6PW9bBcXFwMHx8fjBo1SmWEWpu586hlUtX79GF2MW4k5zSLHp66ujqYFRaMmV8fQ0p6IZZsPoNl74TCQFi/a/XS9Qws2xqDMqkMfTq3xbSXgxqcymhAVxekpBfil8PXseb/LsLB2kTroz6ISD15hWKlZQ3Jyy/U00XEyABYmxti6++KOWN3HbmJXv6OzeIeqw6ZTIZjsanY/NsVZOerDiJwcvvG4elsgWG9PbD/v9v4ZvdlrJ4xAEK9lvXMVrUjw6j+7fFsaDukZRQiNaPof/8W4k5aPrKqXF+7jtxESnohfD2s0dbWBE62pnCwNsEPBxIU59KoIQhQ9fijB3hi9EAvpGYUIjW94thpGUW4lZaH+5mKPf53HbmJW6l56OBuhba2pmhrawonWxMYGwpV7ldVHaqWG9DFGXZWxoi5+hC30moflTBhiLPKIMCAQCscuZSt8Lp3J+WJym8/KMbaffeUlh+8kIUbacXo62+FTm6mTO9IRNSMmZiY1Cmg8Lhdu3ahb9++sLdXnI+nauc6maoIdBV1KUNE9cfgghYkJydj7NixMDMzw/vvvw8fHx+UlZXhzp072LVrF+zs7PDUU09pu5oa1a9fP/Tr10/lOm3nzqOW6cTl+yqXp2YUNZuGL1MjIeZN7IEZXx3DjeRcfLrpNAZ0dYGznaladbxyKwufbjkDSVk5enRywAevdoGuhr5EvzakA1LTC3Hicho+++4svnivLxys2cjW0jRGD1hq/sqk5diy/woA4KluLgjwstXY39WqjepODmv+7xLefN4PAV42zWLS49rcuZ+P6D2XEZ+UBQBwtDaBh1MbnIx79BnSUiZJbqnGDe2IE5fSkJpRhF1HbmLM0z7arlKdqerIsPtoksLogNqcufIAZ648kL/WEQDlVdo4dh25ifScYliaKY5wzCkQ4fjFNKWyqlJ7VSf2egZir2coLDMzFqKgWFJrHVQd/8iFFPn/BQKgg5sVgn3tEdDeErsOXsSpxGL5+gGBVtWOLni2hx38PMxqnaTZw8FYKRDhYKmPjDwxbj8owe0HqbA2E6KPvyWCfSxgINTR+uTP6hxf23UlImqOUlNTcfLkSaxevVq+zNbWFkDF6AQ7u0cjIbOysmBjYwOgYoSCRCJBXl6ewuiFrKwsBAUFNVHta5a8alWTHs/l/fc1sp/x48ejQ4cOmDt3LgYOHIiwsDBMmDBBI/tuaocPH0ZUVBRSUlIwbtw4dOzYEZ999hnOnTsHAFi9ejUOHz6MX3/9Vcs1bTkYXNCChQsXQldXF7t27YKx8aN0Bj4+PhgyZIjKqOqZM2cQFhaGmJgYtGlTkRM4ISEBI0aMwN9//w1nZ2cAwPnz57Fq1SrExcVBX18fAQEBWLlyJczNzSEWi7F8+XL8/vvvKCwshJ+fHz7++GMEBAQAAPLy8rB48WKcOHECxcXFcHBwQEREBEaPHg0AePjwIZYtW4YTJ05AR0cHXbp0wdy5c+XHrq+UlJRGy50nFosVJg6SSCq+SEmlUkil0gbVmzSv8m9S09+mTFqOH/9KxJ5qvtg7Whs1q7+tvaURZo3vhnnfnsKlG5m4dKNiOObI/u3x+rCOtW5/IzkXizaeRqlYii4+tpjxWhAEkGn0HN99ORAPsoqQlJqHRRtPI+qd3jAxEta+YQtVl+usJdn6R4LC+6Gma0udstT8/X7iNlIzimBuqo83n+8EI8OKxzpNXNuO1qobue7cz8cn0Sfh7miG5/u0Q5/OTs2yJ3phSUUKpD9O3kF5uQz6Qh28ONALI/q2g75QF9fv5ciDbN6ulq3mflBeXi7/t7mck6G+DsKH+2LlT7H45fB1hAY6wrEFBLFlMhn+jlHuMQ9UpHxysjGBk60JnGxM0NbGFNLycnyzJ16p7KBgF5SKpUjNrBjlIBKr/rtUbcSvjY2FIZxsTOV1kMlk2LI/QancsBA3SMrKkZZRhLTMIuQUlCoFFtStg5eLBYaFuKOLjy3MTQ0AACKRCE8HWSCwvTlyi2WwNdeHq51Rjb1FXW0N4WpbEcyoqdyw7rbwczdFRp5Yvt+8ojKcvJqDUwm5yCqQYO/JdPx1LhM25kIkZ5TKt+0fYNmkkz//fiZdYfLpmo6vTlkiqlnlPYTf85uX+v4tdu/eDWtra/Tv31++zNnZGba2tjhx4gR8fSvmCxSLxYiJicGMGTMAAH5+fhAKhThx4gSGDRsGAEhPT8eNGzcwc+bMhp0Mye3cuVOtbCvNrbF+/vz5GDVqFMaPHw8TExPo6elV2xma6obBhSaWk5ODEydO4IMPPlAILDyuvj0BExISMGHCBIwePRqffPIJdHV1cebMGfkNffny5fjrr78QGRmJtm3bYuPGjXjzzTdx8OBBWFhY4KuvvkJSUhI2bNgAS0tL3Lt3DyJRxfDukpIShIWFoWvXrvj++++hp6eHdevW4c0338S+ffvUHuL2uMbMnRcdHY01a9bIX1taWmLt2rW4evVqvetLjS8uLk7l8tyiMuw6kY3kzIqAkYOlEA9yHn1B7t3RFMXZd3Ex+26T1LOuUjJLlfIF7zmahFt30+BuZwjrNnqwNtODsYGO/P2fklmKWw9EOHG1EKVlMrjbG+CZQH1ciVf9u2moF4KNsSG7ECnphZj/zVG82s9GY6MjmqvqrrP6SMksRVZBGazN9OBsY6CRsqrKlZfLkFcsRVZBGbLyy3A3oxRX75UobLfnaBL2HUtC1Y8SmQyQlkOpbGrqA7RzNIS1mR4sTfWgp/toQ3XOi5pWibgcP/xZ0Ru6j68xEq8pN2o2VO+OpjiRUCh/3aW9MfR0dRB7qwh37hfg618uYfO+OHT3NkU3LxNkF5Q1yfugprKZ+RJkF0hxPqkIRaKKC76jixGGdDGHhUkRrl559L631AWKszOb3WdGQ+TlVaSpuXnzpvz5qjkwgwwe9ga4/bAUX2w7hdf6WzfrkS/puRL8cT4Xdx6Wqlw/YaA1XO0qe/iLAVT0qq/6nund0RShXjIAOgDMIJOZ4kZaCX78N7vqLhHoYYw2xoqBuvxiKS7dLlYqO+EpG7jbVx5fCiC/2uN3d/9fw46nMQBjiCTlSLhXjF/P5NZah+qO36+jEJa6mbh9U/EZXEdHBw4WgIMFAJSjqKjmiZnVYW0CWJvoyferB6CvrzF6ehvi0u1inLpWiOyCMoXAAgAcvZyDsjIJPJ2MYG2mB1NDxWethtyzxGXl8vteVn7FsW/cVz7+8ficOn0mH72cA4lEAk8nQ1ibCWFmpLm6NnVZIm3Q0dHBtWvXtF0NaqDy8nLs3r0bI0aMgJ7eoyZLgUCAsLAwREdHw93dHW5uboiOjoahoSGGDx8OADAzM8Po0aMRFRUFS0tLmJubIyoqCt7e3vIMGJpWWFiI06dPw8PDA+3bt2+UYzQ3VlbaGfErlUohEAigo6NT730UFRUhKysLoaGhCim3DA0bNj9mXUgkEoW5R1oTBhea2L179yCTyeDh4aGwvEePHvIe9q+++mq9oqobN26En58fFi5cKF9WOSFycXExfv75Zyxbtkwekfv0009x4sQJ7Ny5E2+++SbS0tLQsWNH+Pv7A4DCiITff/8dAoEAS5culT/kLlu2DMHBwTh79qzCqIP6aozceREREQgPD5e/lkgkuHXrFnx9fRsUECHNkJSV43pKCW6mlSA9V4KsfAk65p1CMHKha2wMfUdHGLq5wdDDAzGJmdh48BIKSyQwNtTD1BcDEBLgpNT7tDnKOZ8CQLmR59LtEly6/ahh2MRIiLa2JigpLUPyw0eNA1ZtDLBs6gAYGTTuLbutax7mrD+JpPulOH9PiP5d2jb73219SKVSxMXFwd/fv8b5WupybUnKpPhmTzz+jnn09+3awQ6hgU4qy/93KQ3nr9Vetmo5RxsTCHV1cD+rCJKycqXySudYexG5szeKcPZGRQOQjgCwtTRGW1sT5BWKkZT6KJ/2iH7tMOFZ32r30xLei63Jlv1XUSIuh6u9GcJHhkBXt/4P2dXp3Bl4QcXftbBYjINn7mH/idvIzi/FP5fz8W98AaSP5XppjPeBOvsEAGc7U7z5fCd09rat8zm3dKmpqTh+/Dg8PT3Rtm1bbVdHgZ1zId5beQw374tQoueAEH9HbVdJSVGJBDsOX8f+E6kVI170dNDe2RwJdx71Lh/Vvz2eH6x6xFd175nHBQUBJQLFUWSj+rdHWB1HnI3q3x4jhtT/+ADQMxjQMapbHVQdf/gg5XIikQhXr16FgYFBkz5jmwDo39kMfQPtsP90Oo7H5yqV+e9qIf67WvFcZSDUga25EOKycqTnPuqg0sHFGJ3bt1F5jItJ+biW/CjIYmGqB8gqOr3UhTqfyScSCuUBIn09AWzM9SEpK0dGXv3q2lhl+/lbYHhPe5Vl76WXKIwyIWoKYrEYpaWl8PX1bZJGwpagrs/m6jzDq/u8LxaL1e7YefLkSaSlpckzaDxu0qRJKC0txaJFi5CXl4fAwEBs3rxZPk8nAMyZMwd6enqYPn06RCIRevXqhcjISI3N0/nee+8hODgY48aNg0gkwujRo5GamgqZTIaVK1diyJAhGjmONhUXF2PhwoU4dOgQTExM8MYbbyisr5oWqaCgAMuXL8fhw4dRWloKPz8/zJkzBx06dMDu3bvlHX59fCpSYy5btgyjRo3Cli1bsHv3biQnJ8Pc3BwDBgzAzJkzYWJSMcJ19+7d+Oyzz7BixQqsWLECd+7cwXfffYfw8HAcPXpUnioLACIjIxEXF4cffvih2vOqzAgDAK+//joAYNu2bUhNTVVIi1Tp559/xvr165Gbm4t+/fphyZIl8kwyQMW8IBs3bkRKSgratm2L8ePH47XXXgNQkaHlqaeewqpVq/DTTz/h4sWLWLhwocrr+nG//PIL1q5di9zcXISGhqJbt25Yu3atUt2aGwYXtKRqQ/rOnTtRXl6OGTNmKKTxUUdCQgKGDh2qct29e/cgkUjQpUsX+TKhUIiAgAAkJVV8YRg7dizeffddXL16Fb1798agQYPk5a9cuYJ79+4pbA8ApaWluHdP9ZDxumrM3Hn6+voKX3Aqf7e6urqcBFqLSiXlOHY5F+cS8yGSPGqMkslkQHk5ZJJSSEtLUZKTg6IrV3E3qwT/5JpCZOAML1drfDS+m3xegI4eNujoYaOtU6kTF3szlctDAhxRLCpDWkYhMnJLUFQiwfV7uUrlsvNLm2QuCW83K3z4Whd89l0M/jh5B3+cvCNfV9Nkky1VTfeBqhNYDu3phl4BTvKJO9MyipCaUYj0nGKlUSnnr6Xj/LX0OtWhrmUfn6RTT1cHjjYmaGtrAkN9PRx9LP91pTkTgtG+rYXCsqTUXHz2XYxS2SBvWxQUi5GaUYSS0jI8zC7Gw2zlnqp7/72F0/EP4OFk/r+JQSsmJ21ra4rdR24o5CBvjddLc3I/swi/n7gNAJj4vB/09RuvB4yqe6y5mRFeGuSDEf29cOJSKn4+lIjUDMUeyo3xPlBnnwAw9aVAdGrXvD8fNK2yJ5eOjk6ze85xdTDH6AGe2HH4Ojbtu4KuHexhbNg8em+Vl8tw9EIytuy/ityCip7nPf0c8OYL/rC3MlZrrpq6PJe88Zwfegc41Wmf6pSt6/HV2W9dy1VebwKBQCujUnQFAnT2NFcZXHC1M0RRiRTZhRKUSsqRkqk8IuVacrFC43lNcgsfBRWMDHRgZ64PG3N9CPV0cDpB+fivD26LttaKjZ2pWSJsPZiqVNbN3ghFJWXILpBAXCZDWlbD6tpYZf+Ny8WVu0VwsjGErbm+/Cf2Zh7+u5IrLzcg0IqpnqhJVN53+D2/QtXvMtU9m9e1nLplK9XnbxEaGorExESV6wQCAaZNm4Zp06ZVu72BgQHmzZuHefPmqX3sujh37hymTJkCADh06BBkMhliYmKwZ88erF+/vlUEF5YvX44zZ85gzZo1sLGxwapVqxAfH48OHToolZXJZHjrrbdgbm6Ob7/9FmZmZtixYwdef/11/PXXXxg2bBhu3LiB48ePY8uWLQAqRpgAFX/PuXPnom3btkhJScGiRYuwYsUKhQ7TIpEI0dHRWLJkCSwsLODg4ABnZ2f8+uuvePPNNwEAZWVl2LdvHz788MMazysoKAgHDhzA0KFDsXr1agQFBcHc3Bypqcqfx/fu3cOff/6Jb775BoWFhZg7dy4WLVqEL774AkBFEODrr7/G/Pnz0bFjRyQkJGDevHkwNjbGyJEj5fv5/PPPMXv2bHz22We1dr44f/48FixYgBkzZmDgwIE4efIkvv766xq3aS4YXGhirq6uEAgEuHXrlsJyFxcXANUPxan8svh4T/3K+QMq1SVCr2p0QOWyfv364ciRIzh69ChOnjyJCRMm4LXXXsOsWbNQXl6OTp064fPPP1faZ0OHRDF3Xsum7kSy5xLzcC2lDDq61dx+/neJF5ZIUFAsQWZuMUpKpfBHPnx9hegR1g0OZs0/V/PjfNysMHqAp+LD2EBPTHj20cNYqUSKB5lFOHD6Dvb/d1tpH001UXUvfycMC3FXCCwAFRM99vJ3fCImPVU1geeB03dx4HTdU6e4ObSBtbniPTkrT4S7D/JrLVtduZH9PTEsxB22lsYKKauszQ2Vrq1e/sq9u+2sjGu8DmUyGXILSpGaUYi/zyXj8FnlwPGDrGI8yKq94eFJul604bvfr6BMKkMXHzt06aC9Rhuhng76d3WBtFyGL3+OVVrfGO8Ddfb5MLsEndrV+XSoCbw0yBtHL6TgYXYx1u28hC4d7LU2uXzl8wtkMhw4fRcJdypSFTnZmOCtkf7o2uFRr2wfNyuN11GdfTbG8dXZb2MdX9Pc7IyUJn9+vHG7TFqOrHwJTifk4nh8jtL2DpYGMDdRfD7NKyrDgxzlBv6ng6wR6m8FE0PFhjMjfR2l4/u7K3cysTIT1lJXGbILxDh9NRfHGljXxiqbmS9BZr7q+TsqHbmUDUN9HXR0NYWNuT709RRH2TWHCa3rWofmUFdqndT9Pq2qrKRMivuZRUjNKMKlG+n4/cQdhe12HbmJ89fSFUbCl5SW4c79/FrL1VTW0swAPfwclb6fPKprHsybbxbEeikoKJB3eD1+/DgGDx4MIyMj9O/fHytWrNBy7RquqKgIO3fuxPLly+VznkZGRlY7J8Hp06dx/fp1nDp1St54PmvWLBw+fBh//fUXXnnlFRgbG0NXV1dhpAEAhQmhXVxc8N5772HhwoUKwQWJRIKFCxcqBDZefPFF7N69Wx5cOHr0KEpKSvDMM8/UeG76+vrydOzm5uZK9XlcaWkpoqKi4ODgAAD45JNPEBERgdmzZ8PW1hbr1q3D7NmzMXjwYHn9b968iR07digEF15//XV5mdp8//336Nu3LyZOnAgA8PDwQGxsLI4ePVqn7bWJwYUmZmlpid69e+P777/HuHHjqp13oarKBvyMjAz5jaxqPkEfHx+cOnUK7777rtL2rq6uEAqFOH/+PJycKhqdJBIJ4uPj5cOBKo8zatQojBo1Cj///DOWL1+OWbNmoVOnTvjzzz9hbW2tMOSsroqKihRGOKSkpCAhIQHm5uZwcnJqlrnzqHZVey883d0VI/qpzjO4998k/BWTCZluxfVjY2EEB+sq17+sIo/47Qd5yMwVyRfrCAA3L3tcHCTDnw/3obe0D/wtAjV/Qo1owvBO6OXvWO2Do4FQF26ObdC/i7PK4EJb26YLqHi7WioFF4CmC3Boi0wmQ8KdbGzYqzp3vVUbQ3i5WFT02rer6LFfUirBoo1nlMpOezlQ6XeVeDcbM74+XmvZ6sr1DnCUj9h5XG3XVl3LCgQCWLYxhGUbQwj1dFQGF958vhMEOgL5yI20jEKk55QolQOAjfuu4PnQdgjqYAfTxyYIV+cLlLY1x7peuZWFk5fvQ0cAvPFc8xgd4myn+rmgMd4H6uyzKe+bVDcGQl1MHhWARRtP49/YVPwbW9FTrKlHO1V9fgEAQ31dvPK0D17o265ZTlJOdfNsDzv4eZipbATW09WBvaUBOnu2URlceKmfg1Kj8d30Eqzeq9y5oIObqVJgobbjq1dXAewsDBDo2UZlcEGdujZW2eE9baEDATLyxMjIEyMtS4TiUuUcUH/GZOLPmIr5OSxM9GBrUTHSIyNXjJtpjzos1DbKQZ3G/bqW3XfqIY7FPfr9dvcxR98A5c/7Y5ezcTbxUapITY7IaIzzaknHf9Kp+3360GPP5+3bmsPc1ACpGYXIyClGeS1ZpasGBxpaDqh43t+478r/RlYbw8mm4jvSnft5uJCYATNDHXw4SnVKy5bK0dERsbGxMDc3x/Hjx7Fy5UoAQH5+fqtIvZ2cnAyJRILOnTvLl1lYWCildq905coVFBcXo0ePHgrLRSJRrVlOTp8+jejoaNy8eROFhYWQSqUoLS1FcXGxvK1UKBTK0ylVGjVqFL766itcvHgRnTt3xq5du/DMM8/UuX21LhwdHeWBBaBi1EN5eTlu374NXV1d3L9/H3PnzlUYIVNWViYflVHJz8+vzse8ffs2Bg0apLAsICCAwQVSbcGCBRg7dixGjx6NadOmwcfHBwKBAHFxcbh16xY6dVL+cuXq6gpHR0esXr0a06dPx927d7F582aFMm+99Raee+45LFy4EGPGjIFQKMSZM2cwdOhQWFlZYezYsVi+fLm8QX/jxo0QiUR48cUXAQBfffUVOnXqBC8vL4jFYhw9elQ+Ic1zzz2HTZs2YcqUKXjvvfdgb2+P+/fv4+DBg3jzzTcV3nSqxMfHy3ObARU51gBg5MiRiIyMbBa580g9Jy+nKX0xP3T2nsIDz+PKBUaQ6T660WbmliAzV7lRUqeoGIalIoVl5TIgqZsJSnUrek2dyDwOc6EFXE3cGnoaTaouPf+qG+XQlA2b1TUUGgg1n9O9OZBKy3Hy8n3sPXZTZVqqSnMmBKv8O9T171XXv219rgFN94Ctrg4v9PNUKhuflIGP151UWn7tTjau3cmGjo4AnTysEexrj5T0Ahw88+ge0ZzTJ9Vn6HdjKy+XYdO+iuDX4J7ucHNUnRu7qalzzTbG+6A53Dep7syMlVMhNeVop4TbWUrPLwAw47Wu6OHX/OaBIPW52RnV2PBZ3QgHVduoU7aux28OddVE2f4B1grlqgtCOFjqI6+4DCWl5cgtKkNuURlupCqPgjxyKRt3HpbA1c7oUaolC32YGenij7MZ1Y7yqOr3M+kKZfsHWKKXryUy/xcEqfiR4EG2CPnFUoVtzybmKQQRqnPkUjY6uZvC3b5hDVlV66rOeWkiwKHt4z/J0jIK8fuJ29h3XDGjRU3fp6t6fG40ADAy0ENbO1OYGQsRm6g839/rwzrCyfbR97y0jEJs/SOh1nI1lXWwNkZWngiSsnIkPyxUmDewPh4+fIgVK1bg+PHjEIlEcHd3x9KlS+UNtDKZDGvWrMGOHTuQn5+PwMBAzJ8/Xz7XKFCRBSMqKgr79+9HaWkpevbsiYULF9baZlVXYWFhmDlzJoyNjeHo6ChvVI+JiYG3t7dGjqFNdZn79HHl5eWwtbXF9u3bldZVbWh/XGpqKt566y2MGTMG7733HszNzXH+/HnMnTsXZWWP0g8aGhoqZWCxtrbGgAEDsHv3bri4uODYsWPYtm2bWvVWV2UdBAIByssrAumffvopAgMVO71WnWxanYDH45llHl/WEjC4oAWurq7Ys2cPoqOj8cUXX+Dhw4cQCoXw9PTEG2+8gVdffVVpG6FQiC+++AILFy7ECy+8AH9/f0yfPh3vvfeevIyHhwc2b96MlStX4qWXXoKhoSECAgLkvf9nzJgBmUyGjz76CEVFRfDz88PGjRvlIyGEQiFWrlyJ1NRUGBoaomvXrvIorJGREb7//nt8/vnnmDp1KoqKimBvb49evXrVaSRDjx49qs2bBzSP3HlUN9fuZGPvv0k4GZemcr2RgR6EVYY8iyS6KClX/mDR0RFAp8rNU9WcpLetjVFilgsbVHzhkUGGww//wkjnF2Gp3/oaj9Tpid4YVDXUAcBXOy5CWi5D3yDnarZs/hLvZiP5YQGKckrhVSLB3+du47f/biHjf73vhXo6GNDVBTJZOQ6dTZZvV1NDpaZGDtR3n42lrnXwa2+rdL3069IWNuZGOHv1IZIfFiAuKRNxSZlK2zbX9EmqUmM1h7oeu5iKG8m5MDLQxatDfGrfoAlp+33QHN4zVDdV5+d4fHlj/90S72bjix8vqFxXJKrb5LzUOmhqhEFTaKy6arpsbWmpikRSeeN+3K18XL2nfC+4/aAEtx8odj4S6gkgKVNsXDlyKRvZBRK0MVZszsgvLsOlWwUKy45ezsHRy8qjP6pjINSBnu6j7ydlUhlKJcojMrYdSsXgrrbo6tVG6btPXdx5WKzwuwLUO68jl7LR0c0U7RyUG65qG2EgLitH3O2CBh/fz8OMIxiqUXX0a5m0HFdvZyHm6kPEXH1Q7WchoPr7tKSsHCWlyp9TT3d3xVPBrnCyNYGFqYG8YVKpk8xAT7z4lHLDd2GJpE7lqis74dlOKC+XITO3RD6q+fSVB7h4XTm4UZu8vDyMHTsWPXr0wIYNG2BlZYXk5GSFCXQ3bNiALVu2IDIyEu7u7li/fj3Cw8Nx4MABebvU0qVLceTIEaxatQoWFhaIjIxEREQEdu/erZGOqa+99hoCAgLw4MEDhISEyBuTXVxcMH369AbvX9sqs55cvHhRnvUkLy8Pd+7cQXBwsFL5Tp06ITMzE7q6unB2Vt1OIBQK5Q3yleLj4yGVSjF79mz57/DPP/+scz1ffPFFfPDBB7C3t4eLiwu6du1a523r4v79+3j48CHs7SvSZMbGxkJHRwfu7u6wsbGBvb09kpOT8fzzz2vsmO3atUNcXJzCsvh41VkVmhsGF7TEzs6u1obyqo3xXbt2xW+//VZjme7du+Pnn39WuT8DAwN88skn+OSTT1Suf/vtt/H2229XWx9bW1tERUVVu55aL6m0HKfjH2DPvzeReLfmh/NPI3opNA5IpTJ89mMSTsUrP2B0cLOEidGjoYMymQw+6UbAjUdlSvT0kNhFAm99xSBWaXkpDtz/HS+7vgpdQesbvaLt/MaPN9SZGulh99EkXLmVhRXfn8flm5mYNMIfBsKW9Xuv+pD93d8HUSat+LJqbqqPZ0M88EyIByzMDAAAQ3q617mhsjFyZ2v7GlCnDtU17E4Y3gkPsopw9uoD/HX6Lu49KFDaNnpPHIaHeqBrB3uYmxpo/BzqSiaTISW9EDFXH+LQWdXza6zfdRnPhHgg2NceVm1qn+dIk0olUmz9/SoA4KWnvGFp1rTHrwttvw+aw3uGaldduqpSceM17ucWlGLbH1dr7A3KNFpPHk2OMGhsjVVXTZetKQhhYqgLE0MjuNsbwc5CX2VwoX+gFaRSmTwIkV0gUQosVKra2F0THQFga6GvMCJCWi7DruMPlcq+9ayLQr2rG5GRXyzFzuMP8MfZDIR0skCIr6VSo3xVpZJyXE8pQsK9Qlyupv7qnNf6ffdgbS6Un5eNuT5upRXj4mP7CPAwhbuDMTLyxBWjN3LFyC2q/n6rzvEPnsvEgM5W8HBQzrf/JKv6ncPZzhTZ+SIUPxbE1tMVwMPJHDeSc5W2r/p9Gqg+BeSQnm4qn32asiOHjo4AdlbGsLMyRpCPHTxdLOoVXNiwYQMcHBzkWS4AKDRWy2QybNu2DZMnT5bnsI+KikJISAj279+PMWPGoKCgALt27cLy5cvl6bNXrFiB/v374+TJk+jTp4/a9VLF398fPj4+SElJgaurK/T09NC/f3+N7FvbTExMMHr0aKxYsQKWlpawtrbGqlWrlHrUVwoJCUHnzp3xzjvvYMaMGfDw8EB6ejr+/fdfDBo0CP7+/vIJmxMSEmBvbw9TU1O4urqirKwM27dvx8CBA3H+/Plq2zJV6dOnD8zMzLB+/XqVqeEbysDAALNnz8asWbNQWFiIJUuW4JlnnpHP0zBt2jQsWbIEpqam6Nu3L8RiMeLj45Gfn4/w8PB6HXPcuHEYN24ctmzZggEDBuD06dM4duxYtb/75oTBBaInSF3zh1eWs25jgDsPCrDv+C2kZ1cMX9bT1cGArs54oW97HDmfXGsairOJ+Sgr14WjtQnuZz36EuFobaIQWKhkaqQLG2tj+aSxFzvqw7atHkxVpFHIleTiRsF1dGjTUb1fBNXJ4w11XTvY46dDifjl8HX8dfourt3JxqywYLjYVz/UsTlR1RO9TCqDvZUxXh7kjf5dnKFfJVjChkr1VPf7crA2wfN92sPH1VLll6IbyblY9VMsBALAx9USwb4OCPa1h7tjG1y/l9PgCe5qKmtvZQRJWfn/epE9VLhHqZKUmoc1/3cRAODpbC6va/u2FriRXPe61sev/yYhM7cEtpZGeL6v6ly8RC1BdaPjNvwajzamBugdoLnczFJpOf48dQffH7iGopKKiWcHdnOBkb4ufn9sbiGm0SLSnLoEIWob5VCpTCpD3J0C/PC38ojpbt5tYF7l+0FesQTnrivni5/yvCs8VKQwys6X1JoaSlVd+/hZwspMiGPxOcgpkODwhSwcuZiNLp5t0DfAEuIymTzAYmqoi4R7hbh6rwhJacWQ1pIYX53zkgHIzJMgM0+CBKh+hrl8uxCXbyunqjEQ6qgckaHO8RNTipCYUgRDfR34OJvA19UUHVxNYGKo1ygTZTeHOR+qPm+Wl8uQlSdCWkYhUjMLEZ+UieMXFa/XlPSK37+5qT66drBH904OCPK2hbGhUOUIA02lgNRWRw5VdS0qKoJYLJa/1tfXV5qf4J9//kFoaCjeffddxMTEwN7eHq+++ipefvllABXzdmZkZCA0NFRhP8HBwYiNjcWYMWMQHx8PiUQin4gYAOzt7eHl5YXY2FiNBBdKSkrw6aefYu/evQCAv/76Cy4uLliyZAns7Ozw1ltv1bi9y/vvN7gOje2jjz5CcXExpkyZAhMTE4SHh6OwUHXKK4FAgG+//RZffvkl5syZg5ycHNjY2KBbt26wsbEBAAwZMgSHDh1CWFgY8vPzsWzZMowaNQoff/wxNmzYgJUrV6Jbt2744IMPMGvWrDrVUUdHByNHjkR0dDRGjBihqVOXc3V1xdNPP41JkyYhLy8P/fr1w4IFC+TrK7PFbNq0CStWrICxsTG8vb0V5rRVV9euXbFo0SKsWbMGX375JUJDQzFhwgT88MMPmjilRiWQtZQETkQaIBaLERcXB39//2Y92U59GslqKltQLMa3e+Jw9EKKfFm3jnbo01l52Nrxiyk4l5CutLyNiT6GhXhgWG93hR6ztR1/9Z4UZOZXfKEvKhFDVCqFoYGuysCCTCZD14JTCCpLR1GJBKl2pojtLlIZWKhkrW+Dl13HVrueNOvS9Qx8/uN55BaUwkBfF1NGBcDZzrRRGoA1RVouw9c7YvHPuWSlddPHBOGpYNcmqQcp9+Qa0M0ZdpbGiLn6ELdU5I19fPh3dfcsQPm+pU7Zx+np6sC/vTWCfR1w70E+Dpx+1FPxqWAXOFibIObqA6W5OQz1dSESP8rbrOn5GXIKRIhYdhglpVJ8+FpX9O/SclOTUeNKSUnBpk2bMHHixGqHpjcXlZ8HthaG+PXYLZy58gACAfDWCH8MD23XoH22tTVBmVSGb3Zflk9M2a6tOSaPDEBHDyulsgwsNJxIJEJcXBwMDQ2b9TM2NS91bSxuzLkBGtIILi2X4cqdAvwbl4O7D5XnklPFuo0Qvq6m8HUzxbV7hfj3sQml1Z1Loo+/VcUoj9yKkR4304qRllWqtK2LrSG825rA5rHRGyaGug36vXZyM4WRQUXgpEj06BlIIADMjPSQX/zoGa6jiwk6t1eeJ+piUj4SkotqLaeqbB8/S7wQYi9/LRaLIRKJ4O/vD0NDwyb5Pm1uoo8SsRRiiVTlNo8b87QPxgz2UTnCQ9N1bS4q6poHc0E2Jk6ciJKSR++RqVOnKqXE9vf3BwCEh4dj6NChuHz5Mj777DMsXrwYI0aMwIULFzB27FgcO3ZMnqoGAObNm4e0tDRs2rQJv/32Gz7++GOlVDJvvPEGnJ2dsXjx4gaf15IlS3DhwgXMmTMHkyZNwr59++Di4oK///4bq1evlgcdRCIRbt++DQ8PDxgaNr8Rx63BJ598gszMTHzzzTfarkqj+eSTT3Dr1i38+OOPdd5GG9ceRy4QNTPqTCJatexTwS7o1tH+f/kOi+R5DwuKJUrbnktIr7aBraoXB3pizOAOKtPg1NR7ISVDJA8sAICJkT5MaulkIkBFvNPE2gwpoYCpXvWBBQDIEmciW5wFK33rGsuRZgR62+LrD/tj5Q8XcPFGBr78OVZhvTrXa1NMkHv1dhaid8fhVprqyfmqm7yaGkd1w6nHDe2IzNwSnEuoGEEQez1dKa+sOvcsdcoCQHdfewzq7opAr4peZJUGdXdVquuYp32QUyDC+YSHOHv1IS5cS1cILACan5/hhwPXUFIqhZeLBfp2bquRfRJp2+PPD74e1vhmTxwOnLqD6D1xyMoTIWxYR7WGgVf9jKlkaiRE2LCOGNzTXaFRh6PTiLSvrmmZGnOOjLrWQVU5XR0BAtq1QUC7NrjzsAQHYjJwM015suq21gYI8mwDXzdT2Jrry+9tXm1NENC+TYPOy9xECE+nirRu1aVwGtHbXuW+NfF7LZfJkJwhwtW7hUi4V4i0rFKFwAIAJCQXKQQGqlPXcgBwPD4HF27mw8HSALbm+rA01UEbI8DKoQj/xt7Enn+T5GUb6/t0XlFFT3xdHQEcrE3Q1rYi4PJvbKpS2W4d7apNHdVaU0D6uFnBw9EUcXHZOHLkCITCR8/YqoLQMpkMfn5++OCDDwAAvr6+uHnzJn766SeFnun1mfBWk32q//77b6xatQqdO3dWWO7p6Yl79+o2GTc1TEFBAeLi4vDbb79h3bp12q6ORm3atAm9e/eGkZERjh07hr179yqMmGiuGFwgakYuXHuochLR89fSYWSg+HYtKS2T98ar9HdMMv6OUe6dXR03hzawNn8UyczKE+HuA+Uhry72beqVX//2A5Ha21Q+KtzobIwSPeW6qJJWksbgQhOyNDPEwrd64Zvdl3DglOIXGHWu18acIDc7X4Tv9l/BkfMVvYtMjITwqpL/c1T/9i3m4bw1qe5LkY2FEYb2csfQXu44ePouVv8v/dDjqt6zgOrvW+qU7R3YFr38lVOxVFdXSzNDDOruhkHd3XDwzF2s/kW5rvceFGjk+jp6IRkHz1S8zyY+7wcd5jSmVkhXVwdvjw6AjYUhvv/zGnb+cwNZeSWY9nJQnSZKvZKUqTKw0NPPAVNf6qzV+VyISDOa+xwZ7vZGCPY2Vxlc6Otvha7e5iq30+R5VZduqrZtGnJ8HYFAvvyZYFscu5yNfaeVO3g4WBrA3OTR94O8ojI8yFEeZVG1XE1li0RSJN0vRtL9R7/zHcf/UyrXmN+nw4f74oW+7aGr++izysbCSK30RU8CExOTWke12draon17xdSf7dq1w19//SVfDwCZmZmws3s0wiYrK0uefsfGxgYSiQR5eXkwNzdXKBMUFKSRc8nOzoa1tXLbQ0lJSYvIjd8avP3227h8+TJeeeUVhRRYAPDmm2/i/PnzKreLiIjA5MmTm6KKKtWlbpcvX8bGjRtRVFQEFxcXzJ07Fy+99FIT11R9DC4QqaDu3AT1HcIok8lw90EBYq4+QMzVh0i4k61y26oPPTVxtDZBRw8rONlW9J5oa2uKwmIx5qw/qVR22suBCvWubqKo+k5y+DBHXHuhqmRAkZslrlvX/ZyLy+rWw4U0R1dHgI7u1krBBUC963X59+fxVDcXed76xxtO6/P+crAywvXkPPz41zWUlJZBIAAG93DD+Gc6wtzUAIl3s5H8sABFOakYPohzdTRXbo6q5/Koes8Cqr9vqVO2IRO5ujmoruuBU3fQO9BJYSSEuqr2pou5+gCd2jGQSq2TQCDAK4N8YN3GCKv/7yKOnE9BTkEpPn49GMkPC5Q+Dx4fQXQuQXlSVgDo5e/EwAIRNRkbC9WNp9UtbwzqjtzQNDcH1cd7qZ9DnSbKrlquxrJ9HaCnI0BGnhgPc0TIyC1FZoEUZVLlXur1/T7tbGsGJ1uTar9Pd2pnrRBYANSbJJke6dKlC27fvq2w7M6dO2jbtmLUrrOzM2xtbXHixAn4+voCqEiHFRMTgxkzZgAA/Pz8IBQKceLECQwbNgwAkJ6ejhs3bmDmzJkaqae/vz+OHj2K8ePHKyz/5ZdflEYzUOPYvn17teuWLl0KkUh1J9fHA07aUJe6ffXVV01ZJY1hcIGoirqmbmlI+qLeAY6wMDNEzNUHSM+pPT/n68M6wslWMX1LWkYhtv6RoFT2w9e6qHyAqcsEUPWZKKomxaLa809WVaIHnOlQt5yl8uNIlXsIUeOrrkFWnes1PbsYPx1MxE8HE2FpZoBuHSsmOYtPysSvx27Jy6nz/qrk5WKByaMC4O1qKV/m42YFT2dzXLyYWadzJO1Q517UWGUbUlddXQGuJ+fi43UnsPDNnrBso36uy3MJD1SOZGus0T5EzcWg7q6wMDNA1LYYXLyegYhlfyO38FGPVV8PK5RJy5XmPlGlIYFDIiJ11WfkQGPVQ1sTHtf1d6DO76q6sj06WMhfV865YGDujLnRZ5X20VTfpyu1pPRFzcXrr7+OsWPH4ptvvsEzzzyDy5cv45dffpHPkyAQCBAWFobo6Gi4u7vDzc0N0dHRMDQ0xPDhwwEAZmZmGD16NKKiomBpaQlzc3NERUXB29sbISEhGqnnBx98gDfffBM3b96EVCrFtm3bcPPmTVy8eLHGRm9qGo/Px9HcNOe6NRQndKYnSm0TOlfXq7VPZyeFSYxzCkQ4fjGt1nI1la2kr6eDAC9bdPe1R7eODvj9xC2lh5YJz9Yxh30NZSvPT9MjMmqy5cB93HlY99RIYrEYrhlb4DvQDYWWRsjULUUxah/94G7igWcch9e7nlR/6lyDVcs+G+oOz7YWOHv1IS5eT0dJac3BKHXeXy895YVxQzuqTCEjlUpx8eJFdO7cGbq66qf7oqbTWBPcNcZkeI/vUyAQYPGm08grFMPOyhiLJvWEs53qEQ5VSaXl+P3EbWz94yrEknKl9e+P7YKB3Vw0UmdqfVrShM61uX4vB/O/PYWiEuU815U8nc0R7OuA7r4OOH4xBbuPPpZju5ZnItIsTuhM9EhdJ4luzRoyUXZ9yj4+ofPPh5O0/n2aKtTW/lLVkSNHsHLlSty5cwfOzs4IDw/Hyy+/LF8vk8mwZs0a7NixA3l5eQgMDMT8+fPh7e0tL1NaWorly5dj//79EIlE6NWrFxYsWABHR0eNnVdiYiI2b96MK1euoLy8HL6+vpg0aRJ8fHzkZTihM2mLNq49BhfoiVLbh9s/55Kx6qcLTVIXf08bjOjXHgGeNjDUVxxEpO1GMk354e8HuJ5S91EIQkkuBj/4Ah6uzjAyrHhgLDY2QralObLMDJBlKEOmjgilUJwkrL2pJwY7PKPRulPdaeJ6lZRJEZ+UhZiEh/j3Qgryi+qRUusxNTXAMrhATeF+ZhEWbDiF+5lFMDPWx/w3e6BDLe+PuKRMRO++jLsPCqot8/m7fZrdvZ6aj9YUXACA3UduYsv+K0rLB3V3xbihHWBtrti41JyfiVo7BheISJseDy4YGhq2mu/TLZ26wYXWhMEF0hZtXHtMi0T0mOqGzz/VzQVWj00Mmp0nwt/nlCd6qlquprKvD+uokWGUzXnIpXUbIYC6BxdCzG5B74FivNO4uATGxSV4vImkoI0psi3bIMtEH1kG5bDWa57n/6TQxPUq1NNFkI8dgnzs0LezE2auVp6MTZ33F1NhkLY52phg+dQ+WLzpNG4k52Lu+pP4aFxX9PBT7jWVlVeCzb9dwbHYVACAmbE+Xn+2I9IyCpV6YjfX+z1RY+jUTvX1PrSnm1JgAWjez0RERNR0Wsv3aWoeCgsLYWpqKv9/TSrLET1JGFwgekx1+bhVDY20MDOo8xBKVWWfhAcYR6u6T6IogAze0utIr0NZs/xCmOUXwu1/rw1796pX/ah56uBuXef3IfDkvr+o+bMwM8BnU3ojavs5nEt4iM++O4vJowPRzqkNUjOKYG9lhGt3cvDzoUSIxFIIBMDQXu4Y/0xHmBlX9O4KCXBibzp6YjXGPClERERE6ggODsZ///0Ha2trdOvWDQKBcupdmUwGgUCAhATleTyIWjsGF4iqmDC8E3r5O9bamFPXcuqWbU28nY2gqwNIldOGK+ling6D/Dz1D6IrhK6tu/rbUbPG9xe1FoYGevgkvDvW7ryEQ2fvYd3OSyrLdXCzRMSoAHg6WygsZ286etLxHk9ERNT6rV69GmvWrFFYZmNjgxMnTgBQnG8hPz9fPt+Cl5eXvLxYLEZUVBT279+P0tJS9OzZEwsXLoSDg0OD6rZ161aYm5sDALZt29agfRG1RgwuEKlQ18YcDresmZGBLrzaGuNacnGtZYOE1+t1DKF7IAT6zGHYGvH9Ra2Frq4Opr3cGQBw6Ow9pfVjnvbG2MEdVE5ATkS8xxMRET0JvLy8sGXLFvnrx+fH27BhA7Zs2YLIyEi4u7tj/fr1CA8Px4EDB+SpiJYuXYojR45g1apVsLCwQGRkJCIiIrB79+4GzbXXvXt3AEBZWRnOnj2L0aNH13uC6N+jY+pdj/p4NiJYo/tLSUnBU089hb1796Jjx47NZn8DBw5EWFgYJkyY0OA6kfp0tF0BImrd+vhb1FrGwbAYFkW31d+5ABD6MCUSETV/AoEAfu1tVK5ztDFlYIGIiIiInmi6urqwtbWV/1hZVXQskMlk2LZtGyZPnozBgwfD29sbUVFREIlE2L9/PwCgoKAAu3btwuzZsxESEgJfX1+sWLEC169fx8mTJzVSPz09PWzatAlSqVQj+yNqLRhcIKJG5WxrgCDPmic1CjVLQn2a1YSe3aFjyp6MRNQyVDfROCcgJyIiIqLWqqioCIWFhfIfsVisstzdu3cRGhqKgQMH4v3330dycjKAit7tGRkZCA0NlZfV19dHcHAwYmNjAQDx8fGQSCTo3bu3vIy9vT28vLzkZTShV69eOHv2rMb2R9QaMLhARI1uWA9r2FsKVa7TE0jhKrqm9j51LB2hHzCooVUjImoylZPTPo6T0xIRERFRazZgwAB07dpV/hMdHa1UJiAgAFFRUdi0aROWLFmCzMxMjBkzBjk5OcjIyAAAWFtbK2xjY2ODzMxMAEBmZiaEQqF8bgRVZTShb9++WLlypXxuh7///lvhpzU4duwYxo4di27duqFHjx6IiIjAvXvKqV0r3bhxA2+99Ra6dOmCoKAgvPrqq/Ly5eXlWLNmDfr27Qs/Pz+88MILOHbsmNI+kpOTMX78eAQGBuL5559XCgj99ddfePbZZ+Hn54eBAwdi8+bN9T6/pKQkjB07Fv7+/hg2bBhOnjwJHx8fHD58uN77fNJxzgVqFgYOHIjU1FSl5a+++ioWLFhQp8l7qPnS19PBmAH22HrwAXILyxTW9bJIg66oRK39CcxsYNj7FQh0VQcsiIiaK05OS0RERERPkiNHjkAofPTdXV9fX6lMv379FF537twZTz/9NPbu3YvAwEAAFWlGHyeTyWo9dl3KqGPhwoUAoDA3RCWBQICEhASNHk8bSkpKEB4eDm9vb5SUlOCrr77CO++8g19//VWp7MOHDzFu3Dh0794dW7duhampKS5cuICysop2n23btmHLli1YvHgxOnbsiF27duHtt9/G/v374e7uLt/PqlWrMGvWLLi5uWHVqlX48MMPcfDgQejp6SE+Ph7Tp0/H1KlTMWzYMMTGxmLRokWwsLDAqFGj1Dq38vJyvPPOO3BycsL//d//obCwEFFRUQ36fRGDC9RM7Ny5UyFv3Y0bNxAeHo6hQ4cCqNvkPdS8WZkJ8eYzjvjh74e4n/1oGKS/QL1RC7p27jAMeYWTOBNRi8XJaYmIiIjoSWFiYqIyoFATY2NjeHt7486dOxg0qCJjQWZmJuzs7ORlsrKyYGNTMaeZjY0NJBIJ8vLyFEYvZGVlISgoSANnUeHaNfWzLrQ0Q4YMUXj92WefoVevXrh58yaMjY0V1v3www8wNTXFypUr5QEkDw8P+fpNmzZh0qRJePbZZwEAM2fOxJkzZ7B161YsWLBAXu6NN95A//79AQDvvvsunn32Wdy9exft27fHli1b0KtXL7zzzjvy/d+8eRObNm1SO7jw33//ITk5Gdu3b4etrS0A4P3330d4eLha+yFFTItEzYKVlZXCxD1HjhyBq6srunfvXqfJe6hlMDPWw6RhThgQaAE9XQHam+TDpOR+3TbWFUK/Uz8Y9h3HwAIRERERERFRKyUWi5GUlARbW1s4OzvD1tYWJ06cUFgfExMjDxz4+flBKBQqlElPT8eNGzc0Glx4Ety7dw8ffvghnnrqKXTp0gVPPfUUAOD+feW2m4SEBHTr1k1hZEqlwsJCpKeno0uXLgrLu3TpgqSkJIVlPj4+8v9XNvpnZ2cDAG7duqVyH3fv3lV7cu3bt2/DwcFBfgygIiUXNQxHLlCzIxaLsW/fPoSHh0MgECA5ObnGyXvGjBlT474enyxIIpEAAKRSqdo3IdKcPv5tENDOGMV3coDbJpCJCitWVI5YlD0avigws4aukw+EXj0gMDRFuQwA/3bUAJXvfd4DiKi1KS8vl//Lexw1pcrrTSaTaTwFBRFRbSrvO/ye37yo87eIiorCgAED4OjoiOzsbKxfvx6FhYUYOXIkBAIBwsLCEB0dDXd3d7i5uSE6OhqGhoYYPnw4AMDMzAyjR49GVFQULC0tYW5ujqioKHh7eyMkJESj53X27Fls3rwZSUlJEAgEaNeuHd58801069ZNo8fRlsmTJ8PR0RFLliyBnZ0dysvLMXz4cHl72uMMDWvv+KkqnVXVZY8HJyrXVT7XavK5QtWxqeEYXKBm5/DhwygoKMDIkSMBoMbJe9LS0mrcV3R0NNasWSN/bWlpibVr1+Lq1asarjXV18O2/aErLoReSQ7E2Q9wvbwIMHaHgbk1xKZ2KDcwBaQArt3UdlWplYmLi9N2FYiINCovLw8AcPPmTfnzE1FT0dHRgUQiUdn4QETU2HR0dJ6IlDWt1YMHD/DBBx8gNzcXlpaW6Ny5M3755Re0bdsWADBp0iSUlpZi0aJFyMvLQ2BgIDZv3qyQJnvOnDnQ09PD9OnTIRKJ0KtXL0RGRkJXV1dj9fz1118xZ84cPP300xg/fjxkMhliY2MxYcIELFu2DM8995zGjqUNOTk5SEpKwuLFi+XBknPnzlVb3sfHB3v27IFEIlEavWBqago7OzucP38ewcHB8uWxsbFqjRZo3749Lly4oLDswoULcHd3V/tv265dO9y/fx+ZmZnylFpsF2g4Bheo2dm1axf69u0Le3t7heX1mbwnIiJCIXeaRCLBrVu34Ovrq3bOP2p8qamp+O1qOkJ6DJM/RBBpmlQqRVxcHPz9/TX6oElEpG2pqak4fvw4PD09+TlKTUokEuHq1aswMDDgMzYRNTmxWIzS0lL4+vrWqSc1NQ2xWFznjp2rVq2qcb1AIMC0adMwbdq0assYGBhg3rx5mDdvnlr1VMc333yDmTNnYsKECfJlr7/+OrZs2YJ169a1+OCCubk5LCwssGPHDtja2iItLQ1ffPFFteVfe+01bN++HR988AHeeustmJmZ4eLFiwgICEC7du0wceJErF69Gq6urujQoQN2796Na9eu4fPPP69znd544w28+OKLWLt2LYYNG4aLFy/ihx9+UJizoa569+4NFxcXzJo1CzNnzkRRUVGt1x7VjsEFalZSU1Nx8uRJrF69Wr6sMhdaTZP3VEdfX1/hC05liiRdXV02KjZDOjo68n/596HGxvsAEbU2/Bwlbam83gQCAdMNEFGTq7zv8Pm+eWmNf4vk5GQMGDBAafnAgQOxcuXKWrd/NiK41jLapKOjg1WrVmHJkiUYPnw4PDw88Mknn2D8+PEqy1taWmLr1q1YsWIFxo8fDx0dHXTs2BFdu3YFAISFhaGwsBCRkZHIzs5G+/btsW7dOri7u9e5Tp06dcKXX36Jr7/+GuvXr4etrS3effddtSdzBiquybVr1+KTTz7Biy++CBcXF3z00UeYPHkyDAwM1N4fVWBwgZqV3bt3w9raWj5LPACFyXt8fX0BPJq8Z8aMGVqqKRERERERERERPSkcHR1x6tQpuLm5KSw/deoUHB0dtVQrzQoJCcEff/yhsCwxMVHl/wGgQ4cO2LRpk8p96ejoYOrUqZg6darK9c7Ozkr7a9OmjdKyIUOGYMiQIdXW+Z9//ql2XVXt27fHTz/9JH99/vx5AFD6m1LdMbhAzUZ5eTl2796NESNGQE/v0aVZl8l7iIiIiIiIiIiIGkt4eDiWLFmChIQEBAUFQSAQ4Pz589izZw/mzp2r7epRHRw6dAjGxsZwc3PDvXv3sHTpUnTp0gWurq7arlqLxeACNRsnT55EWloaRo8erbSuLpP3EBERERERERFRyxYdHY2VK1ciLCxM3mgvk8mwZs0a7NixA/n5+QgMDMT8+fPh5eUl304sFiMqKgr79+9HaWkpevbsiYULF8LBwUEj9Xr11Vdha2uLzZs348CBAwAqJgletWoVBg0apJFjUP3t27ev2rkYnJyc8Pvvv6OoqAgrVqzA/fv3YWlpiZCQEMyaNauJa9q6MLhAzUZoaKjS0KdKdZm8h4iIiIiIiIiIWq7Lly9jx44d8PHxUVi+YcMGbNmyBZGRkXB3d8f69esRHh6OAwcOyDueLl26FEeOHMGqVatgYWGByMhIREREYPfu3RqbA+Lpp5/G008/rZF9kWYNHDgQgYGBKtdVZkgZMWIERowY0YS1av10tF0BIiIiIiIiIiIierIVFRVh5syZWLJkCczNzeXLZTIZtm3bhsmTJ2Pw4MHw9vZGVFQURCIR9u/fDwAoKCjArl27MHv2bISEhMDX1xcrVqzA9evXcfLkSW2dEjUhU1NTuLm5qfxp27attqvXanHkAhEREREREREREWlcUVERxGKx/LW+vj709fVVll28eDH69euHkJAQrF+/Xr48JSUFGRkZCA0NVdhPcHAwYmNjMWbMGMTHx0MikaB3797yMvb29vDy8kJsbCz69OlTr/oHBwdDIBDUqezZs2frdQyilozBBSIiIiIiIiIiItK4AQMGoKSkRP566tSpKlNe//7777h69Sp27typtC4jIwMAYG1trbDcxsYGaWlpAIDMzEwIhUKFEQ+VZTIzM+td/zlz5tR7W6InAYML1CysXr0aa9asUVhmY2ODEydOKJWdP38+duzYgY8//hgTJkxoohoSEREREREREZE6jhw5AqFQKH+tatTC/fv3sXTpUmzevBkGBgbV7qvqCAKZTFbr8etSpiYjR45s0PZErR2DC9RseHl5YcuWLfLXqibbOXz4MC5dugQ7O7umrBoREREREREREanJxMSk2jRIla5cuYKsrCyMGjVKvkwqlSImJgY//PADDhw4AKBidMLj7UFZWVmwsbEBUNFBVSKRIC8vT2H0QlZWFoKCgjR5SgAAkUiEsrIyhWWVE0sTPUkYXKBmQ1dXF7a2ttWuf/jwIRYvXoxNmzYhIiKiCWtGRERERERERESNoWfPnvjtt98Uln388cdo164dJk2aBBcXF9ja2uLEiRPw9fUFAIjFYsTExGDGjBkAAD8/PwiFQpw4cQLDhg0DAKSnp+PGjRuYOXOmRupZXFyMzz//HH/++Sdyc3OV1ickJGjkOEQtCYML1GzcvXsXoaGh0NfXR2BgID744AO4uLgAAMrLyzFz5kxMnDgRXl5edd6nWCxWmDhIIpEAqIiAS6VSzZ4ANVh5ebn8X/59qLFUXlu8xoioteHnKGlL5fUmk8kanH6CiEhdlfcdfs9vXtT5W5iamsLb21thmbGxMSwsLOTLw8LCEB0dDXd3d7i5uSE6OhqGhoYYPnw4AMDMzAyjR49GVFQULC0tYW5ujqioKHh7eyMkJEQj57RixQqcOXMGCxYswKxZszB//nw8fPgQO3bswIcffljr9nu+mqWRetTVyPeimvR4VaWkpOCpp57C3r170bFjR5w5cwZhYWGIiYlBmzZttFo30hwGF6hZCAgIQFRUFNzd3ZGVlYX169djzJgx2L9/PywtLbFhwwbo6ekhLCxMrf1GR0crzOVgaWmJtWvX4urVq5o+BdKAvLw8AMDNmzflEzYRNZa4uDhtV4GISKP4OUrapKOjA4lEIu/MQ0TUlHR0dHDt2jVtV4Ma0aRJk1BaWopFixYhLy8PgYGB2Lx5s0Iqojlz5kBPTw/Tp0+HSCRCr169EBkZqTLtdn0cOXIEUVFR6NGjB+bMmYNu3brBzc0NTk5O+O233/D8889r5DitVVBQEP777z+YmZlpuyqkQQwuULPQr18/hdedO3fG008/jb179yI4OBjbtm3D7t27lSbvqU1ERATCw8PlryUSCW7dugVfX99ac/5R00tNTcXx48fh6emJtm3bars61EpJpVLExcXB399fYw+ZRETNAT9HSVtEIhGuXr0KAwMDPmMTUZMTi8UoLS2Fr68vDA0NtV0d+h+xWNygjp3bt29XeC0QCDBt2jRMmzat2m0MDAwwb948zJs3r97HrUleXh6cnZ0BVIy2qOzY0bVrVyxatKhRjtma6Ovr15gOnVomBheoWTI2Noa3tzfu3LkDgUCArKwsDBgwQL5eKpUiKioK27Ztwz///FPtfvT19RW+4FSmSNLV1WWjYjOko6Mj/5d/H2psvA8QUWvDz1HSlsrrTSAQqN0ZiIiooSrvO3y+b15a49/C2dkZqampaNu2LTw9PfHnn38iICAAR44caTW98Q8cOIC1a9fi7t27MDIyQseOHbFu3ToYGhpi3bp1+OWXX5CdnY327dvjww8/RN++feXbXr58GfPnz0dSUhK8vLwwZcoUhX1XTYu0evVqHD58GL/++qu8zHfffafQ1jd79mzk5+cjICAA27Ztg1gsxoQJEzB58mR88cUX2LVrFwwNDfHuu+/ixRdfrNM5XrhwAYsWLcKtW7fg5eWFt99+G++88448fROph8EFapbEYjGSkpLQtWtXvPDCC0r58SZOnIgXXngBo0aN0lINiYiIiIiIiIjoSTF69Ghcu3YN3bt3x1tvvYWIiAhs374dUqkUs2fP1nb1Giw9PR0ffvghZs6ciUGDBqGoqAjnzp2DTCbDtm3bsGXLFixevBgdO3bErl278Pbbb2P//v1wd3dHcXExIiIi0LNnT6xYsQIpKSlYunSpRup1+vRpODg44Pvvv8eFCxcwd+5cxMbGIjg4GL/88gv++OMPLFy4EL1794ajo2ON+yosLMSUKVPQt29ffPHFF0hNTcVnn32mkXo+qRhcoGYhKioKAwYMgKOjI7Kzs7F+/XoUFhZi5MiRsLS0hKWlpUJ5oVAIGxsbtGvXTks1JiIiIiIiIiKihvrxxx/x008/ITU1FQDkvckrU2jLZDKsWbMGO3bsQH5+PgIDAzF//nx4eXnJ9yEWixEVFYX9+/ejtLQUPXv2xMKFC+Hg4KCxek6YMEH+/549e+LPP/9EfHw8XF1d0aFDB40dR1syMjJQVlaGp59+Wp5i08fHBwCwadMmTJo0Cc8++ywAYObMmThz5gy2bt2KBQsW4LfffkN5eTk+++wzGBkZwcvLCw8ePMDChQsbXC8LCwt88skn0NHRQbt27bBx40aIRCJMnjwZQEVK9A0bNuDChQvy+lXnt99+AwAsWbIEBgYG8PT0RHp6Oj755JMG1/NJxeACNQsPHjzABx98gNzcXFhaWqJz58745ZdfmC+YiIiIiIiIiKgVc3BwwIwZM+Dq6goA2Lt3L9555x3s2bMHXl5e2LBhA7Zs2YLIyEi4u7tj/fr1CA8Px4EDB+QTOi9duhRHjhzBqlWrYGFhgcjISERERGD37t2NlqLJyckJTk5OjbJvbejQoQN69eqF5557DqGhoQgNDcWQIUOgq6uL9PR0dOnSRaF8ly5d5BOpJyUlwcfHB0ZGRvL1QUFBGqmXp6enPP0nANjY2CgElnR1dWFhYYGsrKxa93X79m34+PjAwMBAvszf318j9XxS6dRehKjxrVq1Cv/99x/i4+Nx/PhxrF69Gp6entWW/+effxQixkRERERERERE1PIMHDgQ/fr1g4eHBzw8PPD+++/D2NgYFy9elKfkmTx5MgYPHgxvb29ERUVBJBJh//79AICCggLs2rULs2fPRkhICHx9fbFixQpcv34dJ0+ebHD9Tp06hWHDhqGwsFBpXUFBAZ599lmcO3euwcfRNl1dXWzZsgUbNmyAp6cntm/fjqFDhyIlJQUAlOZVkslk8mUymUzt4wkEAqXtysrKlMrp6Sn2jRcIBCqXlZeX13rMx+tMmsHgAhEREREREREREWlcUVERCgsL5T9isbjG8lKpFL///juKi4sRFBSElJQUZGRkIDQ0VF5GX18fwcHBiI2NBQDEx8dDIpGgd+/e8jL29vbw8vKSl2mIrVu34uWXX5aPknicmZkZXnnlFWzZsqXBx2kOBAIBunbtinfffRd79+6FUCjEqVOnYGdnh/PnzyuUjY2NRfv27QFUjC5ITEyESCSSr7948WKNx7KyskJmZqZCgCEhIUFzJ6NCu3btkJiYqHAdxsXFNeoxWzsGF4iIiIiIiIiIiEjjBgwYgK5du8p/oqOjVZZLTExEUFAQ/P39sWDBAqxduxaenp7IyMgAAFhbWyuUt7GxQWZmJgAgMzMTQqEQ5ubm1ZZpiMTERPTp06fa9b1798aVK1cafBxtu3TpEr755hvExcUhLS0NBw8eRHZ2Ntq1a4eJEydiw4YN+OOPP3Dr1i18/vnnuHbtGsLCwgAAw4cPh0AgwNy5c3Hz5k38+++/2Lx5c43H69GjB7Kzs7Fhwwbcu3cPP/zwA44fP96o5/jcc89BJpNh3rx5SEpKwvHjx+X15IiG+uGcC0RERERERERERKRxR44cgVAolL/W19dXWc7DwwN79+5Ffn4+Dh48iFmzZuH777+Xr1eVkqc29UnVo0pmZqZSGp7H6enpITs7u9b9jHwvSiP1aSympqaIiYnB1q1bUVhYCCcnJ8yePRv9+vVDnz59UFhYiMjISGRnZ6N9+/ZYt24d3N3dAQAmJib45ptvsGDBAowYMQKenp6YMWMGpk2bVu3x2rdvjwULFiA6Ohrr16/H4MGD8cYbb+CXX35p1HNcv349Fi5ciBdeeAHe3t5455138OGHH1Z7bVLNGFwgIiIiIiIiIiIijTMxMalTo62+vj7c3NwAVEywGxcXh23btmHSpEkAKhr47ezs5OWzsrJgY2MDoGKEgkQiQV5ensLohaysLI1MKmxvb4/r16/L61dVYmIibG1tG3wcbWvfvj02bdqkcp2Ojg6mTp2KqVOnVrt9586d8euvvyosS0xMlP+/R48eCq8BYOzYsRg7dqzCssmTJ8v/HxkZqXSc7du3Ky37559/qq1XVV26dMG+ffvkr/ft2wehUNiqJuduSkyLRERERERERERERM2GTCaDWCyGs7MzbG1tceLECfk6sViMmJgYeeDAz88PQqFQoUx6ejpu3LihkeBCv3798PXXX6O0tFRpnUgkwurVqzFgwIAGH4eaxt69e3Hu3DkkJyfj8OHD+PzzzzF06FAYGhpqu2otEkcuEBERERERERERkVasXLkSffv2hYODA4qKivDHH3/g7Nmz2LhxIwQCAcLCwhAdHQ13d3e4ubkhOjoahoaGGD58OICKSZVHjx6NqKgoWFpawtzcHFFRUfD29kZISEiD6zdlyhQcPHgQQ4YMwWuvvQYPDw8IBAIkJSXhxx9/hFQqVehtT9rzzTffVDuvR9euXbFx40ZkZGTg66+/RkZGBmxtbTF06FC8//77TVzT1oPBBSIiIiIiIiIiItKKzMxMfPTRR0hPT4eZmRl8fHywceNG9O7dGwAwadIklJaWYtGiRcjLy0NgYCA2b94MU1NT+T7mzJkDPT09TJ8+HSKRCL169UJkZCR0dXUbXD8bGxv8/PPPWLhwIVauXCmfy0EgECA0NBQLFiyQp2gi7RozZgyeeeYZlesqRyZMmjRJnm6LGo7BBSIiavVk4hKk3HuI43eNkJUvhk3mYaTY34WjkRN82nSEudC89p0QERERERGRxn322Wc1rhcIBJg2bVqNkwMbGBhg3rx5mDdvnqarBwBo27YtNmzYgLy8PNy9excA4ObmpjDHA2mfhYUFLCwstF2NJwqDC0RE1KqJE09CHH8EhkJLJOY8A5lMhjblIuSUpCBNlIoLOefQoU1H9LbpC6GOUNvVJSIiIiIiombK3NwcAQEBdSpbOcKBqKlo45rjhM5ERNQqyWTlEJ3ZA/GlQ4C0DEaiDLQ1KqpYp/8oti6DDAn5V/Fr6i6IpCJtVZeIiIiIiIhagcpUTGKxWMs1oSdNcXExAEAobLqOkxy5QERErZL40iGU3b2ssKyLSQpSir1Rbqj88ZdRmoED9/fjhbajIRAImqqaRERERERET7To6GgcPHgQt27dgqGhIYKCgjBjxgy0a9dOXkYmk2HNmjXYsWMH8vPzERgYiPnz58PLy0teRiwWIyoqCvv370dpaSl69uyJhQsXwsHBoUnPR09PD8bGxsjIyIBQKISODvt2U+OSyWQoLi5Geno6LCwsNDLXSF0xuEBERK1OcVEmJEnnUPXj1E16C4A3pAaqH+7ui+7jWkECOrbxbfQ6EhEREREREXD27Fm89tpr8Pf3h1QqxapVqzBx4kT8/vvvMDY2BgBs2LABW7ZsQWRkJNzd3bF+/XqEh4fjwIED8omdly5diiNHjmDVqlWwsLBAZGQkIiIisHv37iZtbBUIBHB0dMTt27fl8zMQNQULC4umD6Y16dGIiIiawKnCC0gNtIF/nh7a3U6Dbnk5AMhTI5UbVD8y4UJ2DIMLRERERERETWTTpk0Kr5ctW4ZevXrhypUrCA4Ohkwmw7Zt2zB58mQMHjwYABAVFYWQkBDs378fY8aMQUFBAXbt2oXly5cjJCQEALBixQr0798fJ0+eRJ8+fZr0nPT19eHl5cXUSNRkhEJhkwbRKjG4QERErc7dojsohRinzcWI72wP/1xdeNypCDJ0MUnBGYPqJx3KL8tHjjgblvpWTVpnIiIiIiKi1qaoqEihgV1fXx/6+vo1blNQUACgYvJkAEhJSUFGRgZCQ0MV9hMcHIzY2FiMGTMG8fHxkEgk6N27t7yMvb09vLy8EBsb2+TBBQDQ0dGBoaFhkx+XqCkxuEBERK1KUVkRSstL5a8LUYpTFkBcZ3sE5OjA5f5tHBOWw6iGfWSJsxhcICIiIiIiaqABAwagpKRE/nrq1KmYNm1ateVlMhmWLVuGrl27wtvbGwCQkZEBALC2tlYoa2Njg7S0NABAZmYmhEKhPCDxeJnMzEyNnAsRKWNwgYiIWhWRtETl8kKU4qQloG8MpCYlw83WvdoeM5JyDl0lIiIiIiJqqCNHjkAoFMpf1zZqYfHixbh+/Tp+/PFHpXUCgWJ6W5lMVuvx61KGiOqP05UTEVGrYqxnXOP6/HIRZHpAubS82jKGujWNayAiIiIiIqK6MDExgampqfynpuDCp59+in/++Qdbt25VmJTW1tYWAJRGIGRlZcHGxgZAxQgFiUSCvLy8assQkeYxuEBERK2Kka4xTHRNGrQPK6ZEIiIiIiIiahIymQyLFy/GwYMHsXXrVri4uCisd3Z2hq2tLU6cOCFfJhaLERMTg6CgIACAn58fhEKhQpn09HTcuHFDXoaINI9pkYiIqNXxMG2P+LzL9drWzsAO5kILzVaIiIiIiIiIVFq0aBH279+PdevWwcTERD7HgpmZGQwNDSEQCBAWFobo6Gi4u7vDzc0N0dHRMDQ0xPDhw+VlR48ejaioKFhaWsLc3BxRUVHw9vZGSEiINk+PqFVjcIGIiFqdIMsuuJZ/FWWyMrW37WLZrRFqRERERERERKr89NNPAIDx48crLF+2bBlGjRoFAJg0aRJKS0uxaNEi5OXlITAwEJs3b4apqam8/Jw5c6Cnp4fp06dDJBKhV69eiIyMhK6ubtOdDNEThsEFIiJqdUz1zNDTOgT/ZR5TazsvU294mLZvpFoRERERERFRVYmJibWWEQgEmDZtGqZNm1ZtGQMDA8ybNw/z5s3TZPWIqAacc4GIiFolf4tAdLfqWefy7iYeGGD/VCPWiIiIiIiIiIio9eDIBSIiarW6WgXDysAapzNPIFeSq7KMoY4hull1Rydzf+gIGHMnIiIiIiIiIqoLBheIiKhV8zBpB3djDyQX30OaKBXJ0nu4n/sAnp7e6GDfEe4mHhDqCLVdTSIiIiIiIiKiFoVdNImIqNUTCARwNXFDT+sQ9DIJhcmNNggy7govM28GFoiIiIiIiLQsJiYGkydPRmhoKHx8fHD48GGF9TKZDKtXr0ZoaCgCAgIwfvx43LhxQ6GMWCzGp59+ih49eqBz586YPHkyHjx40JSnQfTEYXCBiIiIiIiIiIiItKa4uBg+Pj6YP3++yvUbNmzAli1bMH/+fOzcuRM2NjYIDw9HYWGhvMzSpUtx6NAhrFq1Cj/++COKi4sREREBqVTaVKdB9MRhcIGIiIiIiIiIiIi0pl+/fnj//fcxePBgpXUymQzbtm3D5MmTMXjwYHh7eyMqKgoikQj79+8HABQUFGDXrl2YPXs2QkJC4OvrixUrVuD69es4efJkU58O0RODwQUiIiIiIiIiIiLSuKKiIhQWFsp/xGKx2vtISUlBRkYGQkND5cv09fURHByM2NhYAEB8fDwkEgl69+4tL2Nvbw8vLy95GSLSPE7oTERERERERERERBo3YMAAlJSUyF9PnToV06ZNU2sfGRkZAABra2uF5TY2NkhLSwMAZGZmQigUwtzcXKlMZmZmfapORHXA4AIRERERERERERFp3JEjRyAUCuWv9fX1670vgUCg8Fomk9W6TV3KEFH9MS0SERERERERERERaZyJiQlMTU3lP/UJLtja2gKA0giErKws2NjYAKgYoSCRSJCXl1dtGSLSPAYXiIiIiIiIiIiIqFlydnaGra0tTpw4IV8mFosRExODoKAgAICfnx+EQqFCmfT0dNy4cUNehog0j2mRiIiIiIiIiIiISGuKiopw7949+euUlBQkJCTA3NwcTk5OCAsLQ3R0NNzd3eHm5obo6GgYGhpi+PDhAAAzMzOMHj0aUVFRsLS0hLm5OaKiouDt7Y2QkBBtnRZRq8fgAhEREREREREREWlNfHw8wsLC5K+XLVsGABg5ciQiIyMxadIklJaWYtGiRcjLy0NgYCA2b94MU1NT+TZz5syBnp4epk+fDpFIhF69eiEyMhK6urpNfj5ETwoGF4iIiIiIiIiIiEhrevTogcTExGrXCwQCTJs2DdOmTau2jIGBAebNm4d58+Y1RhWJSAXOuUBERERERERERERERGphcIGIiIiIiIiIiIiIiNTC4AK1OD/88AMGDhwIf39/jBo1CufOndN2lYiIiIiIiIiIqAHY3kPU8jC4QC3KH3/8gWXLlmHKlCnYu3cvunbtikmTJiEtLU3bVSMiIiIiIiIionpgew9Ry8TgArUoW7ZswejRo/HSSy+hffv2mDt3LhwcHPDTTz9pu2pERERERERERFQPbO8hapn0tF0BoroSi8W4cuUK3nrrLYXlvXv3RmxsbLXbiMVi+evS0lIAQElJCaRSaeNVlupFLBZDT08PYrEYJSUl2q4OtVK8zoioteL9jbRFJBIBqLgG+YxNRE2t8r5TUlICmUym5dpQpcq2mIKCAhgYGMiX6+vrQ19fX6msuu09RNQ8MLhALUZOTg6kUimsra0VltvY2CAjI0PlNtHR0VizZo38tbu7Oz777DPcvHmzUetK9Td06FDk5OQgJydH21WhVozXGRG1Vry/kbbo6FQMimdwgYi0QUdHB7du3dJ2NUiFZ599VuG5ZOrUqZg2bZpCmfq09xBR88DgArU4AoFA4bVMJlNaVikiIgLh4eHy12VlZZDJZDAyMpJ/ASIiIiIiIiIiIs0pLy9HSUkJDhw4AD29R82PVUctPE6d9h4iah4YXKAWw9LSErq6usjMzFRYnpWVBRsbG5XbqBpuR0REREREREREjcvQ0LBO5erT3kNEzQO7blOLoa+vj06dOuHEiRMKy0+ePImgoCAt1YqIiIiIiIiIiOqL7T1ELRdHLlCLEh4ejo8++gh+fn4ICgrCjh07cP/+fYwZM0bbVSMiIiIiIiIionpgew9Ry8TgArUow4YNQ05ODtatW4f09HR4e3vj22+/Rdu2bbVdNSIiIiIiIiIiqge29xC1TAKZTCbTdiWIiIiIiIiIiIiIiKjl4JwLRERERERERERERESkFgYXiIiIiIiIiIiIiIhILQwuEBERERERERERERGRWhhcICIiIiIiIiIiIiIitTC4QEREREREREREREREamFwgYgaLDo6GqNHj0ZQUBB69eqFt99+G7du3ZKvl0gkWLFiBZ577jl07twZoaGh+Oijj/Dw4UOV+xs4cCCOHTsGAEhMTMS4ceMQEBCAPn36YM2aNZDJZArlxWIxVq1ahQEDBsDPzw+DBg3Czp07G++ESSt4nRFRa8X7GxERERERtUR62q4AEbV8Z8+exWuvvQZ/f39IpVKsWrUKEydOxO+//w5jY2OIRCJcvXoVU6ZMQYcOHZCfn4/PPvsMU6ZMwe7duxX2de3aNeTm5qJnz54oLCzEG2+8gR49emDnzp24c+cOZs+eDWNjY7zxxhvybd577z1kZWVh6dKlcHV1RXZ2NsrKypr610CNjNcZEbVWvL8REREREVFLJJBV7bpERNRA2dnZ6NWrF77//nsEBwerLHP58mW89NJLOHLkCJycnOTL165di8TERHz99df48ccfsXLlSpw8eRL6+voAgG+//Rbbt2/HsWPHIBAIcOzYMXzwwQc4fPgwLCwsmuL0qJngdUZErRXvb0RERERE1BIwLRIRaVxBQQEAwNzcvNoyhYWFEAgEaNOmjcLyf/75B0899RQA4OLFiwgODpY3iABAaGgo0tPTkZKSIi/v5+eHjRs3ok+fPhgyZAiioqIgEok0fVrUzPA6I6LWivc3IiIiIiJqCZgWiYg0SiaTYdmyZejatSu8vb1VliktLcXnn3+O4cOHw9TUVL784cOHSExMRL9+/QAAmZmZaNu2rcK21tbW8nUuLi5ITk7G+fPnYWBggLVr1yInJweLFi1Cbm4uli1b1khnSdrG64yIWive34iIiIiIqKXgyAUi0qjFixfj+vXrWLlypcr1EokE77//PmQyGRYuXKiw7u+//0ZQUJBCWgaBQKByP5XLZTIZBAIBPv/8cwQEBKBfv36YPXs29uzZw16XrRivMyJqrXh/IyIiIiKiloLBBSLSmE8//RT//PMPtm7dCgcHB6X1EokE06dPR0pKCjZv3qzQ2xJQTOUAADY2NsjIyFAok5WVBeBRz0tbW1vY29vDzMxMXqZ9+/aQyWR48OCBxs6Nmg9eZ0TUWvH+RkRERERELQmDC0TUYDKZDIsXL8bBgwexdetWuLi4KJWpbBC5e/cuvvvuO1haWiqsLyoqwpkzZxQaRTp37oxz585BLBbLl/3333+ws7ODs7MzAKBLly5IT09HUVGRvMzt27eho6OjsmGGWi5eZ0TUWvH+RkRERERELRGDC0TUYIsWLcK+ffvwxRdfwMTEBBkZGcjIyJCnUygrK8O7776L+Ph4fP7555BKpfIylQ0ex48fh7u7u0KDynPPPQd9fX18/PHHuH79Og4dOoTo6GiEh4fL0zkMHz4cFhYW+Pjjj3Hz5k3ExMRgxYoVGD16NAwNDZv+l0GNhtcZEbVWvL8REREREVFLJJDJZDJtV4KIWjYfHx+Vy5ctW4ZRo0YhJSVFoSfl47Zt24YePXpg5syZcHJywvvvv6+wPjExEYsXL8bly5dhbm6OMWPG4J133lHIIZ2UlIQlS5bgwoULsLCwwDPPPIPp06ezUaSV4XVGRK0V729ERERERNQSMbhARFonlUoREhKCDRs2ICAgQNvVoVaK1xkRtVa8vxERERERkTYwLRIRaV1ubi5ef/11+Pv7a7sq1IrxOiOi1or3NyIiIiIi0gaOXCAiIiIiIiIiIiIiIrVw5AIREREREREREREREamFwQUiIiIiIiIiIiIiIlILgwtERERERERERERERKQWBheISCNiYmIwefJkhIaGwsfHB4cPH1ZYL5PJsHr1aoSGhiIgIADjx4/HjRs3atznmTNnMGXKFISGhqJz58544YUXsG/fPqVyYrEYq1atwoABA+Dn54dBgwZh586dGj0/ah5qu84eN3/+fPj4+OC7776rdb+JiYkYN24cAgIC0KdPH6xZswZVpyQ6e/YsRo0aBX9/fzz11FP46aefGno6REQAgOjoaIwePRpBQUHo1asX3n77bdy6dUuhzMGDBzFx4kT06NEDPj4+SEhIqHW/paWlmD17Np577jn4+vri7bffVipz5swZ+Pj4KP0kJSVp7PyIiIiIiKh10tN2BYiodSguLoaPjw9GjRqFadOmKa3fsGEDtmzZgsjISLi7u2P9+vUIDw/HgQMHYGpqqnKfsbGx8PHxwaRJk2BjY4OjR49i1qxZMDU1xcCBA+Xl3nvvPWRlZWHp0qVwdXVFdnY2ysrKGu1cSXtqu84qHT58GJcuXYKdnV2t+ywsLMQbb7yBHj16YOfOnbhz5w5mz54NY2NjvPHGGwCA5ORkvPXWW3jppZewYsUKXLhwAYsWLYKVlRWGDBmisfMjoifT2bNn8dprr8Hf3x9SqRSrVq3CxIkT8fvvv8PY2BhAxf0vKCgIQ4cOxSeffFKn/UqlUhgYGGD8+PH466+/aixb9fPYysqq/idERERERERPBAYXiEgj+vXrh379+qlcJ5PJsG3bNkyePBmDBw8GAERFRSEkJAT79+/HmDFjVG43efJkhddhYWH477//cOjQIXlw4dixY4iJicHhw4dhYWEBAHB2dtbQWVFzU9N1Vunhw4dYvHgxNm3ahIiIiFr3uW/fPpSWliIyMhL6+vrw9vbGnTt3sGXLFoSHh0MgEODnn3+Go6Mj5s6dCwBo37494uLisHnzZgYXiKjBNm3apPB62bJl6NWrF65cuYLg4GAAwIgRIwAAKSkpdd6vsbExFi1aBAC4cOEC8vPzqy1rbW2NNm3aqFlzIiIiIiJ6kjEtEhE1upSUFGRkZCA0NFS+TF9fH8HBwYiNjZUvmz17NsaPH1/jvgoKCuRBBAD4559/4Ofnh40bN6JPnz4YMmQIoqKiIBKJNH4e1PyVl5dj5syZmDhxIry8vFSWqXqdXbx4EcHBwdDX15cvCw0NRXp6urwR7+LFi+jdu7fCfvr06YP4+HhIJJJGOBMiepIVFBQAAMzNzdXari6fo9UZMWIEQkND8frrr+P06dP12gcRERERET1ZOHKBiBpdRkYGgIpekY+zsbFBWlqa/LWtrS3Ky8ur3c+BAwcQFxeHxYsXy5clJyfj/PnzMDAwwNq1a5GTk4NFixYhNzcXy5Yt0/CZUHO3YcMG6OnpISwsrNoyVa+zzMxMtG3bVqFM5bWamZkJFxcXZGZmwsbGRqlMWVkZcnJy6pR+iYioLmQyGZYtW4auXbvC29tbrW1r+xytbptPP/0UnTp1glgsxq+//ooJEyZg+/bt8lETREREREREqjC4QERNRiAQKLyuOmHuhx9+WO22Z86cwccff4wlS5Yo9EiXyWQQCAT4/PPPYWZmBqCi5+a7776LBQsWwNDQUINnQM1ZfHw8tm3bht27dytda49TdZ1VV/7x5dVdvzUdi4hIXYsXL8b169fx448/qr1tTZ+j1WnXrh3atWsnfx0UFIQHDx5g06ZNDC4QEREREVGNmBaJiBqdra0tgIpe4I/LyspS6g2uytmzZzF58mTMnj1bnnP68X3b29vLAwtART58mUyGBw8eNLzy1GKcO3cOWVlZGDBgAHx9feHr64vU1FRERUUpTABelY2NjXx0TaWsrCwAj0YwqCqTnZ0NPT09hTRdREQN8emnn+Kff/7B1q1b4eDgoLV6BAYG4u7du1o7PhERERERtQwMLhBRo3N2doatrS1OnDghXyYWixETE4OgoKAatz1z5gwiIiIwY8YMvPLKK0rru3TpgvT0dBQVFcmX3b59Gzo6OlptmKGm98ILL2Dfvn3Yu3ev/MfOzg4TJ07Exo0bq92uc+fOOHfuHMRisXzZf//9Bzs7O/nk4J07d8bJkycVtvvvv//g5+cHoVDYOCdERE8MmUyGxYsX4+DBg9i6dStcXFy0Wp+EhAR5xwAiIiIiIqLqMC0SEWlEUVER7t27J3+dkpKChIQEmJubw8nJCWFhYYiOjoa7uzvc3NwQHR0NQ0NDDB8+XL7NF198gYcPH2L58uUAHgUWwsLCMHjwYHnPcaFQKO8tPnz4cKxbtw4ff/wx3n33XeTk5GDFihUYPXo0UyK1QrVdZ5aWlgrlhUIhbGxsFFJ+VL3OnnvuOaxduxYff/wxIiIicPfuXURHR+Odd96RpzwaM2YMfvjhByxbtgwvv/wyYmNjsWvXLnzxxRdNcNZE1NotWrQI+/fvx7p162BiYiL/vDMzM5N/luXm5uL+/ftIT08HUBFIBypGVlUGAqre3wDg5s2bkEgkyM3NRVFRERISEgAAHTt2BAB89913cHZ2hqenJyQSCfbt24e//voLq1evbpqTJyIiIiKiFksgq5r0nIioHs6cOaNyEt2RI0ciMjISMpkMa9aswY4dO5CXl4fAwEDMnz9fYbLK2bNnIzU1Fdu3b5e/3rNnj9I+u3fvLi8DAElJSViyZAkuXLgACwsLPPPMM5g+fTqDC61QbddZVQMHDkRYWBgmTJggX1b1OgOAxMRELF68GJcvX4a5uTnGjBmjEFwAKtJzLVu2DDdu3ICdnR0mTZqEsWPHavYEieiJ5OPjo3L5smXLMGrUKADA7t278fHHHyuVmTp1KqZNmwZA9f1t4MCBSE1NVdouMTERALBhwwb88ssvePjwIQwNDeHp6YmIiAj069evwedFREREREStG4MLRERERERERERERESkFs65QEREREREREREREREamFwgYiIiIiIiIiIiIiI1MLgAhERERERERERERERqYXBBSIiIiIiIiIiIiIiUguDC0REREREREREREREpBYGF4iIiIiIiIiIiIiISC0MLhARERERERERERERkVoYXCAiIiIiIiIiIiIiIrUwuEBERERERERERERERGphcIGIiIiIiIiIiIiIiNTC4AIREREREREREREREamFwQUiIiIiIiIiIiIiIlILgwtERERERERERERERKQWBheIiIiIiIiIiIiIiEgtDC4QEREREREREREREZFaGFwgIiIiIiIiIiIiIiK1MLhARERERERERERERERqYXCBiIiIiIiIiIiIiIjUwuACERERERERERERERGphcEFIiIiIiIiIiIiIiJSC4MLRERERERERERERESkFgYXiIiIiIiIiIiIiIhILQwuEBERERERERERERGRWhhcICIiIiIiIiIiIiIitTC4QEREREREREREREREamFwgYiIiIiIiIiIiIiI1MLgAhERERERERERERERqYXBBSIiIiIiIiIiIiIiUguDC0REREREREREREREpBYGF4iIiIiIiIiIiIiISC0MLhARERERERERERERkVr0tF0BIiIiIiIiIiIiotakvLwcYrFY29UgUptQKISurm6dyjK4QERERERERERERKQhYrEYt2/fRnl5ubarQlQvFhYWcHBwgEAgqLEcgwtEREREREREREREGiCTyXD//n3o6urCxcUFOjrMSk8th0wmQ3FxMdLT0wEAjo6ONZZncIGIiIiIiIiIiIhIA8rKylBcXAwnJycYGxtruzpEajMyMgIApKenw87OrsYUSQydEREREREREREREWmAVCoFAOjr62u5JkT1VxkYk0gkNZZjcIGIiIiIiIiIiIhIg2rLVU/UnNX1+mVwgYiIiIiIiIiIiIiI1MI5F4iIiIiIiIiIiIgaUW5hGYpLpU12PGMDXViY1r3pd/z48ejQoQPmzp3biLWqmzNnziAsLAwxMTFo06aNtqtDNWBwgYiIiIiIiIiIiKiR5BaWYfmOu8gvLmuyY7Yx1sNHr7ipFWAgUhevLnqilJeXo6ysDDo6Osx9R0RERERERETUCGQyGcrLy6GnpwcdHWZlLy6VIr+4DEJdHegLG//3IZaUI7+4YqREYwUXxGIxJ60mBhfoyVJWVoa4uDhtV4OIiIiIiIiIqNXz9/dnA/Rj9IU6MNRvmmCLRFqu9jZSqRSLFy/Gvn37oKurizFjxmD69OkQCAQYOHAgXnzxRdy7dw+HDh3CoEGDEBUVhQsXLuCLL75AXFwcLC0t8fTTT+ODDz6AsbExAODXX3/F1q1bcfv2bRgbG6Nnz56YM2cOrK2t5cf9999/8dlnn+H+/fsIDAzEyJEjNfZ7oMbF4AI9USqj5f7+/tDV1dVybagqqVSKuLg4/n2oUfE6I6LWivc3IiIiai4qn0s4aqFl2bNnD1588UX88ssviI+Px/z589G2bVu8/PLLAIBNmzbh7bffxpQpUwAAiYmJmDhxIt577z0sXboU2dnZ+PTTT/Hpp59i2bJlAACJRIL33nsP7dq1Q1ZWFpYtW4bZs2djw4YNAID79+9j6tSpGDNmDMaOHYv4+HhERUVp5xdAamNwgZ4olamQdHV1+aW7GePfh5oCrzMiaq14fyMiIqLmgimpWxZHR0fMmTMHAoEA7dq1w/Xr1/Hdd9/Jgws9e/bExIkT5eU/+ugjPPfcc5gwYQIAwN3dHXPnzsX48eOxcOFCGBgY4MUXX5SXd3Fxwdy5c/HSSy+hqKgIJiYm+Omnn+Di4qJ03MrgAzVvDC4QERERERERERERPeECAwMVAkKdO3fGli1bIJVKAQB+fn4K5a9cuYK7d+/it99+ky+rnG8jJSUF7du3x9WrV7F69Wpcu3YNubm5kMlkACpGLHh6eiIpKUnlcallYHCBiIiIiIiIiIiIiGpkZGSk8Lq8vBxjxozB+PHjlco6OjqiuLgYb7zxBnr37o0VK1bA0tIS9+/fx8SJEyGRSABAHmyglonBBSIiIiIiIiIiIqIn3KVLl5Reu7m5VZty09fXFzdu3ICbm5vK9devX0dOTg5mzJgBR0dHAEB8fLxCGU9PTxw+fLjGelDzxVlViIiIiIiIiIiIiJ5w9+/fx7Jly3Dr1i3s378f33//PcLCwqotP2nSJFy8eBGLFi1CQkIC7ty5g7///huffvopAMDJyQlCoRDbt29HcnIy/v77b6xbt05hH2PGjMG9e/fkx/3tt9+wZ8+eRj1P0hyOXCAiIiIiIiIiIiJqZGJJebM+zogRIyASifDSSy9BV1cX48aNwyuvvFJt+Q4dOmD79u348ssv8eqrrwKomLR52LBhAAArKytERkZi5cqV2L59Ozp16oRZs2ZhypQp8n04OTlh9erVWLZsGX788UcEBATg/fffx5w5c+p1DtS0BDImtqIniFQqxcWLF9G5c+dqh3SR9vDvQ02BstdyAQABAABJREFU1xkRtVa8vxEREVFz8SQ/l4hEIty+fRseHh4wNDQEAOQWlmH5jrvILy5rsnq0MdbDR6+4wcKUfctJfaquY1V4dRERERERERERERE1EgvTiob+4lJpkx3T2ECXgQVqdLzCiIiIiIiIiIiIiBqRhakeG/up1eGEzkREREREREREREREpBYGF4iIiIiIiIiIiIiISC0MLhARERERERERERERkVqY6IuIiIiIqJXILwHuZ5VCR1cXBkIdWLcRartKRERERETUSjG4QERERETUCmTlS/DLGR3oXEiGQAAYGehi9hg3BhiIiIiIiKhRMC0SEREREVErIJaUo7RMAKGeAEJdHZSUSlEqKdd2tYiIiIiIqJVicIGIiIiIqBXR19OBvpCP+URERERE1LiYFomIiIiIiIiIiIioEZUX5UEmLm6y4wn0jaFjYt5kx6MnE4MLpJbx48ejQ4cOmDt3rrargjNnziAsLAwxMTFo06aNtqtDRERERERERESkpLwoD0W/LoespKDJjikwMoPJCx8xwECNisEFIiIiIiIiIiIiokYiExdXBBZ0hRAI9Rv/eBIxZCUFFSMlGFygRsRkrNSoxGKxtqtARERERERERP/P3p3Hx3T2/x9/TSaTPSQ0tUQQobElxNJWbK39VlrcamnFrrUvLRJCm1Ki9lpaiqqlC1Wx3HXrXVpULUWpVO1SsUQXtSWRZDKT3x9+5tshSFQW8X4+HvOQc861fM6c42RyPnOuS0TynMHkhMHkkguv+0tgZGRksGDBAho3bkxwcDDPP/88GzdutG3fvHkzzZo1Izg4mLCwMGJiYggMDOTq1au2MitXrqRhw4ZUq1aNAQMGsHjxYmrVqmXbfuTIEcLCwggJCaFGjRq0a9eO2NjY+39TJU/pyQXJNovFwrhx41i3bh1Go5FOnToxdOhQDAYDjRo1on379sTHx/P111/TpEkT3nnnHX788UemTZtGbGws3t7eNG3alNdeew03NzcA1q5dy5IlS4iLi8PNzY2nn36a0aNHU7RoUVu/W7duZeLEiSQkJFCtWjXatm2bV2+BiIiIiIiIiIhIgTJz5kz+97//ERUVRdmyZdmzZw8jRoygSJEilCxZkiFDhhAWFsaLL77I4cOHeeedd+zq79u3jzfffJPhw4fTqFEjduzYwaxZs+zKDB8+nEqVKhEVFYXRaOTw4cOYTKbc3E15gJRckGyLiYmhffv2rFy5kp9//pk33ngDX19fOnToAMCiRYvo378//fr1A+Do0aP06tWLIUOGMGHCBP766y/Gjx/P+PHjiY6OBsBsNjNkyBDKlSvHxYsXiY6OJiIiggULFgCQkJDAwIED6dSpE507d+bnn3++7QKWHRaL5R++C5ITbh4XHR/JSTrPRKSgslitN37IyCDjxj9YLRZd70RERCTX6fPHwyc5OZnFixezZMkSQkJCAPDz82Pfvn2sWLGCEiVK4O/vT3h4OADlypXj2LFjzJs3z9bG8uXLadCgAb169QLA39+f/fv3s2XLFluZ8+fP06tXLwICAgAoW7Zs7uyg5AglFyTbSpQowejRozEYDLYLyUcffWRLLjz99NO2iwjAyJEjad26Nd27dwduXDQiIyMJCwsjKioKZ2dn2rdvbyvv5+dHZGQkL774IklJSbi7u/Ppp5/i5+d3W783kw/Zpcet8jcdH8kNOs9EpKC5mAhgJDEpEYAUs4FfDh/mN488DUtEREREHgInTpwgNTWVnj172q03m81UqlSJlJQUqlatarctODjYbjkuLo4mTZrcVubvyYUePXowZswY1q5dS2hoKC1atKB06dIPdmck1yi5INlWrVo1DAaDbbl69eosXrzYlpW+9UJz6NAhTp8+zfr1623rMjIysFqtnD17loCAAH755Rdmz57NkSNHuHz5MhkZGcCNJxbKly/PyZMnM+33fgUFBWE0Gu+7vuQMi8VCbGysjo/kKJ1nIlJQnf3jOuw6gYe7BxgMGFIsVK7kR4miznkdmoiIiDxibv7dJQ+Pm/fi5s+fT7Fixey2OTk5MX78eLv7cn+v8/fle5UZNGgQrVq1YuvWrWzbto1Zs2YxY8YMmjZt+qB2RXKRkgvywLm6utotW61WOnXqRFhY2G1lS5QoQXJyMj179qRu3bpMmTIFb29vEhIS6NWrF2azGbj9QvRPGY1G3VTMx3R8JDfoPBORgsbo4HDjB4MBg8GAwQAOutaJiIiISBYEBATg5OTE+fPnefLJJ2/bXq5cObZu3Wq37ueff76tzK1JpVvLwI3hkvz9/enevTuvvfYaX3zxhZILDyklFyTbfvrpp9uWy5Qpc8c/XCtXrszx48cpU6ZMptuPHTvGpUuXGD58OCVKlABuv/CUL1+eTZs23TUOERERERERERERyT4PDw969uxJdHQ0GRkZ1KxZk8TERPbv34+bmxsdO3bko48+YsqUKbRv357Dhw8TExMDYHtaoUuXLnTp0oXFixfz7LPPsmvXLrZt22bbnpKSwuTJk2nevDmlSpXiwoULxMbG0qxZszzbb/lnHPI6AHn4JCQkEB0dzalTp/jPf/7D8uXL6dq16x3L9+nThwMHDvDWW29x+PBhfv31VzZv3sz48eMBKFmyJCaTiWXLlnHmzBk2b97Me++9Z9dGp06diI+Pt/W7fv162wVMREREREREREQkv8swp5FhTsmFV9p9xTd06FAGDBjA/PnzadmyJb169eKbb76hVKlS+Pn58e677/L111/z/PPP8+mnn9K3b1/gxrBJADVr1uStt95i8eLFvPDCC3z33Xd0794dZ+cbw3Q6ODhw+fJlwsPDad68OUOHDqVBgwYMHjz4wbzBkuv05IJkW5s2bUhJSeHFF1/EaDTSpUsXOnbseMfyFStWZNmyZcycOZOXXnoJuDFpc8uWLQEoUqQIkyZNYvr06SxbtowqVaoQHh5Ov379bG2ULFmS2bNnEx0dzSeffEJwcDDDhg1j9OjRObuzIiIiIiIiIiIi/4DByQ2DqycZ16+RYTHnTp+unhic3LJXx2Cga9eud/wScePGjWncuLFt+f3336d48eK25AFAhw4d6NChg215zJgxtgmbnZycmD59erZikvxNyQXJlmXLltl+fuutt27b/s0332RaLzg4mA8//PCO7bZq1YpWrVrZrTt69Kjd8rPPPsuzzz5rt+7f//73PWMWERERERERERHJKw7uhXF/YSQZacm51qfByQ0H98IPtM2PP/6YoKAgvL292bdvH4sWLeLll1+2K7No0SLq1q2Lq6sr27ZtY82aNbz55psPNA7JP5RcEBEREREREREREclBDu6F4QHf7M9tp0+f5v333+fKlSuULFmSHj168Oqrr9qVOXjwIAsXLiQpKQk/Pz8iIyN58cUX8yhiyWlKLoiIiIiIiIiIiIjIXY0ePfqeQ5S/++67uRSN5AdKLoiIiIiIFCBp6VYMGPI6DBERERERKeCUXBARERERKQCcTA44O2ZgTs/AYMjA1dmIs8khr8MSEREREZECSskFEREREZECoGghEx2eslLhCT8cjDcSC0ULmfI6LBERERERKaCUXBARERERKSAKuUKJos4Yjca8DkVERERERAo4PSctIiIiIiIiIiIiIiLZoicXREREREQKCGPKVayXEuCWJxcMjk44eBbNo6hERERERKQgUnJBRERERKQAsF67yOMHV5F8xAEDBrttBidX3NuMVIJBREREJI9cM18jxXo91/pzcXDF0+SZ5fIZGRm88cYbfPXVV1y5coU1a9YwceJEKlasSGRk5D3rh4WFZbnsw2Lfvn1ERUVx6tQpGjZsyHvvvZcj/ezevZuuXbuyZ88eChUqlCN95BQlF0RERERECoL0NBzSU8G1EAaTs211hjmNjLTrZKSn5WFwIiIiIo+ua+ZrLI5bQFJ6Yq716e7oQQ//PllOMGzbto2YmBiWLl2Kn58f3t7ezJ49G0fHnL19fPr0acaNG8f+/ftxdHQkODiYyZMnU6RIkRztNysmTZpExYoVWbBgAW5ubnkdTr6k5IKIiIiISAFicHTCYHKxW5dhMedRNCIiIiKSYr1OUnoijg4mTAZTjvdnzjCTlJ5IivU6nmQtuXDmzBl8fHyoUaOGbZ2Xl1cORfh/xo4dS2JiIsuXL8fFxYUDBw6QkZGR4/1mRXx8PJ06daJ48eJ5HUq+pQmdRURERERERERERHKYyWDC2eic46/sJjAiIiIYP34858+fJzAwkEaNGgE3hjqaMGGCrdzHH39Ms2bNCAoKIjQ0lMGDB9u1k5GRweTJk3nyySepW7cus2fPvmffDg4O1KtXj8qVK1OuXDnatWtH0aL3HsrzyJEjhIWFERISQo0aNWjXrh2xsbG27T/++CMvv/wywcHBNGzYkLfffpvk5GTb9rVr19KuXTtCQkKoW7cur7/+OhcvXgTg7NmzBAYGcvnyZUaPHk1gYCCrV68G4IcffqB9+/ZUrVqVevXqMXXqVNLT023tpqWl8fbbb1OnTh2CgoLo3LkzBw8etIt969atNG/enODgYMLCwjh37tw99ze/UnJBRERERERERERE5BEVGRnJ4MGDKV68ONu3b2fVqlW3lYmNjWXChAkMHjyYjRs3snDhQmrVqmVXJiYmBjc3N1auXMmIESOYO3cu33///V37bty4MZ988gmHDh3KVszDhw+nePHirFq1itWrV9OnTx9MphtJlaNHj9KrVy+aNm3KunXrmDFjBvv27WP8+PG2+mazmSFDhrBu3Trmzp3L2bNniYiIAKBEiRJs374dDw8PRo8ezfbt22nZsiW//fYbr7zyCkFBQaxdu5aoqChWrVrF+++/b2t38uTJfPXVV0yaNImYmBjKlClD7969uXz5MgAJCQkMHDiQBg0asGbNGl588UWmTZuWrX3PT5RcEBEREREREREREXlEeXp64u7ujtFoxMfHJ9P5DhISEnB1deWZZ57B19eXypUr07VrV7sygYGBDBw4kLJly9KmTRuqVq3Kzp0779jvzp07mTZtGv369ePVV19lz549tm0bN24kJCTkjnXPnz9PaGgoAQEBlC1bln/9619UrFgRgEWLFtG6dWu6d+9O2bJlqVGjBpGRkaxZs4bU1FQA2rdvT8OGDfHz86N69epERkaybds2kpKSbO+DwWDA09MTHx8fXFxc+OSTTyhevDhvvPEGAQEBNGnShEGDBvHhhx9itVpJTk7ms88+Y+TIkTRs2JDy5cszfvx4nJ2dbQmbTz/9FD8/P0aPHk25cuV4/vnnadu2bdYPVj6jORdERERERERERERE5I5CQ0MpWbIkTZo0oX79+tSvX5+mTZvi6upqKxMYGGhXx8fHxzbUUGamTZvGSy+9RK9evahQoQJ9+/Zl8uTJNG7cmOPHj1OzZs071u3Rowdjxoxh7dq1hIaG0qJFC0qXLg3AoUOHOH36NOvXr7eVz8jIwGq1cvbsWQICAvjll1+YPXs2R44c4fLly7Z5HhISEihfvnymfZ48eZKQkBAMBoNtXc2aNUlOTubChQtcvXoVs9lsN2+FyWQiODiYkydP2tqoVq2aXRvVq1e/437md3pyQR6YjIwMFixYQOPGjQkODub5559n48aNtu2bN2+mWbNmtvHEYmJiCAwM5OrVq7YyK1eupGHDhlSrVo0BAwawePFiu0es7jWemoiIiIiIiIiIiDxYHh4exMTEMH36dHx8fJg1axYvvPCC3X09R0f777EbDIa7Ts589OhRKleuDECDBg2YOHEiQ4cO5fPPP2f16tW0a9fujnUHDRrEf/7zH5555hl27dpFy5Yt+frrrwGwWq106tSJNWvW2F5r167lf//7H35+fiQnJ9OzZ0/c3NyYMmUKq1atYs6cOcCN4ZLuJLN9ubnu78mCv/98s8zNdfllsuoHRU8uyAMzc+ZM/ve//xEVFUXZsmXZs2cPI0aMoEiRIpQsWZIhQ4YQFhbGiy++yOHDh3nnnXfs6u/bt48333yT4cOH06hRI3bs2MGsWbPsygwfPpxKlSoRFRWF0Wjk8OHDtvHUssNisfyjfZWccfO46PhITtJ5JiIFlcV647qWkZFh90dLRkYGGWRgtVhA1z4RERHJBfp7q2BydHQkNDSU0NBQBg4cSO3atdm1axfNmjW7r/aKFSvGnj17aNWqFQDNmzcnOTmZUaNGERgYyL/+9a+71vf398ff35/u3bvz2muv8cUXX9C0aVMqV67M8ePHKVOmTKb1jh07xqVLlxg+fDglSpQA4Oeff75nvOXLl+err76ySxb8+OOPuLu7U6xYMQoXLozJZGLfvn2ULFkSuJGs+Pnnn+nWrZutjU2bNtm1+9NPP92z7/xKyQV5IJKTk1m8eDFLliyxjYfm5+fHvn37WLFiBSVKlMDf35/w8HAAypUrx7Fjx5g3b56tjeXLl9OgQQN69eoF3LhA7N+/ny1bttjKnD9/nl69ehEQEABA2bJl7ytePe2Qv+n4SG7QeSYiBY1j8l8UAxKTEslISbOtN1jSMJpT+fXwYdLdfsu7AEVEREQeceYMM+RC3sWccedv39+vb7/9ljNnzlC7dm0KFSrE1q1bsVqt+Pv733ebvXv35q233sLHx4eWLVuSmJjIzp07cXV15dSpU+zbt++2SaMBUlJSmDx5Ms2bN6dUqVJcuHCB2NhYW5KjT58+dOzYkbfeeosOHTrg6urKyZMn2bFjB2PHjqVkyZKYTCaWLVtG586dOXbsGO+99949433ppZdYsmQJ48eP5+WXXyYuLo7Zs2fTo0cPHBwccHNzo3PnzkyePJnChQtTsmRJFi5cSEpKCu3btwegU6dOfPjhh0RHR9OxY0cOHTpETEzMfb+HeU3JBXkgTpw4QWpqKj179rRbbzabqVSpEikpKVStWtVuW3BwsN1yXFwcTZo0ua3M35MLdxtPLTuCgoIwGo3Zric5y2KxEBsbq+MjOUrnmYgUVOaLZ7l8ADzcPXBw+r+xbzPMKWSkOlC5UiUcvEvkXYAiIiLyyLj5d5fc4OLgirujB0npiaTz4G/8Z8bd0QMXB9d7F8wiT09Pvv76a+bMmUNqaiplypRh2rRpVKhQ4b7b7NSpE15eXnzwwQcsXLgQNzc3GjZsyH//+1/mzJnDgAEDWLFixW1fLnZwcODy5cuEh4fz559/4u3tTbNmzRg8eDAAFStWZNmyZcycOZOXXnoJuPEl6JYtWwJQpEgRJk2axPTp01m2bBlVqlQhPDycfv363TXeYsWK8cEHHzB58mRWrlyJl5cX7du3t6s3fPhwMjIyGDlyJElJSVStWpWFCxdSuHBhAEqWLMns2bOJjo7mk08+ITg4mGHDhjF69Oj7fh/zkiGjoA30JHnip59+okOHDixbtoxixYrZbXNycmL8+PF4eXkxceJE2/pNmzYxYMAA9uzZQ6FChXjhhRdo1qwZAwYMsJVZsmQJs2fPZu/evbZ1cXFxbN26lW3btvHDDz8wY8YMmjZtmqU4LRYLBw4coHr16rqpmA/p+Ehu0HkmIgWV+c+zXPw0Cjfvx25PLqQk4d5uFEYlF0RERCQXPMp/d6WkpBAXF4e/vz8uLi629dfM10ixXs+1OFwcXPE0eeZaf1Kw3Ok8vpWeXJAHIiAgACcnJ86fP8+TTz552/Zy5cqxdetWu3W3jmVWrly527LamY13dqfx1ERERERERERERPIjT5MnnuhmvxQsSi7IA+Hh4UHPnj2Jjo4mIyODmjVrkpiYyP79+3Fzc6Njx4589NFHTJkyhfbt23P48GHbeGI3J0Dp0qULXbp0YfHixTz77LPs2rWLbdu22bbfazw1EREREREREREREckdSi7IAzN06FCKFi3K/PnzOXv2LJ6enlSuXJm+ffvi5+fHu+++yzvvvMPSpUupXr06ffv2JSoqCicnJwBq1qzJW2+9xZw5c5g5cyb16tWje/fufPzxx8C9x1MTERERERERERERkdyh5II8MAaDga5du9K1a9dMtzdu3JjGjRvblt9//32KFy+Os7OzbV2HDh3o0KGDbXnMmDG2CZudnJyYPn16DkUvIiIiIiIiIiIiIlml5ILkmo8//pigoCC8vb3Zt28fixYt4uWXX7Yrs2jRIurWrYurqyvbtm1jzZo1vPnmm3kUsYiIiIiIiIiIiIhkRskFyTWnT5/m/fff58qVK5QsWZIePXrw6quv2pU5ePAgCxcuJCkpCT8/PyIjI3nxxRfzKGIRERERERERERERyYySC5JrRo8ezejRo+9a5t13382laEREREQKpoz0NDIMhv9bNqflYTQiIiIiIlJQKbkgIiIiIlIQODphdXQGi5kMS7rdJoOTKwZHpzwKTERERERECiIlF0RERERECgAHz6L8HtyeKoEVcDAa7bYZHJ1w8CyaR5GJiIiIiEhBpOSCiIiIiEgBYXEphIN3CYy3JBdEREREJG+lX72KNSUl1/pzcHHBsVChLJfPyMjgjTfe4KuvvuLKlSusWbOGSpUqZbvf3bt307VrV/bs2UOhbPQvDyclF0RERERERERERERySPrVq5ybNw9LYmKu9Wn08MC3b98sJxi2bdtGTEwMS5cuxc/PD29v7/vqNyQkhO3bt+Pp6QnA6tWrmThxInv37r2v9iR/U3JBREQeOckk8UfqHxiNDpluNxmc8HLyyt2gREREREREpECypqRgSUzEYDLhYDLlfH9mM5bExBtPSmQxuXDmzBl8fHyoUaNGptvT0tJwcrr3HF5OTk74+PhkK155eCm5ICIij5Qr5st8yya2/7rljmVcjK708O+jBIOIiIiIiIg8MA4mEw7OzrnSl8VsznLZiIgIYmJiAAgMDMTX1xdfX18qVKiAyWRizZo1VKhQgUmTJtG4cWO7IZOuXr1K7dq1Wbp0KU899ZTdsEiHDx9m1KhRtnYBBg4cyKBBg/j4449ZsmQJCQkJeHp6UqtWLWbNmvWA3wXJaUouiIjIIyXNasaMGVeDCyaH2791Yc4wk2K5jjkjLQ+iExEREREREcldkZGR+Pn5sXLlSlatWoXRaGTIkCHExMTQuXNnPv30UzIyMrLdbkhICKNHj2bWrFls3LgRADc3N2JjY5kwYQKTJ08mJCSEK1euaNikh5SSCyIi8kgyOZhwNmbyjRELpJP1b3iIiIiIiIiIPMw8PT1xd3fHaDTaDWlUpkwZRo4caVs+e/Zsttp1cnLC09MTg8Fg125CQgKurq4888wzeHh44OvrS+XKlf/5jkiuU3JBREREREREREREROxUrVo1R9oNDQ2lZMmSNGnShPr161O/fn2aNm2Kq6trjvQnOSfzmSwlWzIyMhg7dixPPvkkgYGBHD58mLCwMCZMmJCl+tkp+7DYt28frVu3pkqVKvTv3z/H+tm9ezeBgYFcvXo1x/oQERERERERERF51Nx6s9/B4cat5L8PkZSenp7tdj08PIiJiWH69On4+Pgwa9YsXnjhBd3fewjpyYUHYNu2bcTExLB06VL8/Pzw9vZm9uzZODrm7Nt7+vRpxo0bx/79+3F0dCQ4OJjJkydTpEiRHO03KyZNmkTFihVZsGABbm5ueR2OiIiIiIiIiIiI/AM37zn+8ccftnWHDx++ax2TyYTFYrltvaOjI6GhoYSGhjJw4EBq167Nrl27aNas2YMNWnKUkgsPwJkzZ/Dx8aFGjRq2dV5eXjne79ixY0lMTGT58uW4uLhw4MCB+5pcJSfEx8fTqVMnihcvntehiIiIiIiIiIiI5DmrOXfm98upflxcXKhevToffPABvr6+XLp0iZkzZ961jq+vL8nJyezcuZPAwEBcXV3ZtWsXZ86coXbt2hQqVIitW7ditVrx9/fPkbgl52hYpH8oIiKC8ePHc/78eQIDA2nUqBFw+1BHH3/8Mc2aNSMoKIjQ0FAGDx5s105GRgaTJ0/mySefpG7dusyePfuefTs4OFCvXj0qV65MuXLlaNeuHUWLFr1nvSNHjhAWFkZISAg1atSgXbt2xMbG2rb/+OOPvPzyywQHB9OwYUPefvttkpOTbdvXrl1Lu3btCAkJoW7durz++utcvHgRuDGxS2BgIJcvX2b06NEEBgayevVqAH744Qfat29P1apVqVevHlOnTrV7dCotLY23336bOnXqEBQUROfOnTl48KBd7Fu3bqV58+YEBwcTFhbGuXPn7rm/IiIiIiIiIiIiecXBxQWjhwcZZjOW5OQcf2WYzRg9PHBwcXng+zJx4kTS09P597//zYQJExg6dOhdy9eoUYNOnToxdOhQ6tSpw8KFC/H09OTrr7+mW7dutGzZks8++4xp06ZRoUKFBx6v5CxDRn75qvtD6tq1ayxdupSVK1eyatUqjEYjRYoUISwsjIoVKxIZGUlsbCwdO3Zk8uTJhISEcOXKFfbu3UvXrl2BG4mIX375hR49etCqVSsOHDhAREQEixYtom7dunfse9myZbz77rssWbKEKlWqZDnmVq1aUalSJfr27YvRaOTw4cP4+/tTsWJFjh49SqdOnRgyZAjPPPMMf/31F+PHj6dixYpER0cDsGrVKnx8fChXrhwXL14kOjqaQoUKsWDBAiwWC3/99RctWrRg8ODBtGzZEk9PT65cuULz5s1p27YtXbp0IS4ujjFjxvDyyy8zaNAgAN5++22++uor3n77bXx9fVm4cCHffPMN//vf//Dy8iIhIYFmzZrRqVMnOnfuzM8//8w777zDn3/+yZ49eyhUqNA9991isXDgwAGCgoIwGo1Zfs8kd1gsFmJjY3V8JEf9lnyB94/NoYi7N87G2z9opVlTuW65To+yr+Dj7JMHEYqI3B/9HhUREZH84ubnkurVqz9yn0tSUlKIi4vD398fl7/d3E+/ehVrSkquxeHg4oJjFu6ViWTmTufxrTQs0j/k6emJu7s7RqMRH5/Mb0IlJCTg6urKM888g4eHB76+vlSuXNmuTGBgIAMHDgSgbNmyLF++nJ07d94xubBz506mTZvGoEGDePXVV5kxYwa1a9cGYOPGjYwaNYr9+/dnWvf8+fP06tWLgIAAW383LVq0iNatW9O9e3fbtsjISMLCwoiKisLZ2Zn27dvbyvv5+REZGcmLL75IUlIS7u7u+Pj4YDAY8PT0tL0n77//PsWLF+eNN97AYDAQEBDAb7/9xtSpUxkwYAApKSl89tlnREdH07BhQwDGjx/P999/z6pVq+jduzeffvopfn5+jB49GoPBQLly5Th27BgLFiy42yHK1N+f1JD8R8dHctJVrgCQlJREKmm3bU/HTCppHD78C+conNvhiYj8Y/o9KiIiIpL/OBYqBLrZLwWMkgu5IDQ0lJIlS9KkSRPq169P/fr1adq0qd2M64GBgXZ1fHx8bEMNZWbatGm89NJL9OrViwoVKtC3b18mT55M48aNOX78ODVr1rxj3R49ejBmzBjWrl1LaGgoLVq0oHTp0gAcOnSI06dPs379elv5jIwMrFYrZ8+eJSAggF9++YXZs2dz5MgRLl++bJvnISEhgfLly2fa58mTJwkJCcFgMNjW1axZk+TkZC5cuMDVq1cxm81281aYTCaCg4M5efKkrY1q1arZtVG9evU77ufd6Bt9+ZO+cSm54bfkC3xz7Gvc3d3v+OSC0XKdSmUr68kFEXmo6PeoiIiI5Bc3P5eISMGm5EIu8PDwICYmhh9++IHt27cza9Ys5syZw6pVq2xD+Tg62h8Kg8Fw18mZjx49anu6oEGDBkycOJGhQ4fyxhtvsHr1akaMGHHHuoMGDaJVq1Zs3bqVbdu2MWvWLGbMmEHTpk2xWq106tSJsLCw2+qVKFGC5ORkevbsSd26dZkyZQre3t4kJCTQq1cvzHeZLCazfbm57u/Jgr//fLPMzXUPcgQvo9GoP7rzMR0fyUkO///cMhgMt11zbrixzmh00HkoIg8l/R4VEREREZHcoAmdc4mjoyOhoaGMHDmSdevWce7cOXbt2nXf7RUrVow9e/bYlps3b864ceMYO3YshQoV4l//+tdd6/v7+9O9e3c+/PBDmjVrxhdffAFA5cqVOX78OGXKlLnt5eTkxKlTp7h06RLDhw+nVq1aBAQE3PUJi5vKly/P/v377RIEP/74I+7u7hQrVozSpUtjMpnYt2+fbbvZbObnn3+2Dd9Uvnx5fvrpJ7t2b10WERERERERERERkZyn5EIu+Pbbb1m6dCmHDx/m3LlzrFmzBqvVir+//3232bt3b1auXMmcOXM4deoUBw8eZOfOnbi6unLq1Cm7m/R/l5KSwrhx49i9ezfnzp1j3759xMbG2m7g9+nThwMHDvDWW29x+PBhfv31VzZv3sz48eMBKFmyJCaTiWXLlnHmzBk2b97Me++9d894X3rpJS5cuMD48eM5efIkmzZtYvbs2fTo0QMHBwfc3Nzo3LkzkydPZtu2bZw4cYKxY8eSkpJim+OhU6dOxMfHEx0dzalTp1i/fj0xMTH3/R6KiIiIiIiIiIiIyP3RsEi5wNPTk6+//po5c+aQmppKmTJlmDZtGhUqVLjvNjt16oSXlxcffPABCxcuxM3NjYYNG/Lf//6XOXPmMGDAAFasWGE3WTOAg4MDly9fJjw8nD///BNvb2+aNWvG4MGDAahYsSLLli1j5syZvPTSS8CNSZtbtmwJQJEiRZg0aRLTp09n2bJlVKlShfDwcPr163fXeIsVK8YHH3zA5MmTWblyJV5eXrRv396u3vDhw8nIyGDkyJEkJSVRtWpVFi5cSOHCNyZULVmyJLNnzyY6OppPPvmE4OBghg0bxujRo+/7fRQRERERERERERGR7DNkPMiB7EXyOYvFwoEDB6hevbrGIs6HdHwkN1xIvsDcw+9S1KNIphM6p1pSuW5JpndAX3ycH8+DCEVE7o9+j4qIiEh+8Sh/LklJSSEuLg5/f39cXG7/m1PkYZDV81jDIomIiIiIiIiIiIiISLYouSAiIiIiIiIiIiIiItmiORdEROSRZLaaAcPt6zPMuR+MiIiIiIiIFGjXr6WSlpKea/05uTji6umca/3dzezZs9m0aRNr167N61DkAVNyQUREHilODiZMmEjPSCfdkvkHOxejKyaDUy5HJiIiIiIiIgXR9WupfL1kPylJufdlNhd3E027heSLBEPPnj3p0qVLXochOUDJBREReaQUNnnxLE2oUPYJjMbMRwc0GZzwcvLK3cBERERERESkQEpLSSclyYzR0QGjKedHqbeYraQkmUlLSc/R5EJaWhpOTvf+Yp67uzvu7u45FofkHSUXRETkkeOGOz7OPhiNxrwORURERERERB4RRpMDJufcuB2bjiXdmu1aiYmJvPnmm2zevBkPDw969+7N5s2bqVixIpGRkTRq1Ij27dsTHx/P119/TZMmTXjnnXeYMmUKmzZt4sKFCzz22GO0bt2aAQMGYDKZgNuHRYqIiODq1avUrFmTxYsXYzabadmyJaNHj7bV+fjjj1myZAkJCQl4enpSq1YtZs2a9eDeInkglFwQERERERERERERecRNmjSJ/fv38/7771O0aFFmzZrFoUOHqFixoq3MokWL6N+/P/369bOtc3d3Jzo6mscff5xjx44xduxY3N3d6dOnzx372r17Nz4+PixZsoT4+HiGDRtGpUqV6NChA7GxsUyYMIHJkycTEhLClStX2Lt3b47uu9wfJRdEJF8xJCaS9vvvOLq4YPL2zutwREREREREREQKvMTERNasWcPUqVOpU6cOANHR0dSvX9+u3NNPP02vXr3s1vXv39/2c6lSpTh16hQbNmy4a3KhcOHCvPHGGxiNRgICAmjYsCE7d+6kQ4cOJCQk4OrqyjPPPIOHhwe+vr5Urlz5Ae6tPChKLohIvpF+6RJOX31FwubNOLi64tu3rxIMIiIiIiIiIiI57OzZs5jNZoKDg23rPD098ff3tytXtWrV2+pu3LjR9gRCcnIy6enpeHh43LW/8uXL2w1V7OPjw7FjxwAIDQ2lZMmSNGnShPr161O/fn2aNm2Kq6vrP9lFyQE5P4OIiEgWWc1mSEu78fP162SYzXkckYiIiIiIiIhIwZeRkQGAwWDIdP1Nt97gP3DgAK+99hoNGjRg3rx5xMTE0LdvX8z3uKfj6Gj/nXeDwWDry8PDg5iYGKZPn46Pjw+zZs3ihRde4OrVq/e1b5JzlFwQkfzHUQ9ViYiIiIiIiIjkFj8/P0wmEwcPHrStS0xM5PTp03et9+OPP1KyZEn69etHUFAQZcuW5fz58/84HkdHR0JDQxk5ciTr1q3j3Llz7Nq16x+3Kw+W7uCJiIiIiIiIiIiI5DCL2Qqk51I/2ePh4UGbNm2YPHkyhQsXpmjRosyePRuDwXDb0wx/V7p0aRISEvjyyy8JCgpiy5YtbNq06Z+Ez7fffsuZM2eoXbs2hQoVYuvWrVit1tuGaJK8pycX5B/JyMhg7NixPPnkkwQGBnL48OH7amf37t0EBgbq8SYRERERERERESlQnFwccXE3YUm3knY9PcdflnQrLu4mnFyy973yiIgIqlevTt++fenRowc1atQgICAAZ2fnO9Zp0qQJ3bp1Y9y4cbzwwgvs37+ffv36/aP3y9PTk6+//ppu3brRsmVLPvvsM6ZNm0aFChX+Ubvy4Bkybh04SyQbtm7dyoABA1i6dCl+fn54e3vfNmZaVqSlpXHlyhUee+wxDAYDq1evZuLEiezdu/eBxmuxWDhw4ADVq1e3mzRG8ofrCQmcnDYNt0KFID2dUgMH4vT443kdlhQwug6ISEGl65uIiIjkF4/y55KUlBTi4uLw9/fHxcXFtv76tVTSUnL+qYWbnFwccfW8c1IgK5KTk2nQoAHh4eG8+OKLDygyeRjc6Ty+lYZFkn/kzJkz+Pj4UKNGjUy3p6Wl4eTkdM92nJyc8PHxedDhiYiIiIiIiIiI5DlXT+d/fLM/p/3yyy+cOnWK4OBgrl27xty5cwFo3LhxHkcm+ZWSC3LfIiIiiImJASAwMBBfX198fX2pUKECJpOJNWvWUKFCBSZNmkTjxo1Zs2YNlSpVAuDq1avUrl2bpUuX8tRTT7F79266du3Knj17OHz4MKNGjbK1CzBw4EAGDRrExx9/zJIlS0hISMDT05NatWoxa9asvHkDRERERERERERECpAPP/yQuLg4TCYTVapU4eOPP6ZIkSJ5HZbkU0ouyH2LjIzEz8+PlStXsmrVKoxGI0OGDCEmJobOnTvz6aefcj+jboWEhDB69GhmzZrFxo0bAXBzcyM2NpYJEyYwefJkQkJCuHLlyn0Pm2SxWO6rnuQs683j8v/PG4vFomMlD9zNc0rnlogUNLq+iYiISH6hzyMPp8qVK7N69eq8DkMeIkouyH3z9PTE3d0do9FoN6RRmTJlGDlypG357Nmz2WrXyckJT09PDAaDXbsJCQm4urryzDPP4OHhga+vL5UrV76v2GNjY++rnuQsw5UrOHFjTD8sFg4fPkzG+fN5HZYUULoOiEhBpeubiIiIiIjkBiUX5IGrWrVqjrQbGhpKyZIladKkCfXr16d+/fo0bdoUV1fXbLcVFBT0yE0o9DBISUggbsMG3NzcwGIhoFIlTegsD5zFYiE2NlbXAREpcHR9ExERkfzi5ucSESnYlFyQB+7Wm/0ODg4AdkMkpaenZ7tdDw8PYmJi+OGHH9i+fTuzZs1izpw5rFq1ikKFCmWrLaPRqD+68yGHm8fEYAB0nCRn6fwSkYJK1zcREREREckNDnkdgBR8Nyd9+eOPP2zrDh8+fNc6JpMp0/H5HB0dCQ0NZeTIkaxbt45z586xa9euBxuwiIiIiIiIiIiIiNyVnlyQHOfi4kL16tX54IMP8PX15dKlS8ycOfOudXx9fUlOTmbnzp0EBgbi6urKrl27OHPmDLVr16ZQoUJs3boVq9WKv79/7uyIiIiIiIiIiIiIiAB6ckFyycSJE0lPT+ff//43EyZMYOjQoXctX6NGDTp16sTQoUOpU6cOCxcuxNPTk6+//ppu3brRsmVLPvvsM6ZNm0aFChVyZydEREREREREREREBABDxt8Hwhcp4CwWCwcOHKB69eoaizgfup6QwMlp03ArVAjS0yk1cKAmdJYHTtcBESmodH0TERGR/OJR/lySkpJCXFwc/v7+uLi42NYnX71EWkpyrsXh5OKGWyHvLJcPCwujYsWKREZG5mBU/6dRo0Z07dqV7t2731f9wMBA5s6dS5MmTR5sYALc+Ty+lYZFEhEREREREREREckhyVcv8eUH40hJvJJrfbp4FOa5V97IVoJBJLuUXBARERERERERERHJIWkpyaQkXsFocsLR5Jzj/aWbU0lJvEJaSnKeJhcsFgsGgwEHB43MX1DpyIpI/pOentcRiIiIiIiIiIg8UI4mZ0zOLjn+ut8ERkZGBpMnT+bJJ5+kbt26zJ4922774sWLad26NdWrV6dhw4ZERUWRlJRk27569Wpq1arFt99+S8uWLQkKCuLcuXNcvHiRvn37EhwcTKNGjVi3bl2W4lm1ahXPPfccVatWpV69eowbN85u+6VLlxgwYADVqlWjWbNmbN682W77iRMn6NOnDyEhIYSGhjJixAj++usvu/1dsGABjRs3Jjg4mOeff56NGzfatl+5coXXX3+dp59+muDgYJo1a8YXX3xh2/7bb78xdOhQateuzVNPPUW/fv04e/ZslvatoFByQUTyDQeTCZycbvzs6orBZMrjiEREREREREREHg0xMTG4ubmxcuVKRowYwdy5c/n+++9t2w0GA5GRkaxfv55Jkyaxa9cupkyZYtdGSkoK8+fP5+233+Y///kPRYsWJSIignPnzrFkyRJmzZrFJ598wsWLF+8ayyeffMK4cePo0KED69ev57333qN06dJ2ZebMmcO//vUv1q1bR4MGDRg+fDiXL18G4Pfff6dLly5UqlSJVatWsXDhQi5evMjQoUNt9WfOnMnq1auJioriyy+/pHv37owYMYIffvgBgHfffZeTJ0+yYMECNmzYQFRUFN7eN54EuX79Ol27dsXNzY3ly5fzySef4ObmRu/evUlLS7vfQ/DQ0bBIIpJvOHp7k9a8OQFPPIGjiwsmb40LKCIiIiIiIiKSGwIDAxk4cCAAZcuWZfny5ezcuZO6desC2E2+7Ofnx5AhQ4iKiiIqKsq23mw2ExUVRcWKFQGIi4tj27ZtrFy5kmrVqgEwYcIEWrZseddY3n//fXr06EG3bt1s64KDg+3KtG3bllatWgHw2muvsXz5cg4ePEiDBg349NNPqVKlCq+99pqt/MSJE2nYsCFxcXEUK1aMxYsXs2TJEkJCQmz7tG/fPlasWMGTTz7J+fPnqVSpEkFBQQCUKlXK1taXX36JwWBgwoQJGAwGAKKjo6lduzY//PAD9erVu8e7XTAouSAi+UqGhwdOjz+O0WjM61BERERERERERB4ZgYGBdss+Pj52Txjs2rWL+fPnc+LECRITE7FYLKSmppKcnIybmxsAJpPJrp2TJ0/i6OhI1apVbesCAgIoVKjQHeO4ePEiv//+O3Xq1MlyvG5ubri7u9uGPTp06BC7d++2JQ7+Lj4+nmvXrpGamkrPnj3ttpnNZipVqgRA586dGTx4ML/88gt169alSZMm1KhRw9Z+fHy8bfmm1NRU4uPj7xp3QaLkgojkK2nJFq78mYzRwQFHJyPuhV3yOiQRERERERERkQLP0dH+VrHBYCAjIwOAc+fO8corr9CpUyeGDBlC4cKF2bdvH5GRkaT/be5MFxcX2zf5b20rq5ydszZnhOmW4bQNBgNWqxUAq9XKs88+y/Dhw2+r5+Pjw/HjxwGYP38+xYoVs9vu9P+H7G7YsCHffvstW7ZsYceOHXTv3p2XX36Z8PBwrFYrVapUYerUqbe1X6RIkSzFXxAouSAi+UbSlRRObL1M/Pf7MRgMOLk40rR7iBIMIiIiIiIiIiJ56Oeff8ZisRAREYGDw41pfP/73//es165cuVIT0/n559/tg1rdOrUKa5evXrHOh4eHvj6+rJz506efvrp+4q3SpUqfPXVV/j6+t6WNIEbT084OTlx/vx5nnzyyTu2U6RIEdq1a0e7du347LPPmDx5MuHh4VSpUoX//ve/FC1aFA8Pj/uKsSDQhM4ikm+km61YzBkYTQ4YHR1IS0knPc2S12GJiIiIiIiIiPxj6eZUzKkpOf5KN6c+8NhLly5Neno6y5Yt48yZM6xZs4bPPvvsnvXKlStH/fr1GTNmDD/99BM///wzY8aMwcXl7l8kHTRoEIsXL2bp0qX8+uuvHDp0iGXLlmU53pdeeokrV67w2muvcfDgQc6cOcP27dsZNWoUFosFDw8PevbsSXR0NDExMcTHx/PLL7/w8ccfExMTA9yY0HnTpk2cPn2a48ePs2XLFgICAgBo3bo13t7e9OvXj71793LmzBl++OEH3n77bS5cuJDlOB92enJBRPIdo8mIAbCkW/M6FBERERERERGRf8TJxQ0Xj8KkJF7BYk7LlT5dPArj5OL2wNqrVKkSo0aNYsGCBUyfPp1atWrx2muvER4efs+60dHRjBkzhi5duvDYY48xZMgQZs2addc6bdu2JTU1lY8++ojJkyfj5eVFixYtshxvsWLF+PTTT5k6dSq9evUiLS2NkiVLUr9+fduTF0OHDqVo0aLMnz+fs2fP4unpSeXKlenbty9wY9il6dOnc+7cOVxcXKhZsybTp08HwNXVleXLlzN16lQGDhxIUlISxYoVo06dOo/UkwyGjJsDZ4k8AiwWCwcOHKB69eqaMDgf+uu3a6x7bweFixbCAKRdT6d5zxoU9nHP69CkANF1QEQKKl3fREREJL94lD+XpKSkEBcXh7+/v92385OvXiItJTnX4nByccOtkHeu9ScFy53O41vpyQURERERERERERGRHORWyFs3+6XA0ZwLkqdmz57NCy+8kNdhiIiIiIiIiIiIiEg26MkFyVM9e/akS5cueR2GiIiIiIiIiIiIiGSDnlyQHJGWlrXJadzd3fH21iNhIiIiIiIiIiIiIg8TPbkgWZKYmMibb77J5s2b8fDwoHfv3mzevJmKFSsSGRlJo0aNaN++PfHx8Xz99dc0adKEd955hylTprBp0yYuXLjAY489RuvWrRkwYAAmkwm4MSzSpk2bWLt2LQARERFcvXqVmjVrsnjxYsxmMy1btmT06NG2Oh9//DFLliwhISEBT09PatWqdc8Z5kVERERERERERETkwVFyQbJk0qRJ7N+/n/fff5+iRYsya9YsDh06RMWKFW1lFi1aRP/+/enXr59tnbu7O9HR0Tz++OMcO3aMsWPH4u7uTp8+fe7Y1+7du/Hx8WHJkiXEx8czbNgwKlWqRIcOHYiNjWXChAlMnjyZkJAQrly5wt69e7O9PxaLJdt1JOdZbx6XjAwyDAYyMjKwWK06XvJA3TyfdF6JSEGj65uIiIjkF/o8IvJoUHJB7ikxMZE1a9YwdepU6tSpA0B0dDT169e3K/f000/Tq1cvu3X9+/e3/VyqVClOnTrFhg0b7ppcKFy4MG+88QZGo5GAgAAaNmzIzp076dChAwkJCbi6uvLMM8/g4eGBr68vlStXzvY+xcbGZruO5LyUq+kAJCYmAWBJs3L4l19wKaRLlTx4ug6ISEGl65uIiIiIiOQG3bGTezp79ixms5ng4GDbOk9PT/z9/e3KVa1a9ba6GzdutD2BkJycTHp6Oh4eHnftr3z58hiNRtuyj48Px44dAyA0NJSSJUvSpEkT6tevT/369WnatCmurq7Z2qegoCC7PiR/uPTbNY5v2Y2HhzsYDKQlm6lUuTKFH3PL69CkALFYLMTGxuo6ICIFjq5vIiIikl/c/FwiIgWbkgtyTxkZGQAYDIZM19906w3+AwcO8NprrzFo0CDq1auHp6cnX375JYsXL75rf46O9qel4f8PjwPg4eFBTEwMP/zwA9u3b2fWrFnMmTOHVatWUahQoSzvk9Fo1B/d+ZDDzWNiMGDgxrE3OjjoWEmO0HVARAoqXd9ERERERCQ3OOR1AJL/+fn5YTKZOHjwoG1dYmIip0+fvmu9H3/8kZIlS9KvXz+CgoIoW7Ys58+f/8fxODo6EhoaysiRI1m3bh3nzp1j165d/7hdERERERERERGRnGBJSsP81/Vce1mS0rIVX1hYGBMmTPhH+3j27FkCAwM5fPjwP2ont/qOiIiwG9L9QbwH9xIYGMimTZtytI/cpCcX5J48PDxo06YNkydPpnDhwhQtWpTZs2djMBhue5rh70qXLk1CQgJffvklQUFBbNmy5R//5/n22285c+YMtWvXplChQmzduhWr1XrbEE0iIiIiIiIiIiL5gSUpjd9WHcaSbM61Po1uJoq1r4TR3SlL5WfPnn3baCJ5bfXq1UycOJG9e/fes2yJEiXYvn073t7e991ffnwP8ju9W5IlERERvPnmm/Tt2xcPDw969+5NQkICzs7Od6zTpEkTunXrxrhx40hLS+OZZ56hX79+zJkz577j8PT05Ouvv2bOnDmkpqZSpkwZpk2bRoUKFe67TRERERERERERkZxiTbVgSTZjcHTA4JjzA8lkpFuxJJuxplowumetjpeXV47GlJPS0tJwcnLCx8fnH7XzML8HeUXDIkmWeHh4MG3aNA4cOMD27dvp0KEDcXFxlC5dGoBvvvmG7t2731Zv5MiR7N69m/379zNjxgy6d+9ul20cNGgQa9eutS1PmjSJ9957z66NyMhIli1bBkCtWrVYtmwZP/zwAz/99BPr1q2jZcuWObDHIiIiIiIiIiIiD47B0QEHJ2OOv+4ngXHrkECNGjVi3rx5jBo1ipCQEJ555hlWrFhhV+fgwYO0adOGoKAg2rVrd9uQRKtXr6ZWrVp26zZt2kRgYKBt+ciRI4SFhRESEkKNGjVo164dsbGx7N69m1GjRnHt2jUCAwMJDAxk9uzZttjee+89IiIiqFmzJmPHjr1tWCSLxcLo0aNp1KgRwcHBNG/enCVLlmT5Pdi9e7et37+/IiIibOW/+eYb2rVrR1BQEI0bN2bOnDmkp6fbtv/666+8/PLLBAUF0bJlS77//vu79v/ZZ59Rv359rFar3fq+ffsSHh6e5X5PnjxJ586dbf3u2LEjx4Zj0pMLkiW//PILp06dIjg4mGvXrjF37lwAGjdunMeRiYiIiIiIiIiIyIO2ePFiBg8eTN++ffnqq6+IioqiVq1aBAQEkJyczKuvvsrTTz/NlClTOHv27H3NVzB8+HAqVapEVFQURqORw4cPYzKZCAkJYfTo0cyaNYuNGzcC4ObmZqu3aNEi+vfvT79+/TJt12q1Urx4cWbOnIm3tzf79+/njTfewMfHJ0tfVA4JCWH79u225ZMnT/LKK6/YkiXfffcdI0aMYMyYMdSqVYv4+HjGjh0LwMCBA7FarQwaNAgvLy9WrlxJYmIiEydOvGufLVq04O2332b37t3UqVMHgCtXrrB9+3bmzZuX5X4HDBhAyZIl+fzzz0lMTOSdd9655/7eLyUXJMs+/PBD4uLiMJlMVKlShY8//pgiRYrkdVgiIiIiIiIiIiLygDVo0ICXX34ZgD59+vDRRx/xww8/EBAQwPr167FarUycOBFXV1cqVKjAhQsXiIqKylYf58+fp1evXgQEBABQtmxZ2zZPT08MBkOmwx09/fTT9OrVy7Z89uxZu+0mk4nBgwfblv38/Ni/fz8bN27MUnLh78MsXbp0ibFjx/Lvf/+b9u3bAzBv3jxeeeUV2rZta2t/yJAhTJkyhYEDB7Jjxw5OnjzJN998Q/HixQEYNmwYffr0uWOfXl5e1K9fn/Xr19uSCxs3bsTLy8u2fK9+t2/fzpkzZ1i2bJkt/mHDhtGjR4977vP9UHJBsqRy5cqsXr06r8OQR4TFbMHAnScLFxERERERERGRnPX34YsMBgOPPfYYFy9eBG58kz8wMBBXV1dbmZCQkGz30aNHD8aMGcPatWsJDQ2lRYsWtmHY76Zq1ar3LPPpp5/y+eefc/78eVJTUzGbzVSsWDFb8ZnNZgYPHkyJEiWIjIy0rT906BCxsbG2JwrgxlBMqampXL9+nZMnT1KiRAlbYgGy9v60bt2aN954g6ioKJycnFi/fj0tW7bEaDRmqd+4uDiKFy9ul5AJDg7O1j5nh5ILIpJvOJocMJoMWMxWDAYDTi6OODoZ8zosEREREREREZFHjqOj/a1jg8FARkYGgO3fu3FwcLitnNlstlseNGgQrVq1YuvWrWzbto1Zs2YxY8YMmjZtete2/57UyMyGDRuIjo4mPDyckJAQ3N3dWbRoET/99NM94/67qKgozp8/z6pVq+zej5vDHjVr1uy2Os7Ozpm+PwbDvb9I26hRI8aMGcOWLVsICgpi7969dvM8ZKXfrPTzoCi5ICL5hnthF8o39CLwiUoYHRxwdDLiXtglr8MSEREREREREZG/KV++POvWrSMlJQUXlxv3bg4cOGBXxtvbm6SkJJKTk23zJRw5cuS2tvz9/fH396d79+689tprfPHFFzRt2hSTyYTFYrmv+Pbt20dISIhtWCeA+Pj4bLWxePFiNmzYwIoVK/D29rbbVrlyZeLi4ihTpkymdcuXL09CQgK//fYbxYoVA2D//v337NPFxYVmzZqxfv16Tp8+TdmyZe2e0rhXv+XKlSMhIYE///yTxx57DIDY2Ngs7e/9yP7U4SIiOcjJzUjhx9wo7OOuxIKIiIiIiIiIFBgZ6VasaZYcf2WkW3N8X1q1aoXBYCAyMpITJ06wdetWPvzwQ7sy1apVw9XVlenTp3P69GnWr19vN+x6SkoK48aNY/fu3Zw7d459+/YRGxtrm3/B19eX5ORkdu7cyV9//cX169ezHF/p0qX5+eef+e6774iLi2PmzJnZusm+Y8cOpkyZQnh4ON7e3vzxxx/88ccfXLt2DYABAwawdu1aZs+ezfHjxzl58iQbNmxgxowZAISGhuLv7094eDhHjhxh7969tm330rp1a7Zs2cIXX3zB888/b7ftXv3WrVsXPz8/W7/79u3LtN9u3bqxfPnyLL8fd6LkgoiIiIhIAZGadIXLv5/L9JV46c+8Dk9ERETkkeTgbMToZrqRXEhJz/FXRroVo5sJB+ecG2ra3d2defPmceLECdq0acOMGTMYPny4XRkvLy+mTJnCtm3baN26NV9++SWDBg36v/fFwYHLly8THh5O8+bNGTp0KA0aNLBNxFyjRg06derE0KFDqVOnDgsXLsxyfJ07d6ZZs2YMGzaMDh06cPnyZV566aUs19+3bx8Wi4U333yTevXq2V4TJkwAoH79+sybN4/vv/+e9u3b06FDBxYvXoyvr69t3+bMmUNaWhrt27cnMjKSYcOGZanvp59+msKFCxMXF0fr1q3ttt2rX6PRyNy5c0lOTqZ9+/aMGTOGfv36ATeGTbrpzJkzXLp0Kcvvx50YMrIyQJZIAWGxWDhw4ADVq1e3TYQi+YeOj+QGnWciUlBdufgbn88Ix8noQGbDrDq5uPHcq1F4eD+W+8GJiIjII+VR/rsrJSWFuLg4/P39bcMFAViS0rCm3t8QP/fDwdmI0d0p1/qT/Gvfvn289NJLfP3111maLBvufB7fSnMuiIiIiIgUAOlpqVjSUjAWKozJyf4PgHRzKmkpyaSbU/MoOhEREZFHm9HdCaN7Xkchj4Kvv/4aNzc3ypQpQ3x8PBMmTKBGjRpZTixkh5ILIiIiIiIFiKPJGZPz7d8uspjT8iAaERERERHJTUlJSUyZMoWEhAS8vb0JDQ0lPDw8R/pSckFEREREREREREREpABo06YNbdq0yZW+NKGziIiIiIiIiIiIiIhki5ILeSgsLMw2w3huaNSoER999NF91w8MDGTTpk0PLiAREREREREREREReSgpuSAiIiIiIiIiIiIiItmi5EIBY7FYsFqteR2GiIiIiIiIiIiIiBRgSi7ksYyMDCZPnsyTTz5J3bp1mT17tt32xYsX07p1a6pXr07Dhg2JiooiKSnJtn316tXUqlWLb7/9lpYtWxIUFMS5c+e4ePEiffv2JTg4mEaNGrFu3bosxbNq1Sqee+45qlatSr169Rg3bpzd9kuXLjFgwACqVatGs2bN2Lx5s932EydO0KdPH0JCQggNDWXEiBH89ddfdvu7YMECGjduTHBwMM8//zwbN260bb9y5Qqvv/46Tz/9NMHBwTRr1owvvvjCtv23335j6NCh1K5dm6eeeop+/fpx9uzZLO2biIiIiIiIiIiIiDwYjnkdwKMuJiaGHj16sHLlSg4cOEBERAQ1atSgbt26ABgMBiIjI/H19eXs2bO89dZbTJkyhaioKFsbKSkpzJ8/n7fffhsvLy+KFi3KkCFDuHDhAkuWLMFkMvH2229z8eLFu8byySefMGnSJF5//XUaNGjAtWvX+PHHH+3KzJkzhxEjRjBy5EiWLVvG8OHD+fbbb/Hy8uL333+nS5cudOjQgYiICFJTU5k6dSpDhw5l6dKlAMycOZP//e9/REVFUbZsWfbs2cOIESMoUqQITz75JO+++y4nT55kwYIFeHt7Ex8fT0pKCgDXr1+na9eu1KxZk+XLl+Po6Mh7771H7969WbduHU5OTll+3y0WS5bLSu65eVx0fCQn6TwTkYLq5tOrGRkZZGRk2G27se7GtU/XPxEREclp+rxxu8TERFJTU3OtP2dnZzw8PHKtP3k0KbmQxwIDAxk4cCAAZcuWZfny5ezcudOWXOjevbutrJ+fH0OGDCEqKsouuWA2m4mKiqJixYoAxMXFsW3bNlauXEm1atUAmDBhAi1btrxrLO+//z49evSgW7dutnXBwcF2Zdq2bUurVq0AeO2111i+fDkHDx6kQYMGfPrpp1SpUoXXXnvNVn7ixIk0bNiQuLg4ihUrxuLFi1myZAkhISG2fdq3bx8rVqzgySef5Pz581SqVImgoCAASpUqZWvryy+/xGAwMGHCBAwGAwDR0dHUrl2bH374gXr16t3j3f4/sbGxWS4ruU/HR3KDzjMRKWiuX/kTgKSkJFLSzHbbLOY00lOTOXz4MK7n/8iL8EREREQeWYmJiaxYsYLk5ORc69PNzY2OHTvmaIJh9+7ddO3alT179lCoUCFWr17NxIkT2bt3LwCzZ89m06ZNrF27Nsdi+CfOnj1L48aNWbNmDZUqVcrrcB5KSi7kscDAQLtlHx8fuycMdu3axfz58zlx4gSJiYlYLBZSU1NJTk7Gzc0NAJPJZNfOyZMncXR0pGrVqrZ1AQEBFCpU6I5xXLx4kd9//506depkOV43Nzfc3d1twx4dOnSI3bt32xIHfxcfH8+1a9dITU2lZ8+edtvMZrPtP3Dnzp0ZPHgwv/zyC3Xr1qVJkybUqFHD1n58fLxt+abU1FTi4+PvGvetgoKCMBqN2aojOc9isRAbG6vjIzlK55mIFFR/XTjDoY3g7u6Ok4ur3TZzagqpDlCpUiW8HvfNowhFRETkUXHz7y654ea9PEdHR0wmU473ZzabSU5OJjU1NUeTCyEhIWzfvh1PT88c6+Nh06hRI7p27Wr3hfGCTMmFPOboaH8IDAaD7TH2c+fO8corr9CpUyeGDBlC4cKF2bdvH5GRkaSnp9vquLi42L7Jf2tbWeXs7JylcrdeAA0Gg+0RfKvVyrPPPsvw4cNvq+fj48Px48cBmD9/PsWKFbPbfnNIo4YNG/Ltt9+yZcsWduzYQffu3Xn55ZcJDw/HarVSpUoVpk6delv7RYoUyVL8NxmNRt1UzMd0fCQ36DwTkYLGweHGdGoGg+G2z4E31unaJyIiIpKXTCZTtob1/if+fu8wpzg5OeHj45Pj/dyL2WzOlaSN3E4TOudjP//8MxaLhYiICKpXr46/vz+///77PeuVK1eO9PR0fv75Z9u6U6dOcfXq1TvW8fDwwNfXl507d953vFWqVOH48eP4+vpSpkwZu5ebmxsBAQE4OTlx/vz527aXKFHC1k6RIkVo164dU6dOZfTo0axYscLW/unTpylatOht9ZUhFRERERERERERuT9hYWGMHz+eCRMmULt2bUJDQ21DOY0aNYqQkBCaNGnC1q1bbXV2795NYGDgXe85/t2ZM2do2rQpb775pu3LyrcKDAzkk08+oXfv3gQHB9OoUSP++9//2rafPXuWwMBANmzYQFhYGEFBQaxbtw6r1cqcOXNo0KABVatW5YUXXmDbtm12bR88eJA2bdoQFBREu3btOHz4sN321atXU6tWLbt1mzZtum3kmc2bN9OuXTuCgoJ46qmnbEPeh4WFce7cOaKjowkMDLTVO3fuHH379qV27dpUr16d5557zu59fJgpuZCPlS5dmvT0dJYtW8aZM2dYs2YNn3322T3rlStXjvr16zNmzBh++uknfv75Z8aMGYOLi8td6w0aNIjFixezdOlSfv31Vw4dOsSyZcuyHO9LL73ElStXeO211zh48CBnzpxh+/btjBo1CovFgoeHBz179iQ6OpqYmBji4+P55Zdf+Pjjj4mJiQHg3XffZdOmTZw+fZrjx4+zZcsWAgICAGjdujXe3t7069ePvXv3cubMGX744QfefvttLly4kOU4RURERERERERExF5MTAze3t58/vnndOnShaioKIYMGUJISAgxMTHUq1ePkSNHcv369Wy3fezYMTp37kyLFi146623bE/dZubdd9+lefPmrF27lueff57XX3+dkydP2pWZOnUqYWFhbNiwgXr16rF06VIWL15MeHg469ato169evTv359ff/0VgOTkZF599VX8/f1ZvXo1gwYN4p133sn2fmzZsoVBgwbxzDPPsGbNGpYsWWIbmn727NkUL16cwYMHs337drZv3w7AuHHjSEtLY/ny5axfv57hw4fbhrt/2GlYpHysUqVKjBo1igULFjB9+nRq1arFa6+9Rnh4+D3rRkdHM2bMGLp06cJjjz3GkCFDmDVr1l3rtG3bltTUVD766CMmT56Ml5cXLVq0yHK8xYoV49NPP2Xq1Kn06tWLtLQ0SpYsSf369W0XjKFDh1K0aFHmz5/P2bNn8fT0pHLlyvTt2xe48XjY9OnTOXfuHC4uLtSsWZPp06cD4OrqyvLly5k6dSoDBw4kKSmJYsWKUadOnRwdP05ERERERERERKSgq1ixIv379wfg1VdfZcGCBXh7e9OhQwcABgwYwKeffsrRo0epXr16ltvdv38/ffv25ZVXXqFXr173LN+iRQtefPFF4Ma9xB07drBs2TKioqJsZbp160azZs1sy4sWLaJPnz4899xzAIwYMYLdu3ezZMkS3nzzTdavX4/VamXixIm4urpSoUIFLly4YNdmVsybN4+WLVsyePBg27qKFSsC4OXlhdFoxN3d3W64qPPnz9O8eXPbkwx+fn7Z6jM/U3IhD2X2VMB7771nt9y9e/fbJgBp06aN7ed27drRrl2729rx8fFh/vz5d6x3J506daJTp06Zbjt69Oht627O/n5T2bJlmTNnzh3bNxgMdO3ala5du2a6vX///raLWGZ8fHzuK6soIiIiIiIiIiIid/b34X+MRiNeXl488cQTtnWPPfYYABcvXsxymwkJCfTo0YOhQ4dmeZLjkJAQu+Xq1avfNoTRzacFABITE/n999+pUaOGXZkaNWpw5MgRAE6ePElgYCCurq537CcrDh8+bEt8ZFXXrl2Jiopi+/bthIaG0qxZM1tC4mGnYZFEREREREREREREHnGOjvbfQzcYDHbrDAYDABkZGVlu09vbm6CgIL788ksSExPvO7abfd+U2bBCt5bJyMjIVswODg63lTObzXbL9xp2PjMvvvgimzZt4oUXXuDYsWO0b98+W0PR52dKLoiIiIiIiIiIiIjIA+fi4sL8+fNxdnamV69eWUowHDhwwG75p59+oly5cncs7+HhweOPP86+ffvs1u/fv982l2v58uU5evQoKSkpd+zH29ubpKQkkpOTbetuPvlw0xNPPMHOnTvvGIvJZMp0suoSJUrQuXNn5syZQ48ePVi5cuUd23iYKLkgIiIiIlKApJtTMaem2L3Szal5HZaIiIjII89sNpOWlpbjr1u/bZ/X3NzcmD9/PkajkT59+pCUlHTX8hs3bmTVqlXExcUxa9YsDh48SJcuXe5ap1evXixYsIANGzZw6tQppk6dypEjR2xDs7dq1QqDwUBkZCQnTpxg69atfPjhh3ZtVKtWDVdXV6ZPn87p06dZv349q1evtiszcOBAvvzyS2bNmsXJkyc5evQoCxYssG339fVlz549/Pbbb/z1118ATJgwge+++44zZ85w6NAhdu3aZUt6POyUXBARERERKQAcnZwxOrlgMZtJTb5m97KY03ByccPR5JzXYYqIiIg8cpydnXFzcyM9PZ3r16/n+Cs9PR03NzecnfPPZz93d3cWLFhARkYGr7zyit3TAbcaNGgQGzZs4Pnnn2fNmjVMnTqV8uXL37X9rl270qNHDyZNmsTzzz/Pd999x3vvvUfZsmVt/c+bN48TJ07Qpk0bZsyYwfDhw+3a8PLyYsqUKWzbto3WrVvz5ZdfMmjQILsyTz31FO+++y7ffPMNL7zwAt26dePgwYO27YMHD+bcuXM0adKEOnXqAGC1Whk3bhwtW7akd+/e+Pv78+abb2bn7cu3DBnZGSRL5CFnsVg4cOAA1atXx2g05nU4cgsdH8kNOs9EpKCyWCzs/n4rgRXKZ3p9czQ54+H9WB5EJiIiIo+aR/nvrpSUFOLi4vD397cbnz8xMZHU1Nx7mtTZ2RkPD49c6+9BCQwMZO7cuTRp0iSvQ3mk3ek8vpXjHbeIiIiIiMhDxdm9MF6P+z5yf8SLiIiI5HceHh4P5c1+kbtRckFERB45hhQr5r+uY83izTeDowOOhfLP46QiIiIiIiIiInlNyQUREXmkpF9LxW1fCr8fPIIhi3UcnB0p1r6SEgwiIiIiIiIiOejo0aN5HYJkg5ILIiLySMkwWzGYweBiwMF07ycXMtKtWFPTyUi35kJ0IiIiIiIiIiIPByUXRETkkWRwdMDB6d7JBSsosSAiIiIiIiIicguHvA5AREREREREREREREQeLkouiIiIiIiIiIiIiIhIthS45EJYWBgTJkz4R22cPXuWwMBADh8+/ICiytm+IyIi6N+/v235QbwH9xIYGMimTZtytA8RERERERERERERyZ8K3JwLs2fPxtExf+3W6tWrmThxInv37r1n2RIlSrB9+3a8vb3vu7/8+B6IiIiIiIiIiIg8qtLTrmFNT8m1/hwcXXB08sy1/uTRVODuQHt5eeV1CPctLS0NJycnfHx8/lE7D/N7ICIiIiIiIiIiUpCkp13j3M+LsJiTcq1Po8kd36q9lGDIBYGBgcydO5cmTZrkdSi5rsAPi9SoUSPmzZvHqFGjCAkJ4ZlnnmHFihV2dQ4ePEibNm0ICgqiXbt2tw1JtHr1amrVqmW3btOmTQQGBtqWjxw5QlhYGCEhIdSoUYN27doRGxvL7t27GTVqFNeuXSMwMJDAwEBmz55ti+29994jIiKCmjVrMnbs2NuGRbJYLIwePZpGjRoRHBxM8+bNWbJkSZbfg927d9v6/fsrIiLCVv6bb76hXbt2BAUF0bhxY+bMmUN6erpt+6+//srLL79MUFAQLVu25Pvvv79r/5999hn169fHarXare/bty/h4eFZ7vfkyZN07tzZ1u+OHTs0HJOIiIiIiIiIiDxUrOkpNxILBkccHF1z/IXBEYs5KVeflID/uw959erVf9SO1WplypQp1KtXj+DgYFq3bq37gflUgXtyITOLFy9m8ODB9O3bl6+++oqoqChq1apFQEAAycnJvPrqqzz99NNMmTKFs2fP3td8BcOHD6dSpUpERUVhNBo5fPgwJpOJkJAQRo8ezaxZs9i4cSMAbm5utnqLFi2if//+9OvXL9N2rVYrxYsXZ+bMmXh7e7N//37eeOMNfHx8aNmy5T3jCgkJYfv27bblkydP8sorr9iSJd999x0jRoxgzJgx1KpVi/j4eMaOHQvAwIEDsVqtDBo0CC8vL1auXEliYiITJ068a58tWrTg7bffZvfu3dSpUweAK1eusH37dubNm5flfgcMGEDJkiX5/PPPSUxM5J133rnn/maVxWJ5YG3Jg3PzuOj4SE66mfjMADIyMu5ZPiMjgwxunJcOOjdFJB/T71ERERHJL/R5JHMORhMORudc6cv6ty/wPmzWrVvHkiVLeOedd6hWrRrx8fF5HZLcwSORXGjQoAEvv/wyAH369OGjjz7ihx9+ICAggPXr12O1Wpk4cSKurq5UqFCBCxcuEBUVla0+zp8/T69evQgICACgbNmytm2enp4YDIZMhzt6+umn6dWrl2357NmzdttNJhODBw+2Lfv5+bF//342btyYpeTC34dZunTpEmPHjuXf//437du3B2DevHm88sortG3b1tb+kCFDmDJlCgMHDmTHjh2cPHmSb775huLFiwMwbNgw+vTpc8c+vby8qF+/PuvXr7clFzZu3IiXl5dt+V79bt++nTNnzrBs2TJb/MOGDaNHjx733OesiI2NfSDtSM7Q8ZGc5JBkxQ1ISkwER8O9K6RnYDDD4cOHsboXuAf+RKQA0u9REREREcmusLAwAgMDcXJyYtWqVZhMJjp16sSgQYOAG/csGzduzJo1a6hUqRIAV69epXbt2ixduhRfX1+6du0KQO3atQFo27YtkyZNYuPGjcydO5fTp0/j6upKpUqVeO+99+y+gP13BoMBb29vnnvuOQBKlSqVpX1IS0tj0qRJ/O9//+PKlSv4+PjQsWNHXn31VQCuXbvG5MmT2bRpE6mpqVStWpXRo0dTsWJFWxvffPMNc+bM4fjx4zz++OO0bduWvn372ua3/fXXX4mMjOTgwYP4+fkRGRmZrRgKmkciufD34YsMBgOPPfYYFy9eBG58kz8wMBBXV1dbmZCQkGz30aNHD8aMGcPatWsJDQ2lRYsWlC5d+p71qlates8yn376KZ9//jnnz58nNTUVs9lsd9JnhdlsZvDgwZQoUcLupD906BCxsbG2JwrgRnY5NTWV69evc/LkSUqUKGFLLEDW3p/WrVvzxhtvEBUVhZOTE+vXr6dly5YYjcYs9RsXF0fx4sXtEjLBwcHZ2ue7CQoKssUi+YfFYiE2NlbHR3JU6p9JnNnzE+4eHhid7n2eWdMsWFMtlKlUEVMR13uWFxHJK/o9KiIiIvnFzc8l8nCJiYmhR48erFy5kgMHDhAREUGNGjWoW7fuPeuWKFGC2bNnM2jQIDZu3IiHhwcuLi78/vvvvP7664wYMYImTZqQlJTE3r177zqSQJ06dUhMTGTmzJkMHTo0y/EvW7aMb775hpkzZ1KiRAkSEhK4cOECcGNUgldeeYXChQvzwQcf4OnpyYoVK+jWrRtfffUVXl5eD2SEl7vFUBA9EsmFm5mlmwwGg+0EzsqQGA4ODreVM5vNdsuDBg2iVatWbN26lW3btjFr1ixmzJhB06ZN79r235MamdmwYQPR0dGEh4cTEhKCu7s7ixYt4qeffrpn3H8XFRXF+fPnWbVqld37cfM/RbNmzW6r4+zsnOn7YzDc+5u+jRo1YsyYMWzZsoWgoCD27t1rN89DVvrNSj/3y2g06o/ufEzHR3KSg8ONpw8MZO16ZjAYMKDzUkQeHrpeiYiIiMj9CAwMZODAgcCNUVmWL1/Ozp07s5RcMBqNFC5cGICiRYtSqFAhAOLj40lPT6dp06b4+vra+rmT69ev07NnT1q1asWOHTtISUkhPDzc9vd7jRo1iI6Opnnz5rfVTUhIoEyZMtSsWRODwWDrD2DXrl0cO3aMnTt34uTkBEB4eDibNm3iq6++omPHjg9khJe7xVAQPRLJhbspX74869atIyUlBRcXFwAOHDhgV8bb25ukpCSSk5Ntj+scOXLktrb8/f3x9/ene/fuvPbaa3zxxRc0bdoUk8l032PN7du3j5CQENuwTkC2xxlbvHgxGzZsYMWKFXh7e9ttq1y5MnFxcZQpUybTuuXLlychIYHffvuNYsWKAbB///579uni4kKzZs1Yv349p0+fpmzZsnZPadyr33LlypGQkMCff/7JY489BugRfxERERERERERkZxy601/Hx8f2+gv96tixYrUqVOH1q1bU69ePerVq0fz5s1tiYhbrV69mqtXrzJ27FiuX79OWFgYERERTJgwgQsXLpCcnHzHUVXatm1Lz549adGiBfXr1+eZZ56hXr16wI1RVJKTk3nqqafs6qSkpNjutT6IEV7uFkNB9MgnF1q1asWMGTOIjIykX79+nDt3jg8//NCuTLVq1XB1dWX69OmEhYVx8OBBVq9ebduekpLC5MmTad68OaVKleLChQvExsbavpXv6+tLcnIyO3futA3BdK8nFm4qXbo0a9as4bvvvqNUqVKsXbuW2NjYLI81tmPHDqZMmcIbb7yBt7c3f/zxB3Dj5r+npycDBgygb9++lChRghYtWuDg4MDRo0c5evQow4YNIzQ0FH9/f8LDw4mIiCAxMZEZM2Zkqe/WrVvTt29fjh8/zvPPP2+37V791q1bFz8/P8LDwxkxYgRJSUmZ9tutWzeaNm1Kly5dshSTiIiIiIiIiIiI3O5uo7/cHAXg76OcpGdh0mij0cjixYv58ccf+f7771m2bBkzZsxg5cqV+Pn53Vb+6NGjVKhQAScnJ5ycnFi8eDEvvfQSAwcOpEyZMtSvX5/HH388076qVKnC5s2b2bZtGzt27GDo0KGEhoYya9YsrFYrPj4+LFu27LZ6np6ewIMZ4eVuMRREj/zMlO7u7sybN48TJ07Qpk0bZsyYwfDhw+3KeHl5MWXKFLZt20br1q358ssvbZOZwI3/XJcvXyY8PJzmzZszdOhQGjRoYJuIuUaNGnTq1ImhQ4dSp04dFi5cmOX4OnfuTLNmzRg2bBgdOnTg8uXLvPTSS1muv2/fPiwWC2+++aYtO1ivXj0mTJgAQP369Zk3bx7ff/897du3p0OHDixevNj2yI6DgwNz5swhLS2N9u3bExkZybBhw7LU99NPP03hwoWJi4ujdevWdtvu1a/RaGTu3LkkJyfTvn17xowZQ79+/YAb/5lvOnPmDJcuXcry+yEiIiIiIiIiIiLZU6RIEQDbF5cBDh8+bFfGZDIB3DaCi8FgoGbNmgwePJg1a9ZgMpnYtGlTpv0UK1aMw4cPk5iYCNwYYumjjz7i2LFjfPTRR/ecg8HDw4OWLVvy9ttvM2PGDL766isuX75MlSpV+PPPPzEajZQpU8budXPf/j7Syq0vBwcHuxFebspshJc7xVAQGTKyMumASD6wb98+XnrpJb7++ussTZadGYvFwoEDB6hevbrGIs6HdHwkN6T8kcjppftx9/bA6HzvB/isaRasKekU71hFEzqLSL6m36MiIiKSXzzKn0tSUlKIi4vD39/fNgR7WvIfnI39AAyOOBhNOR6D1WKGjHRKBb2Ck5tPluqEhYVRsWJFIiMjbev69+9PoUKFmDRpEgAdO3bE0dGRt956i0uXLjF58mQOHjzI0qVLeeqpp/jtt99o2LAh0dHRNGzYEGdnZ06cOGGbt6Fo0aL89NNPjBgxgrlz59KwYcPb4vjtt994/vnneeKJJxg2bBheXl7s3LmTGTNmkJ6eTps2bYiKisp0Hz766CN8fHyoWLEiDg4OLFy40DY/rsFg4OWXXyYpKYnhw4fj7+/P77//ztatW2nSpAlBQUF899139O3bl759+2Y60orVaqV169b4+PjYRniZOHEihw4dYu7cuTRp0uSuMdx8+uNhkNl5nJlHflgkyb++/vpr3NzcKFOmDPHx8UyYMIEaNWrcd2JBREREREREREQktzk4umA0uWMxJ2HNwlBCD4LR5I6D451vCt+PiRMnMnr0aP7973/j7+/PiBEj6Nmzp217sWLFGDRoENOmTWPUqFG0adOGPn36sGfPHpYsWUJiYiIlS5YkIiIi08TCzTZWrVrFlClTGDRoEImJiVSpUoVp06bh4uJCz549KVOmDD169LitrpubGwsWLOD06dM4ODgQFBTEBx98YLup/8EHHzBz5kxGjx7NpUuXeOyxx6hVq5ZtvtebI63MnTuXhQsX4ujoSLly5XjxxReB/xvhJTIykvbt2+Pr68uYMWPo3bt3lmMoaPTkguRba9as4b333iMhIQFvb29CQ0MJDw+/bVLq7HiUM+cPAx0fyQ16ckFECir9HhUREZH84lH+XHKnb3ynp13Dmp6Sa3E4OLrg6OSZa/1JwaInF+Sh16ZNG9q0aZPXYYhIAZWRbsVqsGSpnIiIiIiIiMg/4ejkCbrZLwWMkgsiIvJIMZgcyDBBhiUDqyVrj6M6ODticCyYjzCKiIiIiIiIiNwPJRdEROSR4ujpTHJNF8o+UTHLj+caHB1wLOScw5GJiIiIiIiIiDw8lFwQEZFHToaLA6Yiro/c2J8iIiIiIiIiIg+Kkgsikq9cv36dv/76CweHOw9BYzKZKFSoUC5GJQVNZueZzisRKQguXbpEfHz8Ha9nutaJiIiIiMiDouSCiOQbV69e5YcffmD//v13Lefs7EynTp10c0Tuy53OM51XIvKwO3/+PNu2beO7777D29s706ezdK0TEREREZEHRckFEck30tPTMZvNuLq6YjKZMi1jNptJTU3FbDbncnRSUGR2num8EpGCICUlBavVitFoxNnZ+bbfpbrWiYiIiIjIg6TkgojkO46Ojjg5Od1xe3p6ei5GIwXVreeZzisRKSgMBgMmkynT36W61omIiIiIyIOi5IKIiIiIiIiIiIhIDkoyW0i1ZORaf85GA+6m24fJFHmQlFwQERERERERERERySFJZgsxxy+SbLbmWp9uJgfaVij6wBIMu3fvpmvXruzZs4dChQqxevVqJk6cyN69ex9I+9lx/fp1Ro4cyffff09SUpItJsl9DnkdgNywe/duAgMDuXr1KgCrV6+mVq1atu2zZ8/mhRdeyKvw7uns2bMEBgZy+PDhvA5FREREREREREQk30i1ZJBstuLoAC6Ohhx/OTpAstn6QJ+UCAkJYfv27Xh6ej6wNteuXUuLFi0ICgqiUaNGzJ07N0v1YmJi2Lt3L5999lmWY7r13qs8GHpyIZ/Iif+gD7tGjRrRtWtXunfvntehiIiIiIiIiIiI/COODgacjLnxXW8r6dYHOwSTk5MTPj4+D6y9s2fPEh4eTu/evenYsSOXLl0iLi4uS3XPnDlDQEAATzzxxAOLR+6PnlzIJ27+BzUYDHkah9lsztP+RUREREREREREJHelpaXx9ttvU6dOHYKCgujcuTMHDx60bb/XN/+PHDlCWFgYISEh1KhRg3bt2hEbG3vH/gwGAwaDgX//+9/4+fkRHBycpVFbwsLC+PDDD9mzZw+BgYGEhYUBN56CaNeuHSEhIdStW5fXX3+dixcvAjcSGV27dgWgdu3aBAYGEhERAcDGjRtp3bo1wcHBPPXUU3Tv3p3k5OSsvWmi5EJOCAsLY/z48UyYMIHatWsTGhrKihUrSE5OZtSoUYSEhNCkSRO2bt1qq5PdR3POnDlD06ZNefPNN7FaMx+vLTAwkE8++YTevXsTHBxMo0aN+O9//2vbfnMoow0bNhAWFkZQUBDr1q3DarUyZ84cGjRoQNWqVXnhhRfYtm2bXdsHDx6kTZs2BAUF0a5du9uGQ7p1WCeATZs2ERgYaLdu8+bNtGvXjqCgIJ566ikGDhxoew/PnTtHdHQ0gYGBtnrnzp2jb9++1K5dm+rVq/Pcc8/ZvY8iIiIiIiIiIiKSPZMnT+arr75i0qRJxMTEUKZMGXr37s3ly5ezVH/48OEUL16cVatWsXr1avr06YPJZLpj+WLFilG1alXGjx9PampqluOcPXs2HTp0sI0CM3v2bODGF6aHDBnCunXrmDt3LmfPnrUlEEqUKGErt3HjRrZv305kZCS///47r7/+Ov/+97/ZsGEDS5cupWnTpmRk5N7E2w87DYuUQ2JiYujduzeff/45GzZsICoqik2bNtG0aVNeffVVPvroI0aOHMmWLVtwdXXNVtvHjh2jZ8+etG3bltdff/2uZd99912GDx9OZGQka9eu5fXXX+eJJ54gICDAVmbq1KlEREQwceJEnJycWLp0KYsXL2bcuHFUqlSJL774gv79+/Of//yHsmXLkpyczKuvvsrTTz/NlClTOHv2LBMmTMj2e7RlyxYGDRpE3759mTJlCmazmS1btgD/N8dEhw4d6NChg63OuHHjMJvNLF++HDc3N06cOIGbm1u2+7ZYLNmuIznv5nHJyMi444X85nqr1arjKPcls/NM55WIFAS3Xt9u/V2qa52IiIjkFn3WeLgkJyfz2WefER0dTcOGDQEYP34833//PatWraJ37973bOP8+fP06tXLds+xbNmydy0/duxYMjIyKFWqFL179+b999/Hw8MDgFdffZVSpUoxduzY2+p5eXnh4uKCyWSyG6apffv2tp/9/PyIjIzkxRdfJCkpCXd3dwoXLgxA0aJFbZM/x8fHk56eTtOmTfH19QW47YvRcndKLuSQihUr0r9/f+DGf4gFCxbg7e1tu1E+YMAAPv30U44ePUr16tWz3O7+/fvp27cvr7zyCr169bpn+RYtWvDiiy8CMHToUHbs2MGyZcuIioqylenWrRvNmjWzLS9atIg+ffrw3HPPATBixAh2797NkiVLePPNN1m/fj1Wq5WJEyfi6upKhQoVuHDhgl2bWTFv3jxatmzJ4MGDbesqVqwI3LhQGI1G3N3d7S4U58+fp3nz5rb/6H5+ftnq86a7PZYleScxMdH2b0pKSqZl0tPTMZvN/PLLL7ZfOiLZkdl5pvNKRAqC33//HbiRPLh27RqOjvYf9XWtExEREZHMxMfHYzabqVGjhm2dyWQiODiYkydPZqmNHj16MGbMGNauXUtoaCgtWrSgdOnSmZY9ceIEq1ev5ssvvyQgIIBRo0YRFhbGwoULKVq0KMePH8/SEEl/98svvzB79myOHDnC5cuXbV+sSUhIoHz58pnWqVixInXq1KF169bUq1ePevXq0bx5c1siQu5NyYUc8vcsl9FoxMvLy26SkcceewzANvZXViQkJNCjRw+GDh2a5UmOQ0JC7JarV69+2xBGVatWtf2cmJjI77//bncxAahRowZHjhwB4OTJkwQGBto9cXFrP1lx+PBhW+Ijq7p27UpUVBTbt28nNDSUZs2a2RIS2REUFITRaMx2PclZf/zxB7t27cLDwwNnZ+dMy6SlpZGSkkLlypUpUqRILkcoBUFm55nOKxEpCI4fP87333+Pg4MDnp6eODk52W3XtU5ERERyi8Vi0Rc7H0K3zgWbkZGR5flhBw0aRKtWrdi6dSvbtm1j1qxZzJgxg6ZNm95W9ujRo5hMJttN/wkTJjBs2DA6d+5Mr169SEpKolGjRlmOOzk5mZ49e1K3bl2mTJmCt7c3CQkJ9OrV667zyxqNRhYvXsyPP/7I999/z7Jly5gxYwYrV6687y80P2qUXMght35TzGAw2K27+R8zO2N4eXt78/jjj/Pll1/Svn37+/7G2a0XhcyGFbrbxSQrMTs4ONxW7tb/zC4uLlmK9+9efPFF6tWrx5YtW/j+++/54IMPCA8Pt03eklVGo1HJhXzo5jG5OalPZm6ud3Bw0DGU+5LZeabzSkQKgluvb7f+LtW1TkREREQyU7p0aUwmE/v27aNkyZLAjft4P//8M926dctyO/7+/vj7+9O9e3dee+01vvjii0yTC8WKFcNsNvPTTz9RrVo1jEYjU6dOpX///rzxxhuMGjUqW/cNT506xaVLlxg+fDglSpQA4Oeff7Yrc3P+h1uH7DIYDNSsWZOaNWsyYMAAnn32WTZt2kSPHj2y3P+jTBM6P0RcXFyYP38+zs7O9OrVyza0x90cOHDAbvmnn36iXLlydyzv4eHB448/zr59++zW79+/3zZmWvny5Tl69KjdsDW39uPt7U1SUpLd7Oo3n3y46YknnmDnzp13jMVkMmU6WXWJEiXo3Lkzc+bMoUePHqxcufKObYiIiIiIiIiIiOQH6dYM0izWHH+lW7M3IbGbmxudO3dm8uTJbNu2jRMnTjB27FhSUlLs5jK4k5SUFMaNG8fu3bs5d+4c+/btIzY21m7O17+rWbMmISEhDBs2jE2bNhEfH8+2bds4c+YMbm5urF+/nuvXr2c5/pIlS2IymVi2bBlnzpxh8+bNvPfee3ZlfH19MRgMbNmyhb/++oukpCR++ukn5s2bR2xsLOfPn+d///sff/31113vnYo9JRceMm5ubsyfPx+j0UifPn1ISkq6a/mNGzeyatUq4uLimDVrFgcPHqRLly53rdOrVy8WLFjAhg0bOHXqFFOnTuXIkSN07doVgFatWmEwGIiMjOTEiRNs3bqVDz/80K6NatWq4erqyvTp0zl9+jTr169n9erVdmUGDhzIl19+yaxZszh58iRHjx5lwYIFtu2+vr7s2bOH3377jb/++gu48ZjUd999x5kzZzh06BC7du2644VKREREREREREQkrzkbDbiZHEi3Qkp6Ro6/0q3gZnLA2Zi1IY0Ahg8fTvPmzRk5ciRt27bl9OnTLFy4MEvzDzg4OHD58mXCw8Np3rw5Q4cOpUGDBnbzrP6dwWBg4cKFNGvWjOjoaFq2bMmMGTPo3LkzGzdu5M8//2T48OGZfuk4M0WKFGHSpEls3LiRli1bsmDBAsLDw+3KFCtWjEGDBjFt2jRCQ0MZP348Hh4e7Nmzh1deeYXmzZszc+ZMIiIibJNay71pWKSHkLu7OwsWLKBXr1688sorLFiwINOhjeDGeGcbNmzgrbfewsfHh6lTp95xEpObunbtSmJiIpMmTeKvv/4iICCA9957zzbLu7u7O/PmzePNN9+kTZs2lC9fnuHDhzNo0CBbG15eXkyZMoXJkyezcuVKQkNDGTRokN0s70899RTvvvsu7733Hh988AEeHh7Url3btn3w4MG88cYbNGnShLS0NI4ePYrVamXcuHFcuHABDw8P6tevz6hRo/7BuykiIiIiIiIiIpJz3E1G2lYoSqole08U/BPORgPupqwPhens7MyYMWMYM2ZMptufeuopjh49altu164d7dq1A8DJyYnp06dnKz4PDw8iIiKIiIi4bdvWrVvvWjcyMvK2da1ataJVq1Z26/4eL8CAAQMYMGCA3bpFixZlNWTJhCEjO4P+y0MlMDCQuXPn0qRJk7wOJd+wWCwcOHCA6tWra6zhfOiPP/7gww8/pEiRIned0Pn69eu89NJLFC1aNJcjlIIgs/NM55WIFATHjx9nyZIlODo6UqpUqUwndNa1TkRERHLDo3z/JSUlhbi4OPz9/e9rvlGR/CCr57GGRRIRERERERERERERkWxRckFERERERERERERERLJFcy4UYLeOKybysEhPT8dgyHzSIbPZnMvRSEH19/NM55WIFCQZGRmZXtd0rRMRERERkQdJyQURyTccHR0xmUykp6eTnp5+x3LOzs6YTKZcjEwKkjudZzqvRORh5+LigoPDjQeTU1NTM/1dqmudiIiIiIg8KEouiEi+UahQIZ588kkCAwNtN0cyYzKZKFSoUC5GJgXJnc4znVci8rArWbIkDRo0ICAg4I7XM13rRERERETkQVFyQUTyFVdXV4oUKYLRaMzrUKQA03kmIgWVt7c3pUuX1vVNRERERERynCZ0FpH8Jf0Pki4d5frV+LyORERERERERERERO5ATy6ISL6Rci0el2tfcu4gGAxGytR8DddCpfM6LBERERERERGRf+RyYjrJqZZc68/N2YiXh279Ss7SGSYi+YYl/TpghQwHMrBgTb+e1yGJiIiIiIiIiPwjlxPTmbziNFeT03Otz0JujozsWCbXEgxnz56lcePGrFmzhkqVKuVKn5L3lFwQkfzHYAAy8joKEREREREREZF/LDnVwtXkdExGB5xMOT9KfZrZytXkG09K6OkFyUk6u0RERERERERERERymJPJARen3JkC12yx5ko/8mjThM4iIiIiIiIiIiIij7CwsDDGjRvHuHHjqFWrFk899RQzZswgI+PGyBKBgYFs2rTJrk6tWrVYvXp1pu1duXKF119/naeffprg4GCaNWvGF198Ydv+22+/MXToUGrXrs1TTz1Fv379OHv2rG377t27ad++PdWrV6dWrVp06tSJc+fO5cCeyz+h5ILke5ldvEREREREREREROTBiYmJwWg0snLlSiIjI1myZAmff/75fbX17rvvcvLkSRYsWMCGDRuIiorC29sbgOvXr9O1a1fc3NxYvnw5n3zyCW5ubvTu3Zu0tDTS09MZMGAAtWvXZt26daxYsYKOHTtiMBge5O7KA6BhkR4iu3fvpmvXruzZs4dChQrddztWq5Vp06axdu1arl69SpkyZRgyZAhNmjR5gNGKiIiIiIiIiIjIw6JEiRKMHj0ag8FAuXLlOHbsGB999BEdOnTIdlvnz5+nUqVKBAUFAVCqVCnbti+//BKDwcCECRNsCYPo6Ghq167NDz/8QNWqVbl27RrPPvsspUuXBiAgIOAB7KE8aEouPILWrVvHkiVLeOedd6hWrRrx8fF5HZKIiIiIiIiIiIjkoWrVqtk9HVC9enUWL16MxWLJdludO3dm8ODB/PLLL9StW5cmTZpQo0YNAA4dOkR8fLxt+abU1FTi4+OpV68e7dq1o1evXtStW5c6derwr3/9i8cff/yf7aA8cBoWKZeEhYXx9ttvM3nyZJ588knq1q3L7NmzbdvPnj1LYGAghw8ftq27evUqgYGB7N69m7Nnz9K1a1cAateuTWBgIBEREQBs3LiR1q1bExwczFNPPUX37t1JTk6+YywGgwFvb2+ee+45SpUqRWhoKKGhoffch7S0NMaNG0e9evUICgqiUaNGzJ8/37b92rVrjB07ljp16lCjRg26du3KkSNH7Nr45ptvaNeuHUFBQTRu3Jg5c+aQnp5u2/7rr7/y8ssvExQURMuWLfn++++zFYOIiIiIiIiIiIg8WAaDwTb/wk1/v6d3q4YNG/Ltt9/SrVs3fv/9d7p3784777wD3BhVpUqVKqxZs8bu9dVXX9G6dWvgxpMMK1asICQkhP/+9780b96cAwcO5Nj+yf3Rkwu5KCYmhh49erBy5UoOHDhAREQENWrUoG7duvesW6JECWbPns2gQYPYuHEjHh4euLi48Pvvv/P6668zYsQImjRpQlJSEnv37r3tP/vf1alTh8TERGbOnMnQoUOzHP+yZcv45ptvmDlzJiVKlCAhIYELFy4AkJGRwSuvvELhwoX54IMP8PT0ZMWKFXTr1o2vvvoKLy8vvvvuO0aMGMGYMWOoVasW8fHxjB07FoCBAwditVoZNGgQXl5erFy5ksTERCZOnJjlGLLjfjKukvOstxwXi9WiYyUP3M1zSueWiBQ0ur6JiIhIfqHPIw+nn3766bblMmXKYDQaKVKkCL///rtt26+//sr169fv2l6RIkVo164d7dq147PPPmPy5MmEh4dTpUoV/vvf/1K0aFE8PDzuWL9y5cpUrlyZV199lY4dO/Kf//yH6tWr/6N9lAdLyYVcFBgYyMCBAwEoW7Ysy5cvZ+fOnVlKLhiNRgoXLgxA0aJFbXMuxMfHk56eTtOmTfH19bX1cyfXr1+nZ8+etGrVih07dpCSkkJ4eLjtkacaNWoQHR1N8+bNb6ubkJBAmTJlqFmzJgaDwdYfwK5duzh27Bg7d+7EyckJgPDwcDZt2sRXX31Fx44dmTdvHq+88gpt27YFwM/PjyFDhjBlyhQGDhzIjh07OHnyJN988w3FixcHYNiwYfTp0ydLMWRHbGzsfdWTnOVgPo8TNzLYkMHJEyexmu7+i0rkfuk6ICIFla5vIiIiIvlTmtmar/tJSEggOjqajh078ssvv7B8+XLCw8MBePrpp/n444+pXr06VquVqVOnYjKZ7tjWu+++S5UqVahQoQJpaWls2bLFNm9C69atWbRoEf369WPIkCEUK1aMhIQE/ve//9G7d2/MZjMrV66kUaNGPP7448TFxfHrr7/ywgsv3Nd+Sc5RciEX3XrT38fHh4sXL/6jNitWrEidOnVo3bo19erVo169ejRv3tyWiLjV6tWruXr1KmPHjuX69euEhYURERHBhAkTuHDhAsnJyYSEhGRat23btvTs2ZMWLVpQv359nnnmGerVqwfcGCstOTmZp556yq5OSkqKbU6HQ4cOERsby7x582zbLRYLqampXL9+nZMnT1KiRAlbYgG4LZa7xZAdQUFBGI3GbNeTnHXtTyfOxYKDgwOQQUD5ANy975wsE7kfFouF2NhYXQdEpMDR9U1ERETyi5ufS+QGN2cjhdwcuZqcjtmSOwmGQm6OuDln7zNhmzZtSElJ4cUXX8RoNNKlSxc6duwI3PgS8ejRo+nSpQuPP/44o0eP5tChQ3dsy2QyMX36dM6dO4eLiws1a9Zk+vTpALi6urJ8+XKmTp3KwIEDSUpKolixYtSpUwcPDw9SUlI4deoUMTExXL58mccff5yXX36ZTp063f8bIjlCyYVc5Oho/3b/fayyGzdTsRvO6G7jlt1kNBpZvHgxP/74I99//z3Lli1jxowZrFy5Ej8/v9vKHz16lAoVKuDk5ISTkxOLFy/mpZdeYuDAgZQpU4b69evfcXKUKlWqsHnzZrZt28aOHTsYOnQooaGhzJo1C6vVio+PD8uWLbutnqenJ4Bt2KNmzZrdVsbZ2TnToZz+PonMvWLIDqPRqD+68yGHW46J0UHHSXKOrgMiUlDp+iYiIiKSv3h5ODKyYxmSU3NvuCg3ZyNeHtm79evo6EhkZCRvvfXWbduKFSvGokWL7Nbt3bvX9nOpUqU4evSobbl///7079//jn35+PjY5mC4lYeHB3Pnzs1W7JI3lFzIJ4oUKQLAH3/8YVv398mdAdujRreOW2cwGKhZsyY1a9ZkwIABPPvss2zatIkePXrc1k+xYsXYtGkTiYmJeHh4ULRoUT766CNefvllvv32W1avXn3XOD08PGjZsiUtW7akefPm9O7dm8uXL1OlShX+/PNPjEYjpUqVyrRu5cqViYuLo0yZMpluL1++PAkJCfz2228UK1YMgP3792c5Bi8vr7vGLiIiIiIiIiIikhe8PByzfbNfJL/TGZ1PuLi4UL16dT744AN8fX25dOkSM2fOtCvj6+uLwWBgy5YtNGzYEGdnZ06cOGGbt6Fo0aL89NNP/PXXX5QrVy7Tftq3b8/SpUvp168fw4YNw8vLi507d3L16lVcXV35/PPPqVKlSqZ1P/roI3x8fKhYsSIODg5s3LgRHx8fChUqRGhoKNWrV2fAgAEMHz4cf39/fv/9d7Zu3UqTJk0ICgpiwIAB9O3blxIlStCiRQscHBw4evQoR48eZdiwYYSGhuLv7094eDgREREkJiYyY8aMLMcgIiLy/9i78/AoqqyP49/uTnf2BEJCWBJ2CFvYIwJBRkBARgYB13FARUAQUXEDERxBHUBQVARBUEbxdRxHQVkUFRUFVBZZBISwRUIgQNiyJ93p7vePSEPI2iEb4fd5njzQ1beqTt0qukmduveIiIiIiIiISPlQcqES+de//sWkSZMYMmQIDRs25KmnnmL48OGu90NDQxk3bhyvvPIKzzzzDLfeeisjR45ky5YtvPfee6SmplKnTh0mTpxIjx498t1HaGgon3zyCbNmzWLcuHGkpqbSqlUrXnnlFby8vBg+fDj169fPd9SDj48PixYt4siRIxiNRiIjI3n77bddUzq9/fbbvPbaa0yaNIlz584RHBxMp06dCA4OBqB79+4sWLCAefPmsXjxYjw8PGjUqBG33347kDM11Jtvvsmzzz7LbbfdRt26dZk8eTIjRowodgwiIiIiIiIiIoVJSkoiPT29osOo0hyO8qkrIKUnv6nORYpicOY30b1IFWW329mxYwft2rXTXMSVUPLp3zm6Yx5GowlwUq/dw/gGqaCzlC59DohIVaXPNxERkaIlJSUxb948bDZbRYdSpXl4eNCvX79r8v8lmZmZxMbG0rBhQ7y8vCo6HJESKe51rJELIiIiIiIiIiJyTUhPT8dmszFo0CBCQkIqOpwq69SpU2RnZ1d0GCJSxpRcEJHKx+kEQ0UHISIiIiIiIlVVSEgItWvXrugwqiyHw8GJEycqOgwRKWOaqF5EKg2ThzdgBAMYDCaMHt4VHZKIiIiIiIiIiIjkQyMXRKTS8PKvR6b/X2nauB5mix/eAfUqOiQRERERERERERHJh5ILIlK5eITgWz3imiv4JCIiIiIiIiJVlyMtCac1vdz2Z7D4YPQNLLf9ybVJyQURERERERERERGRMuJISyLt85dxZqSU2z4N3v74Dnz6mkgwzJ07l7Vr1/L5558X2GbixIkkJyczf/78coys6lNyQURERESkish0Gkmx2qnmrRGAIiIiIpWF05qek1gwmTGYLWW/P5sVZ0ZKzkiJqyi5oATA1UfJBRERERGRKiDFamd7dgAHDp1jSLNg/C1KMIiIiFQVWVlZZGVllft+PT098fT0LPf9VlUGswWD2atc9uW028plP3JtU3JBRERERKQKyHY4sTsNWO0ObA5nRYcjIiIipSgrK4stW7aQnl5+c/b7+PgQFRWl5MI14KOPPmLevHn88MMPGI1G1/LRo0cTGBjIzJkz+e6773jzzTc5cOAANWvWZNCgQYwePRoPj5zby4cOHWLy5Mns3r2b8PBwJk+ezP3338+8efPo3bs3ACdPnmT69Ols3LgRo9FIhw4dePbZZwkLC2Pu3LksX74cgIiICADef/99OnfuzKxZs1i7di0nTpwgODiYAQMGMHbsWMxmc57jeOuttzh//jw9evTgxRdfJCAgIN9jdjqdLF68mI8++ojExEQaNGjAQw89RL9+/QBISkpi2rRpbNy4kfT0dGrVqsWDDz7IkCFDSrfzr3JKLoiIiIiIiIiIiFRy6enppKamVnQYUgX169ePF198kU2bNtGlSxcg5+b6hg0bWLBgAevXr+epp55i8uTJdOrUibi4OKZMmQLAww8/jMPhYOzYsdSpU4f//e9/pKamMnPmzFz7yMjIYNiwYXTs2JEPPvgADw8P5s+fz4gRI1ixYgXDhw/n0KFDpKamMn36dAACA3OmdPL19WX69OnUrFmT/fv3M2XKFHx9fRk5cqRr+3FxcXz55ZcsWLCA1NRUnn32WaZOncorr7yS7zG/9tprfP311zz//PM0aNCALVu28NRTTxEUFMR1113H66+/zqFDh1i0aBHVq1cnLi6OzMzMUu/7q52SCyIiIiIiIiIiIiLXqGrVqtG9e3dWrlzpSi6sWbOGatWq0aVLF4YNG8aoUaMYNGgQAOHh4Tz66KPMmjWLhx9+mA0bNnD06FGWLl1KSEgIAOPHj+f+++937WP16tUYDAZeeuklDAYDANOnTycqKorNmzcTHR2Nl5cXVqvVtY0LHnroIdffw8LCOHz4MF988UWu5EJWVhYzZ86kVq1aAEyePJkHH3yQiRMn5tleeno6S5Ys4b333qN9+/auY/r111/573//y3XXXcfx48dp0aIFkZGRrv1KXkouiIiIiIiIiIiIXGbu3Lm8+eabuZYFBwezceNGIGdalTfffJP//ve/JCcn07ZtW5577jmaNm3qam+1Wpk5cyarVq0iKyuL66+/nueff951A1SkshgwYADPPfcczz//PBaLhZUrV9K/f39MJhN79uxh165dLFiwwNXebreTlZVFRkYGsbGx1KpVK9dN/DZt2uTa/p49e4iLi6NDhw65lmdlZREXF1dobGvWrOG9994jLi6O9PR0srOz8fPzy9Wmdu3auf5dtW/fHofDQWxsbJ7kwsGDB8nKymL48OG5lttsNlq0aAHA3XffzSOPPMLvv/9Ot27d6N27d57YRcmFKm3Tpk0MGzaMLVu2EBAQwLJly/jXv/7F1q1byz2WjIwMnn76aTZu3EhaWporJhERERERERGRyqpp06YsWbLE9dpkMrn+vmjRIpYsWcKMGTNo0KABb731Fvfffz9r1qxx3fh86aWX+P7775kzZw7VqlVjxowZPPjggyxbtizXtkQqWs+ePZk8eTLr1q0jMjKSrVu3MnHiRAAcDgfjxo2jT58+edbz9PTE6XS6RiMUxOFw0KpVK2bPnp3nvaCgoALX27FjB48//jjjxo0jOjoaf39/Vq9enevfZX4uxJNfXE5nTn2yhQsXEhoamus9i8UCQI8ePfj+++9Zt24dP/30E/fddx/33HMPEyZMKHS/1xpj0U3katW+fXs2bNiAv79/qW3z888/p1+/fkRGRtKzZ0/mzZtXrPWWL1/O1q1b+eijj4od06ZNm4iIiCA5OflKwxYRERERERERcZvJZCIkJMT1c+EmqNPp5P3332f06NH06dOHZs2aMXPmTDIzM1m1ahUAKSkpfPrpp0ycOJGuXbvSsmVLZs2axf79+/npp59c+9i2bRsDBw4kMjKSwYMHs3btWiIiIti7d2+FHLNcm7y8vOjTpw8rV65k1apVNGjQgNatWwPQsmVLYmNjqV+/fp4fo9FIo0aNSEhI4PTp067t7dq1K9f2W7VqxZEjR6hRo0aebVy4T2g2m3E4HLnW27ZtG3Xq1GHMmDFERkbSoEEDjh8/nif+hIQETp486Xq9fft2jEYjDRo0yNO2cePGWCwWjh8/nieW2rVru9oFBQUxePBgZs+ezaRJk/jvf//rfsdWcRq5UIVZLJY8w36uRHx8PBMmTGDEiBHceeednDt3jtjY2GKte/ToURo3bkyzZs1KLR4RERERERERkbJ05MgRoqOjsVgstG3blscff5zw8HDi4+NJTEwkOjra1dZisRAVFcX27du566672L17NzabjW7durnahIaG0rRpU7Zv30737t1JTU1lzJgx3HDDDbzyyiscO3aMf/3rXxVxqFIOnDZrpd7PgAEDGD16NAcOHOBvf/uba/nYsWMZPXo0tWvXpl+/fhiNRmJiYoiJiWH8+PF069aN8PBwJkyYwFNPPUVaWhpz5szJs+133nmHMWPG8OijjxIaGkpCQgJff/01I0aMoFatWtStW5cNGzZw+PBhqlWrhr+/P/Xq1SMhIYHVq1cTGRnJunXrWLt2bZ7YPT09mThxIhMmTCA1NZUXX3yRm2++Od97o35+fgwfPpzp06fjdDrp2LEjqampbN++HR8fHwYNGsTrr79Oq1ataNq0KVarlXXr1tG4ceMS9WtVpuTCVcxqtfLyyy+zevVqUlNTad26Nc8884xrTrPLp0W63L59+3jppZfYvXs3BoOBBg0aMHXqVFehkssZDAYMBgNDhgwhPDyc8PDwPPOn5Wfo0KFs3rwZgIiICK677jqWLl3K559/znvvvUdsbCw+Pj5cf/31TJo0iRo1ahAfH8+wYcMAiIqKAmDQoEHMmDGDNWvWMG/ePI4cOYK3tzctWrRg/vz5+Pj4lKgfRUREREREREQu16ZNG2bOnEmDBg04c+YMb731FnfddRerVq0iMTERgBo1auRaJzg42PVU9enTpzGbzQQGBuZpc+EJ75UrVwLw4osv4unpSZMmTTh16hSTJ08u68OTcmSw+GDw9seZkYLTbiuffXr7Y7C4d6/s+uuvJzAwkNjYWAYMGOBa3r17dxYsWMC8efNYvHgxHh4eNGrUiNtvvx3IGeEzb948Jk+ezG233UZ4eDhPP/00o0ePxtPTEwBvb28++OADZs+ezcMPP0xaWhqhoaF06dLFNY3YHXfcwebNmxkyZAjp6em8//779O7dm3vvvZdp06ZhtVr5y1/+wpgxY/LUQ6lXrx433XQTI0eOJCkpiR49evDPf/6zwGN97LHHqFGjBgsXLiQ+Ph5/f39atmzJ6NGjgZxRFK+++irHjh3Dy8uLjh078uqrr7rVn9cCJReuYi+//DJfffUVM2bMoG7duixevJgRI0bw9ddfU61atSLXf/LJJ2nRogXPP/88JpOJvXv3YjabC2wfGhpK69ateeGFF3jrrbdcHw5FmTt3Lq+88goHDhxg7ty5rn3YbDYeffRRGjVqxJkzZ5g+fToTJ05k0aJF1K5dm7lz5zJu3DjXXIVeXl6cOnWKJ554gqeeeorevXuTlpbG1q1bXXOlFZfdbnervZSPC+dF50fKkq4zEamq7I4/P9ec4LDbsdsLn/dWRETkWuTO7wE9evTI9bpdu3bcdNNNfPbZZ7Rt2xbIO597ce5PXNomNjaWiIiIXPdYCnroU65eRt9AfAc+jdOaXm77NFh8MPoGFt3wEiaTiQ0bNuT7Xvfu3enevXuB6zZu3Jj//Oc/rte//vorAPXr13ctCwkJYebMmQVuIygoiHfffTfP8qeffpqnn34617L77rvP9fdx48Yxbtw4AP7+97/nu+0ZM2bkem0wGBg2bJjr4ebLPfTQQzz00EMFxio5lFy4SqWnp/PRRx8xffp015fdCy+8wMaNG/nkk08YMWJEkds4fvw4DzzwgGtIT35zkF1qypQpOJ1OwsLCGDFiBG+99ZYrs/jggw8SFhbGlClT8qxXrVo1vLy8MJvNuYYi3Xbbba6/h4eH8+yzz3L77beTlpaGr6+vK7Nfo0YN18iLuLg4srOzuemmm6hbty6QMxrCXZfP+yaVi86PlAddZyJS1aQ5TUAAGRkZ/L53L74GJVFFREQul5SUVOJ1fXx8aNasGX/88Qe9e/cGckYn1KxZ09XmzJkzBAcHAzkjFGw2G0lJSblGL5w5c4b27dsDFKsQrlQNRt9AcPNm/9Xkm2++wcfHh/r16xMXF8dLL71Ehw4dqFevXkWHJmVIyYWrVFxcHDabjQ4dOriWmc1m2rRpw6FDh4q1jfvvv5/Jkyfz+eef07VrV/r161fgP/iDBw+ybNkyVq9eTePGjXnmmWcYOnQoixcvpkaNGhw4cICBAwe6dQy///47c+fOZd++fZw/f96VuU9ISKBJkyb5rtO8eXO6dOnCgAEDiI6OJjo6mr59++YZYliUyMhITCaTW+tI2bPb7ezatUvnR8qUrjMRqapOp2exffcJvL29adm0LtW99F99ERGRyyUkJLB+/foSrWu1Wjl06BAdO3YkLCyMkJAQNm7cSMuWLV3vb9myhSeffBKA1q1bYzab2bhxI/379wfg1KlTHDhwgKeeegqARo0asXLlSqxWKxaLBdCDUHJ1SktLY9asWSQkJFC9enW6du3KhAkTKjosKWP6jeMql9/wu+JmvMeNG8ctt9zCDz/8wI8//sgbb7zBnDlzuOmmm/K0jYmJwWw2u276v/TSS4wfP567776bBx54gLS0NHr27FnsuNPT0xk+fDjdunVj1qxZVK9enYSEBB544AFstoLnnjOZTCxZsoRt27axceNGli5dypw5c/j4448JDw8v9v5NJpNuKlZiOj9SHnSdiUhVYzL++ZlmAKM+40RERPLlzvfjzJkzufHGG6lduzZnz57lrbfeIjU1lUGDBrmmVFm4cCENGjSgfv36LFy4EC8vL2655RYA/P39GTJkCDNnzqR69eoEBgYyc+ZMmjVrRteuXYGcIrevvfYaU6ZMYdSoURw/ftw1LYxGNMjV5NZbb+XWW2+t6DCknBkrOgApmXr16mE2m13zl0FODYPdu3e7Vbm8YcOG3Hfffbz77rv06dOHTz/9NN92oaGh2Gw2du7cCeR8Gc+ePZt69erx3HPPMWbMGLy8vIq938OHD3Pu3DmefPJJOnXqROPGjTlz5kyuNhdqM1w+H6LBYKBjx4488sgjfPbZZ5jN5nyrxIuIiIiIiIiIlNSJEyd4/PHHufnmm3n44Ycxm818/PHHrmmaR44cyb333svUqVMZMmQIJ0+e5N1333VNIQ0wadIkevfuzWOPPcbdd9+Nt7c3CxYscCU5/Pz8eOutt9i7dy8DBw5kzpw5jB07FsA1kkFEpLLSyIWrlI+PD3fffTcvv/wygYGB1KlTh8WLF5OZmZmrlkFBMjMzefnll+nbty9hYWGcOHGCXbt20adPn3zbd+zYkfbt2zN+/HgmTZpEs2bN2L9/P0ePHsXHx4eVK1dy55134u3tXaz469Spg9lsZunSpdx9993s37+f+fPn52pTt25dDAYD69ato0ePHnh6enLw4EF+/vlnunXrRo0aNdi5cydnz56lUaNGxdqviIiIiIiIiEhxzJkzp9D3DQZDrkKy+fH09GTKlCn51qi8oEOHDqxYscL1esWKFZjNZurUqeN+0FJpFKe4t0hlVdzrV8mFq9iTTz6J0+nk6aefJi0tjdatW7N48eJi1R8wGo2cP3+eCRMmcPr0aapXr06fPn145JFH8m1vMBhYvHgxb775JtOnT+fkyZPUr1+fu+++m5tvvpk77riDJ598krlz52I0Fj0gJigoiBkzZvDqq6+ydOlSWrVqxYQJExgzZoyrTWhoKOPGjeOVV17hmWee4dZbb2XkyJFs2bKF9957j9TUVOrUqcPEiRNdRa1FRERERERERK4mn332GWFhYYSGhhITE8Ps2bPp16+fWzNESOVxYVSK1Wot9kO4IpVNeno6cHFmmYIYnEqjyTXEbrezY8cO2rVrp3mIKyGdHykPus5EpKo6nZbF//12DG8fb26LCCFIBZ1FRETySEhI4O2332bUqFHUrl27osMBYNGiRfznP/8hMTGRkJAQevfuzfjx43PdmE5OTuaHH34gNTW13OLy8/OjR48eBAQEuL3usWPHOHHixDX5e5fT6SQuLg6bzUadOnWK9RCuSGXhdDpJT0/n1KlTVKtWrcjPSf3GISIiIiIiIiIiUkFGjhzJyJEjKzoMKSUGg4HatWsTGxvLkSNHKjockRKpVq0atWrVKrKdkgsiIiIiIiIiIiKVnI+PT5XeX1VisVho2rQpVqu1okMRcZvZbC72iCMlF0REREREqgAPowGTwYnFZMRsNFR0OCIiIlKKPD09iYqKqpD9SskYjUbVzZAqT8kFEREREZEqwN9ior1HMq0ah+NvubbmNhYREanqPD09daNfRCodVRQREREREakivAwOJRZERERERKRcKLkgIiIiIiIiIiIiIiJu0bRIIiIiIiJVRHIGJJzJwvhnATZPs5EaAeYKjkpERERERKoiJRdERERERKqAM8k2Pt5kxLjtKIY/6zl7e5qYeFd9JRhERESucllZWWRlZRW7vWo0iEh5UHJBRERERKQKsNocZGUbCPA24Gk2YbU5yMiyk2VzVHRoIiIicoWysrLYsmUL6enpRbb18fEhKipKyQURKXNKLoiIiIiIVCEWDyNelpzSaja7EgsiIiJVRXp6OqmpqRUdhoiIiwo6i4iIiIiIiIiIiIiIW5RcEBERERERERERuczChQsZMmQI7du3p0uXLjz00EMcPnw4Vxun08ncuXOJjo6mTZs2DB06lAMHDuRqY7VaeeGFF+jcuTPt2rVj9OjRnDhxojwPRUSkTCi5IGUqPj6eiIgI9u7dW9GhiIiIiIiIiIgU2+bNm7nnnnv4+OOPWbJkCXa7nQceeCBX3YNFixaxZMkSnnvuOT755BOCg4O5//77c01f9NJLL/HNN98wZ84cPvzwQ9LT03nwwQex2+0VcVgiIqVGyQUREREREREREZHLvPPOOwwePJimTZvSvHlzpk+fzvHjx9mzZw+QM2rh/fffZ/To0fTp04dmzZoxc+ZMMjMzWbVqFQApKSl8+umnTJw4ka5du9KyZUtmzZrF/v37+emnn1z72rZtGwMHDiQyMpLBgwezdu1aPawpIpWekgsiIiIiIiIiIiJFSElJASAwMBDIma0hMTGR6OhoVxuLxUJUVBTbt28HYPfu3dhsNrp16+ZqExoaStOmTV1tUlNTGTNmDM2aNWP58uU8+uijzJo1q7wOS0SkxJRckEINHTqUadOmMW3aNDp16kTnzp2ZM2cOTqcTgIiICNauXZtrnU6dOrFs2bJ8t5eUlMQTTzzB9ddfT5s2bejTpw+ffvqp6/2TJ0/y2GOPERUVRefOnRkzZgzx8fGu9zdt2sRtt91Gu3bt6NSpE3fddRfHjh0rgyMXEREREREREcnhdDqZPn06HTt2pFmzZgAkJiYCUKNGjVxtg4ODOX36NACnT5/GbDa7EhL5tVm5ciUAL774Ik2aNKFHjx6MGDGiTI9HRKQ0eFR0AFL5LV++nNtuu42PP/6Y3bt389xzz1G3bl3uuOMOt7f1+uuvc+jQIRYtWkT16tWJi4sjMzMTgIyMDIYNG0bHjh354IMP8PDwYP78+YwYMYIVK1ZgNBoZO3Yst99+O6+++io2m43ffvsNg8Hgdhya17ByunBedH6kLOk6E5Gqyu5w5PzF6cTp+gGH3a7PPBERkT+V9Dtx2rRp7N+/nw8//DDPe5ffl7jwQGZhLm0TGxtLREQEnp6ermWRkZElilNEpDwpuSBFql27NpMmTcJgMNCoUSP279/Pv//97xIlF44fP06LFi1cX5JhYWGu91avXo3BYOCll15yfTFPnz6dqKgoNm/eTOvWrUlJSeHGG2+kXr16ADRu3LhEx7Rr164SrSflQ+dHyoOuMxGpas6kAphITUvFmgXWbMi0Gfh9715O+lV0dCIiIpVDUlKS2+u88MILfPfdd3zwwQfUqlXLtTwkJATIGZ1Qs2ZN1/IzZ84QHBwM5IxQsNlsJCUl5Rq9cObMGdq3bw/kJBpK8uCkiEhFU3JBitS2bdtcX3Lt2rVjyZIlJcr233333TzyyCP8/vvvdOvWjd69e9OhQwcA9uzZQ1xcnOv1BVlZWcTFxREdHc3gwYN54IEH6NatG126dOHmm2/O9QVeXJGRkZhMJrfXk7Jlt9vZtWuXzo+UKV1nIlJVxSdmwC8H8fP1w8vTRKbVgSHTTssW4dSu4Vn0BkRERK4BCQkJrF+/vlhtnU4nL7zwAt988w1Lly4lPDw81/thYWGEhISwceNGWrZsCYDVamXLli08+eSTALRu3Rqz2czGjRvp378/AKdOneLAgQM89dRTADRq1IiVK1ditVqxWCyAHoYSkauDkgtyRQwGQ57hftnZ2QW279GjB99//z3r1q3jp59+4r777uOee+5hwoQJOBwOWrVqxezZs/OsFxQUBOSMZBg6dCjr16/nyy+/5LXXXmPJkiW0a9fOrbhNJpNuKlZiOj9SHnSdiUhVYzL+WU7NYMDg+gGjPu9ERERc3PlOnDp1KqtWrWL+/Pn4+vq6aiz4+/vj5eWFwWBg2LBhLFy4kAYNGlC/fn0WLlyIl5cXt9xyi6vtkCFDmDlzJtWrVycwMJCZM2fSrFkzunbtCsCAAQN47bXXmDJlCqNGjeL48eO8++67QN4pl0REKhMlF6RIO3fuzPO6fv36mEwmgoKCOHXqlOu9P/74g4yMjEK3FxQUxODBgxk8eDAfffQRL7/8MhMmTKBVq1Z8+eWX1KhRAz+/gsfut2zZkpYtW/Lggw9y5513smrVKreTCyIiIiIiIiIihfnPf/4DwNChQ3Mtnz59OoMHDwZg5MiRZGVlMXXqVJKSkmjbti3vvvturvsakyZNwsPDg8cee4zMzEy6dOnCjBkzXIkOPz8/3nrrLZ5//nkGDhxIs2bNGDt2LE888YRrJIOISGWk5IIUKSEhgenTp3PnnXfy+++/88EHHzBhwgQArr/+ev7v//6Pdu3a4XA4mD17NmazucBtvf7667Rq1YqmTZtitVpZt26dq27CgAEDeOeddxgzZgyPPvoooaGhJCQk8PXXXzNixAhsNhsff/wxPXv2pGbNmsTGxvLHH38wcODAcukHEREREREREbl2xMTEFNnGYDAwbtw4xo0bV2AbT09PpkyZwpQpUwps06FDB1asWOF6vWLFCsxmM3Xq1HEvaBGRcqTkghTp1ltvJTMzk9tvvx2TycQ//vEP7rzzTgAmTJjApEmT+Mc//kHNmjWZNGkSe/bsKXBbZrOZV199lWPHjuHl5UXHjh159dVXAfD29uaDDz5g9uzZPPzww6SlpREaGkqXLl3w8/MjMzOTw4cPs3z5cs6fP0/NmjW55557uOuuu8qlH0REREREREREysJnn31GWFgYoaGhxMTEMHv2bPr164eXl1dFhyYiUiAlF6RIHh4ePPvss0ydOjXPe6Ghobzzzju5lm3dutX197CwsFyZ/oceeoiHHnqowH2FhIQwc+bMfN/z8/Nj3rx57oYvIiIiIiIiIlKpJSYm8sYbb5CYmEhISAj9+vVj/PjxFR2WiEihlFwQERERERERERGpQCNHjmTkyJEVHYaIiFuUXBARERERqUKs2Q4MBgNWm6OiQxEREZFS5OPjU6rtRESulJILUqilS5dWdAgiIiIiUgwWsxFPDye2bCfZ9mwAvD1NeJqNFRyZiIiIXClPT0+ioqLcai8iUtaUXBARERERqQJqBJi5o7ODps3CMZpMAHiajdQIMFdwZCIiInKlPD09lTAQkUpHyQURERERkSoiwBtq1/DE9GdyQUREREREpKxojLSIiIiIiIiIiIiIiLhFIxdERERERKoIU2YyjnMJUIyRCwYPC0b/GuUQlYiIiIiIVEVKLoiIiIiIVAGOlDPU/O0T0vcZMWAosr3B4o3vrU8rwSAiInIVyMrKIisrK89y1WIQkYqk5IKIiIiISFWQbcWYnQXeARjMhd9kcNqsOK0ZOLOt5RSciIiIXImsrCy2bNlCenq6a5mPjw9RUVFKLohIhVFyQURERESkCjF4WDCYvYps57TbyiEaERERKS3p6emkpqZWdBgiIi4q6CwiIiIiIiIiIiIiIm5RckFERERERERERCQfW7ZsYfTo0URHRxMREcHatWtzve90Opk7dy7R0dG0adOGoUOHcuDAgVxtrFYrL7zwAp07d6Zdu3aMHj2aEydOlOdhiIiUCSUXpMzMnTuXgQMHFtpm4sSJPPTQQ+UUkYiIiIiIiIhI8aWnpxMREcFzzz2X7/uLFi1iyZIlPPfcc3zyyScEBwdz//3355q+6KWXXuKbb75hzpw5fPjhh6Snp/Pggw9it9vL6zBERMqEkgtSJCUARERERERERORa1KNHD8aPH0+fPn3yvOd0Onn//fcZPXo0ffr0oVmzZsycOZPMzExWrVoFQEpKCp9++ikTJ06ka9eutGzZklmzZrF//35++ukn17a2bdvGwIEDiYyMZPDgwaxdu5aIiAj27t1bbscqIuIuJRdERERERERERETcFB8fT2JiItHR0a5lFouFqKgotm/fDsDu3bux2Wx069bN1SY0NJSmTZu62qSmpjJmzBiaNWvG8uXLefTRR5k1a1b5HoyISAkouVCJffTRR3Tv3h2Hw5Fr+ejRo5kwYQIA3333HYMHDyYyMpJevXrx5ptvkp2d7Wp76NAh7r77biIjI+nfvz8//fRTnjkCT548yWOPPUZUVBSdO3dmzJgxxMfHAzlTGy1fvpxvv/2WiIgIIiIi2LRpEwCzZs2ib9++tG3bll69evHaa69hs9nyPY4ePXrQtm1bHnnkEZKTkws8ZqfTyaJFi+jVqxdt2rThb3/7G2vWrHG9n5SUxBNPPMH1119PmzZt6NOnD59++mkJeldEREREREREpOQSExMBqFGjRq7lwcHBnD59GoDTp09jNpsJDAwssM3KlSsBePHFF2nSpAk9evRgxIgRZR2+iMgV86joAKRg/fr148UXX2TTpk106dIFyLm5vmHDBhYsWMD69et56qmnmDx5Mp06dSIuLo4pU6YA8PDDD+NwOBg7dix16tThf//7H6mpqcycOTPXPjIyMhg2bBgdO3bkgw8+wMPDg/nz5zNixAhWrFjB8OHDOXToEKmpqUyfPh3A9YXo6+vL9OnTqVmzJvv372fKlCn4+voycuRI1/bj4uL48ssvWbBgAampqTz77LNMnTqVV155Jd9jfu211/j66695/vnnadCgAVu2bOGpp54iKCiI6667jtdff51Dhw6xaNEiqlevTlxcHJmZmW73reY1rJwunBedHylLus5EpKqyO3I+15xOJ06ns9C2TqcTJ04cdjvo81BERK4hZfF7gMFgyPW6qO/hy9vExsYSERGBp6ena1lkZGTpBSgiUkaUXKjEqlWrRvfu3Vm5cqUrubBmzRqqVatGly5dGDZsGKNGjWLQoEEAhIeHu4bOPfzww2zYsIGjR4+ydOlSQkJCABg/fjz333+/ax+rV6/GYDDw0ksvub4Mp0+fTlRUFJs3byY6OhovLy+sVqtrGxdcWochLCyMw4cP88UXX+RKLmRlZTFz5kxq1aoFwOTJk3nwwQeZOHFinu2lp6ezZMkS3nvvPdq3b+86pl9//ZX//ve/XHfddRw/fpwWLVq4vmTDwsJK1Le7du0q0XpSPnR+pDzoOhORqsYj/SyhQGpaKs5Ma6FtDXYrJlsWf+zdS7bPyfIJUEREpBJISkoqtW1duK9x+vRpatas6Vp+5swZgoODgZwRCjabjaSkpFyjF86cOeO69+F0OvMkKERErgZKLlRyAwYM4LnnnuP555/HYrGwcuVK+vfvj8lkYs+ePezatYsFCxa42tvtdrKyssjIyCA2NpZatWrluonfpk2bXNvfs2cPcXFxdOjQIdfyrKws4uLiCo1tzZo1vPfee8TFxZGenk52djZ+fn652tSuXduVWABo3749DoeD2NjYPMmFgwcPkpWVxfDhw3Mtt9lstGjRAoC7776bRx55hN9//51u3brRu3fvPLEXR2RkJCaTye31pGzZ7XZ27dql8yNlSteZiFRVtjPxnN8Bfr5+GC3ehbZ12jJxZhlp2aIFxuq1yydAERGRSiAhIYH169eXyrbCwsIICQlh48aNtGzZEgCr1cqWLVt48sknAWjdujVms5mNGzfSv39/AE6dOsWBAwd46qmnAGjUqBErV67EarVisVgAPQwlIlcHJRcquZ49ezJ58mTWrVtHZGQkW7duZeLEiQA4HA7GjRtHnz598qzn6elZrMy3w+GgVatWzJ49O897QUFBBa63Y8cOHn/8ccaNG0d0dDT+/v6sXr2aJUuWFLq/C/HkF9eFIYELFy4kNDQ013sXvlx79OjB999/z7p16/jpp5+47777uOeee1w1KIrLZDLppmIlpvMj5UHXmYhUNQ5jzmeawWAo+ulHgwEwYNRnoYiIXGPc/d5LS0vL9fBlfHw8e/fuJTAwkDp16jBs2DAWLlxIgwYNqF+/PgsXLsTLy4tbbrkFAH9/f4YMGcLMmTOpXr06gYGBzJw5k2bNmtG1a1cg58HS1157jSlTpjBq1CiOHz/Ou+++C+R//0REpLJQcqGS8/Lyok+fPqxcuZIjR47QoEEDWrduDUDLli2JjY2lfv36+a7bqFEjEhISOH36tGs43uWZ71atWvHll19So0aNPKMOLjCbzXmKSm/bto06deowZswY17Ljx4/nWTchIYGTJ0+6kgXbt2/HaDTSoEGDPG0bN26MxWLh+PHjXHfddQX0SE7SY/DgwQwePJiPPvqIl19+2e3kgoiIiIiIiIhIUXbv3s2wYcNcry/Uoxw0aBAzZsxg5MiRZGVlMXXqVJKSkmjbti3vvvturnsskyZNwsPDg8cee4zMzEy6dOnCjBkzXIkOPz8/3nrrLZ5//nkGDhxIs2bNGDt2LE888YTrYUsRkcpIyYWrwIABAxg9ejQHDhzgb3/7m2v52LFjGT16NLVr16Zfv34YjUZiYmKIiYlh/PjxdOvWjfDwcCZMmMBTTz1FWloac+bMybPtd955hzFjxvDoo48SGhpKQkICX3/9NSNGjKBWrVrUrVuXDRs2cPjwYapVq4a/vz/16tUjISGB1atXExkZybp161i7dm2e2D09PZk4cSITJkwgNTWVF198kZtvvjnPlEiQ82U6fPhwpk+fjtPppGPHjqSmprJ9+3Z8fHwYNGgQr7/+Oq1ataJp06ZYrVbWrVtH48aNS7/TRUREREREROSa17lzZ2JiYgp832AwMG7cOMaNG1dgG09PT6ZMmcKUKVMKbNOhQwdWrFjher1ixQrMZjN16tQpWeAiIuVAyYWrwPXXX09gYCCxsbEMGDDAtbx79+4sWLCAefPmsXjxYjw8PGjUqBG33347kDPUb968eUyePJnbbruN8PBwnn76aUaPHo2npycA3t7efPDBB8yePZuHH36YtLQ0QkND6dKliyvLfscdd7B582aGDBlCeno677//Pr179+bee+9l2rRpWK1W/vKXvzBmzBjefPPNXLHXq1ePm266iZEjR5KUlESPHj345z//WeCxPvbYY9SoUYOFCxcSHx+Pv78/LVu2ZPTo0UDOKIpXX32VY8eO4eXlRceOHXn11VdLtb9FRERERERERMrTZ599RlhYGKGhocTExDB79mz69euHl5dXRYcmIlIgg/PCRPdyTfj111/5+9//zjfffEO9evUqOpxyZ7fb2bFjB+3atdP8wpWQzo+UB11nIlJV2U7Hc+Y/z+NTPbh4BZ0z0/Ad/AwmFXQWEZFrSEJCAm+//TajRo2idu3K8x24aNEi/vOf/5CYmEhISAi9e/dm/PjxeHvnfKcnJyfzww8/kJqa6lrHz8+PHj16EBAQUFFhF+jYsWOcOHFCv3eJVHEauVDFffPNN/j4+FC/fn3i4uJ46aWX6NChwzWZWBARERERERERqYxGjhzJyJEjKzoMERG3KLlQxaWlpTFr1iwSEhKoXr06Xbt2VfFjERERkSrMmW3FaTAU3sZmLadoREREpLT4+PgU+lpEpLwpuVDF3Xrrrdx6660VHYaIiIiIlDUPCw4PT7DbcNqzi2xusHhj8LCUQ2AiIiJypTw9PYmKisp3uYhIRVFyQURERESkCjD61+BUm9toFdEUYzHmNjZ4WDD61yiHyERERORKeXp6KpEgIpWOkgsiIiIiIlWE3SsAY/XaKpwoIiIiIiJlzljRAYiIiIiIiIiIiIiIyNVFyQUREREREREREREREXGLkgsiIiIiIiIiIiIiIuIWJRdERERERERERERERMQtSi6IiIiIiIiIiIiIiIhbPCo6ABERERERERERkfKUmJhY0SFUaadPn67oEESkHCi5ICIiIiIiIiIi1wQfHx/MZjPLly+v6FCqNA8PD/r161fRYYhIGVNyQURERERERERErgmBgYGMHTuW9PT0ig6lSnM4HJw4caKiwxCRMqbkgoiIiIiIiIiIXDMCAwMJDAys6DCqNLvdruSCyDVABZ1FRERERERERERERMQtSi6IiIiIiIiIiIiIiIhblFwQERERERERERERERG3KLkgIiIiIiIiIiIiIiJuUXJBRERERERERERERETcouSCiIiIiIiIiIiIiIi4RckFERERERERERERERFxi5ILIiIiIiIiIiIiIiLiFiUXRERERERERERERETELUouiIiIiIiIiIiIiIiIWzwqOgCR8uR0OgGw2+0VHInk58J50fmRsqTrTESqKn2+iYiISGVx4f8jF+7DiEjVZHDqX7lcQ6xWK7t27aroMEREREREREREqrzIyEgsFktFhyEiZUTJBbmmOBwOsrOzMRqNGAyGig5HRERERERERKTKcTqdOBwOPDw8MBo1K7tIVaXkgoiIiIiIiIiIiIiIuEWpQxERERERERERERERcYuSCyIiIiIiIiIiIiIi4hYlF0RERERERERERERExC1KLoiIiIiIiIiIiIiIiFuUXBAREREREREREREREbcouSAiIiIiIiIiIiIiIm5RckFERERERERERERERNyi5IKIiIiIiIiIiIiIiLhFyQUREREREREREREREXGLkgsicsUWLlzIkCFDaN++PV26dOGhhx7i8OHDrvdtNhuzZs1iwIABtGvXjujoaJ5++mlOnjyZ7/Z69uzJjz/+CEBMTAz/+Mc/aNOmDd27d+fNN9/E6XTmam+1WpkzZw433ngjrVu3pnfv3nzyySdld8BSIXSdiUhVpc83ERERERG5GnlUdAAicvXbvHkz99xzD5GRkdjtdubMmcMDDzzA6tWr8fHxITMzk99//50xY8bQvHlzkpOT+de//sWYMWNYtmxZrm3t27eP8+fPc/3115Oamsrw4cPp3Lkzn3zyCX/88QcTJ07Ex8eH4cOHu9Z59NFHOXPmDC+99BL16tXj7NmzZGdnl3c3SBnTdSYiVZU+30RERERE5GpkcF7+6JKIyBU6e/YsXbp04YMPPiAqKirfNr/99hu3334733//PXXq1HEtnzdvHjExMbzxxht8+OGHvPrqq/z0009YLBYA3n77bZYuXcqPP/6IwWDgxx9/5PHHH2ft2rVUq1atPA5PKgldZyJSVenzTURERERErgaaFklESl1KSgoAgYGBBbZJTU3FYDAQEBCQa/l3331Hr169ANixYwdRUVGuGyIA0dHRnDp1ivj4eFf71q1bs3jxYrp3707fvn2ZOXMmmZmZpX1YUsnoOhORqkqfbyIiIiIicjXQtEgiUqqcTifTp0+nY8eONGvWLN82WVlZzJ49m1tuuQU/Pz/X8pMnTxITE0OPHj0AOH36NHXr1s21bo0aNVzvhYeHc/ToUX799Vc8PT2ZN28e586dY+rUqZw/f57p06eX0VFKRdN1JiJVlT7fRERERETkaqGRCyJSqqZNm8b+/ft59dVX833fZrMxfvx4nE4nzz//fK73vv32W9q3b59rWgaDwZDvdi4sdzqdGAwGZs+eTZs2bejRowcTJ05k+fLleuqyCtN1JiJVlT7fRERERETkaqHkgoiUmhdeeIHvvvuO9957j1q1auV532az8dhjjxEfH8+7776b62lLyD2VA0BwcDCJiYm52pw5cwa4+ORlSEgIoaGh+Pv7u9o0btwYp9PJiRMnSu3YpPLQdSYiVZU+30RERERE5Gqi5IKIXDGn08m0adP4+uuvee+99wgPD8/T5sINkSNHjvDvf/+b6tWr53o/LS2NTZs25bop0q5dO7Zu3YrVanUt27BhAzVr1iQsLAyADh06cOrUKdLS0lxtYmNjMRqN+d6YkauXrjMRqar0+SYiIiIiIlcjJRdE5IpNnTqVFStW8Morr+Dr60tiYiKJiYmu6RSys7N55JFH2L17N7Nnz8Zut7vaXLjhsX79eho0aJDrhsqAAQOwWCw888wz7N+/n2+++YaFCxdy//33u6ZzuOWWW6hWrRrPPPMMBw8eZMuWLcyaNYshQ4bg5eVV/p0hZUbXmYhUVfp8ExERERGRq5HB6XQ6KzoIEbm6RURE5Lt8+vTpDB48mPj4+FxPUl7q/fffp3Pnzjz11FPUqVOH8ePH53o/JiaGadOm8dtvvxEYGMhdd93F2LFjc80hfejQIV588UW2bdtGtWrVuPnmm3nsscd0U6SK0XUmIlWVPt9ERERERORqpOSCiFQ4u91O165dWbRoEW3atKnocKSK0nUmIlWVPt9ERERERKQiaFokEalw58+f59577yUyMrKiQ5EqTNeZiFRV+nwTEREREZGKoJELIiIiIiIiIiIiIiLiFo1cEBERERERERERERERtyi5ICIiIiIiIiIiIiIiblFyQURERERERERERERE3KLkgoiUii1btjB69Giio6OJiIhg7dq1ud53Op3MnTuX6Oho2rRpw9ChQzlw4ECh29y0aRNjxowhOjqadu3aMXDgQFasWJGnndVqZc6cOdx44420bt2a3r1788knn5Tq8UnlUNR1dqnnnnuOiIgI/v3vfxe53ZiYGP7xj3/Qpk0bunfvzptvvsnlJYk2b97M4MGDiYyMpFevXvznP/+50sMREQFg4cKFDBkyhPbt29OlSxceeughDh8+nKvN119/zQMPPEDnzp2JiIhg7969RW43KyuLiRMnMmDAAFq2bMlDDz2Up82mTZuIiIjI83Po0KFSOz4REREREamaPCo6ABGpGtLT04mIiGDw4MGMGzcuz/uLFi1iyZIlzJgxgwYNGvDWW29x//33s2bNGvz8/PLd5vbt24mIiGDkyJEEBwezbt06JkyYgJ+fHz179nS1e/TRRzlz5gwvvfQS9erV4+zZs2RnZ5fZsUrFKeo6u2Dt2rXs3LmTmjVrFrnN1NRUhg8fTufOnfnkk0/4448/mDhxIj4+PgwfPhyAo0ePMmrUKG6//XZmzZrFtm3bmDp1KkFBQfTt27fUjk9Erk2bN2/mnnvuITIyErvdzpw5c3jggQdYvXo1Pj4+QM7nX/v27enXrx+TJ08u1nbtdjuenp4MHTqUr776qtC2l38fBwUFlfyARERERETkmqDkgoiUih49etCjR49833M6nbz//vuMHj2aPn36ADBz5ky6du3KqlWruOuuu/Jdb/To0bleDxs2jA0bNvDNN9+4kgs//vgjW7ZsYe3atVSrVg2AsLCwUjoqqWwKu84uOHnyJNOmTeOdd97hwQcfLHKbK1asICsrixkzZmCxWGjWrBl//PEHS5Ys4f7778dgMPDRRx9Ru3Ztnn32WQAaN27Mrl27ePfdd5VcEJEr9s477+R6PX36dLp06cKePXuIiooC4NZbbwUgPj6+2Nv18fFh6tSpAGzbto3k5OQC29aoUYOAgAA3IxcRERERkWuZpkUSkTIXHx9PYmIi0dHRrmUWi4WoqCi2b9/uWjZx4kSGDh1a6LZSUlJcSQSA7777jtatW7N48WK6d+9O3759mTlzJpmZmaV+HFL5ORwOnnrqKR544AGaNm2ab5vLr7MdO3YQFRWFxWJxLYuOjubUqVOum3g7duygW7duubbTvXt3du/ejc1mK4MjEZFrWUpKCgCBgYFurVec79GC3HrrrURHR3Pvvffyyy+/lGgbIiIiIiJybdHIBREpc4mJiUDOU5GXCg4O5vjx467XISEhOByOArezZs0adu3axbRp01zLjh49yq+//oqnpyfz5s3j3LlzTJ06lfPnzzN9+vRSPhKp7BYtWoSHhwfDhg0rsM3l19np06epW7durjYXrtXTp08THh7O6dOnCQ4OztMmOzubc+fOFWv6JRGR4nA6nUyfPp2OHTvSrFkzt9Yt6nu0oHVeeOEFWrVqhdVq5fPPP+e+++5j6dKlrlETIiIiIiIi+VFyQUTKjcFgyPX68oK5TzzxRIHrbtq0iWeeeYYXX3wx1xPpTqcTg8HA7Nmz8ff3B3Ke3HzkkUf45z//iZeXVykegVRmu3fv5v3332fZsmV5rrVL5XedFdT+0uUFXb+F7UtExF3Tpk1j//79fPjhh26vW9j3aEEaNWpEo0aNXK/bt2/PiRMneOedd5RcEBERERGRQmlaJBEpcyEhIUDOU+CXOnPmTJ6nwfOzefNmRo8ezcSJE11zTl+67dDQUFdiAXLmw3c6nZw4ceLKg5erxtatWzlz5gw33ngjLVu2pGXLlhw7doyZM2fmKgB+ueDgYNfomgvOnDkDXBzBkF+bs2fP4uHhkWuaLhGRK/HCCy/w3Xff8d5771GrVq0Ki6Nt27YcOXKkwvYvIiIiIiJXByUXRKTMhYWFERISwsaNG13LrFYrW7ZsoX379oWuu2nTJh588EGefPJJ7rzzzjzvd+jQgVOnTpGWluZaFhsbi9ForNAbM1L+Bg4cyIoVK/jss89cPzVr1uSBBx5g8eLFBa7Xrl07tm7ditVqdS3bsGEDNWvWdBUHb9euHT/99FOu9TZs2EDr1q0xm81lc0Aics1wOp1MmzaNr7/+mvfee4/w8PAKjWfv3r2uBwNEREREREQKommRRKRUpKWlERcX53odHx/P3r17CQwMpE6dOgwbNoyFCxfSoEED6tevz8KFC/Hy8uKWW25xrfPKK69w8uRJXn75ZeBiYmHYsGH06dPH9eS42Wx2PS1+yy23MH/+fJ555hkeeeQRzp07x6xZsxgyZIimRKqCirrOqlevnqu92WwmODg415Qfl19nAwYMYN68eTzzzDM8+OCDHDlyhIULFzJ27FjXlEd33XUX//d//8f06dO544472L59O59++imvvPJKORy1iFR1U6dOZdWqVcyfPx9fX1/X952/v7/ru+z8+fMkJCRw6tQpICeRDjkjqy4kAi7/fAM4ePAgNpuN8+fPk5aWxt69ewFo0aIFAP/+978JCwujSZMm2Gw2VqxYwVdffcXcuXPL5+BFREREROSqZXBePum5iEgJbNq0Kd8iuoMGDWLGjBk4nU7efPNN/vvf/5KUlETbtm157rnnchWrnDhxIseOHWPp0qWu18uXL8+zzeuuu87VBuDQoUO8+OKLbNu2jWrVqnHzzTfz2GOPKblQBRV1nV2uZ8+eDBs2jPvuu8+17PLrDCAmJoZp06bx22+/ERgYyF133ZUruQA503NNnz6dAwcOULNmTUaOHMndd99dugcoItekiIiIfJdPnz6dwYMHA7Bs2TKeeeaZPG0efvhhxo0bB+T/+dazZ0+OHTuWZ72YmBgAFi1axMcff8zJkyfx8vKiSZMmPPjgg/To0eOKj0tERERERKo2JRdERERERERERERERMQtqrkgIiIiIiIiIiIiIiJuUXJBRERERERERERERETcouSCiIiIiIiIiIiIiIi4RckFERERERERERERERFxi5ILIiIiIiIiIiIiIiLiFiUXRERERERERERERETELUouiIiIiIiIiIiIiIiIW5RcEBERERERERERERERtyi5ICIiIiIiIiIiIiIiblFyQURERERERERERERE3KLkgoiIiIiIiIiIiIiIuEXJBRERERERERERERERcYuSCyIiIiIiIiIiIiIi4hYlF0RERERERERERERExC1KLoiIiIiIiIiIiIiIiFuUXBAREREREREREREREbcouSAiIiIiIiIiIiIiIm5RckFERERERERERERERNyi5IKIiIiIiIiIiIiIiLhFyQUREREREREREREREXGLkgsiIiIiIiIiIiIiIuIWJRdERERERERERERERMQtSi6IiIiIiIiIiIiIiIhblFwQERERERERERERERG3KLkgIiIiIiIiIiIiIiJuUXJBRERERERERERERETcouSCiIiIiIiIiIiIiIi4RckFERERERERERERERFxi5ILIiIiIiIiIiIiIiLiFiUXRERERERERERERETELUouiIiIiIiIiIiIiIiIW5RcEBERERERERERERERtyi5ICIiIiIiIiIiIiIiblFyQURERERERERERERE3KLkgoiIiIiIiIiIiIiIuEXJBRERERERERERERERcYuSCyIiIiIiIiIiIiIi4hYlF0RERERERERERERExC1KLoiIiIiIiIiIiIiIiFuUXBAREREREREREREREbd4VHQAIuXJ4XCQnZ2N0WjEYDBUdDgiIiIiIiIiIlWO0+nE4XDg4eGB0ahnm0WqKiUX5JqSnZ3Nrl27KjoMEREREREREZEqLzIyEovFUtFhiEgZUXJBrikXsuUtW7bUl1spstvt7Nq1i8jISEwmU0WHU2WoX8uG+rVsqF/Lhvq17Khvy4b6tWxURL/a09NJ3rIFo9mMwWwutK0jIwXnyd/xatwUo4+v2/tKy7DxU6wHPmFNMXt75Y4jM5XAY5toXL8ant6eruUZtjR22v/Au1ZzzBa/PNu0padh2nmAeoGN8PTM+74jIwV7YgxHG3ehmWcqpgIGNRcWW3EVdAwl2lZ6Gql7Y8muXY89Xifwb9gET8/cfW7PSsH70O/UC2iMxeKbaz2PkDAMSX8Ueq5Kcj5ytXHC/iw/V78Wda6Kddz5HFNxVLbzd0V94QBDvAlnmB27rWT9UVIF9ePlfVNUf6fb0zma/RsRYQH4WXL35YVzHOpTiz3GRLf66NJ/7xajJw6bjYCoKEw+PkWuq++tsmO1Wvn999+v6VELdrsdm81W0WFIOTOZTHh4eFwzM6YouSDXlAv/sE0mk/7jUAbUr2VD/Vo21K9lQ/1aNtSvZUd9WzbUr2WjXPvVZMIImMxmjJ6F31C1Z2ficNgxeZgxWdy/gWuy5UyfYfYw4eWZ+1dUa7YHOJ2YPMx4XLJtE1aw2/HwMONpzic+UxYOpwOT2YxHPvHbszNxOuwAeFi8CkwuFBZbcRV0DCVhsFoxOuyYjEacODCb8h6/zZaJAXvOsf+5v4vrmaCIc1WS85ErRieQdbFfizxXxZDfMRVHZTt/V9IXTocTG3YsZgvZdnOJ+qOkCurHy/umqP62ZZmwZzsx53P8F86x0eQBTjf76JJ/7yajGWw2tz8v9b1V+i7057Vyg/VyqampxMfH43Q6KzoUqQA+Pj7Url37mniwWckFERERERERERERkVJgt9uJj4/Hx8eHkJCQazbBci1yOp1YrVYSExOJjY2ladOmVX70jpILIiIiIiIiIiIiIqXAZrPhdDoJCQnB29u7osORcubt7Y3ZbObIkSNYrVa8vMp+hFlFqtqpExEREREREREREZFyphEL166qPlrhUtfOkYqIiIiIiIiIiIiISKlQckFERERERERERERERNyimgsiIiIiIiIiIiIiZSjL5iDb7iy3/XmYDHiar73nyiMiIpg3bx69e/eu6FCuCUouiIiIiIiIiIiIiJSRLJuDX35PIjXDXm779PM2cX3LwGInGCZOnMjy5csB8PDwIDAwkIiICP76178yePDgSlFH4MyZM7z++uv8+OOPnD59msDAQJo3b87DDz9M+/btKzq8a5KSCyIiIiIiIiIiIiJlJNvuJDXDjtlswOJR9jfprdkOUjPsZNudeJqLv1737t2ZPn06DoeD06dPs379el566SW++uor3nrrLTw8KvZW8rhx48jOzmbGjBmEh4dz5swZfv75Z5KSkio0rmtZxaecRERERERERMpQZraDDYfTyMx2VHQoIiJyDbN4GPGylP1PSRMYFouFkJAQQkNDadWqFaNHj2b+/Pn8+OOPrlENACkpKUyZMoUuXbrQoUMHhg0bxr59+3Jt67vvvmPw4MFERkbSq1cv3nzzTbKzs13vR0RE8OGHHzJixAjatGlDz549+fLLLwuMLTk5mV9//ZUnn3yS66+/nrp169KmTRsefPBB/vKXvxS43smTJ3nssceIioqic+fOjBkzhvj4+FxtPv30U26++WYiIyPp168f//d//+d6Lz4+noiICFavXs1dd91FZGQkf/3rX9m0aVNxu7VKU3JBREREREREqrStcRkkZ9nZejSjokMRERG5qnTp0oXmzZvz9ddfA+B0Ohk1ahSJiYm8/fbbLFu2jFatWnHvvfdy/vx5ANavX89TTz3F0KFD+eKLL5g2bRrLli1jwYIFubb9+uuv07dvXz7//HP+9re/8cQTT3Do0KF84/Dx8cHHx4e1a9ditVqLFXtGRgbDhg3Dx8eHDz74gA8//BAfHx9GjBjh2sbHH3/MnDlzGD9+PF988QWPP/44b7zxRq5kCsDLL7/M/fffz2effUb79u0ZM2YM586dc6crqyQlF6RSyM7OZs6cOfTs2ZM2bdq4MpoOx8Uni5xOJ3PnziU6Opo2bdowdOhQDhw4UIFRi4iIiIhIZWW1G/j2YCZv/3ya2gFGtsdn0CzEjbkhKqksh4FfjjmwZRsqOhTJR6bNwQ/7M8i0FTxKJjXNwWerT5Oaml1gGxGRyqRRo0YcO3YMgF9++YX9+/fzxhtvEBkZSYMGDZgwYQIBAQF89dVXACxYsIBRo0YxaNAgwsPD6datG48++igfffRRru3269eP22+/nYYNG/LYY4/RunVrli5dmm8MHh4ezJgxg88++4xOnTpx11138eqrr+YZMXGp1atXYzAYeOmll4iIiKBx48ZMnz6dhIQENm/eDMD8+fOZOHEiffr0ITw8nD59+nDvvffy3//+N9e27rnnHvr27Uvjxo15/vnn8ff355NPPilxn1YVqrkglcKiRYv46KOPmDlzJk2aNGH37t0888wz+Pv7c++997raLFmyhBkzZtCgQQPeeust7r//ftasWYOfn18FH4GIiIiIiFQm+057sTvRht1pZMFP56gV4MGqPakM7xxU0aFdkW1JPqT6OTmX4Emt5hUdjVxuU2wWyZkONsdmcUMz73zb/LAhg/QMI9/+eJ6B/YPLOUIREfc5nU4Mhpyk9p49e0hPT6dz58652mRmZhIXF+dqs2vXrlwjFex2O1lZWWRkZODtnfP5eHkR5nbt2rF3794C4+jbty9/+ctf2Lp1K9u3b2fDhg0sXryYF198kcGDB+dpv2fPHuLi4ujQoUOu5VlZWcTFxXH27FkSEhJ49tlnmTJliuv97Oxs/P39c61zaaweHh60bt2aw4cPFxjrtULJBakUduzYQa9evVxzpIWFhbF69Wp2794N5HyIvf/++4wePZo+ffoAMHPmTLp27cqqVau466673Nqf3W7HbreX6jFcyy70pfq0dKlfy4b6tWyoX8uG+rXsqG/Lhvq1bFREv9rtdhyAgZz/ixfGATiMJuxOoPCm+a/vhJz7FQ5wXv60twMMBuxOcrZ/yTpg+nOVfHbqgBreWZxItuPjCXd3COSTnckMaRuA3el0xQy5t+tebMU+QjAYOJfh4POtSdzRyY9AH1OJtmR3QosAKytSoXEDa77H73SAE1OuPrM7c47XYTBAEeeqJOfj8hgv/bPIc1UM+R1TcZTm+SvuviPrWvj411S6dfTL0/5CX7SKMPPx52n847bgYvfJhXZOh7PE/VFSBfdj7r4psr+dDkwYCr1uHU4Dbl8vDsBgzPl3/eeP3W6HYnxm6nur7KhPq5ZDhw4RFhYGgMPhICQkJN8RBhduyDscDsaNG+e6h3cpT0/PQvd1IYlREE9PT7p160a3bt14+OGHefbZZ5k7d26+yQWHw0GrVq2YPXt2nveCgoLIysoC4IUXXqBt27a53jcaNeFPcSi5IJVCx44d+eijj4iNjaVhw4bs27ePX3/9lUmTJgE5xVMSExOJjo52rWOxWIiKimL79u1uJxd+//33Uo1fcuzatauiQ6iS1K9lQ/1aNtSvZUP9WnbUt2VD/Vo2yr1fAwNz/iwiuYC3PzSNzrlZnVKSHfkR1gggAS4riWA2AA0ac9hx+baDCKQzHAcbeW9gGfBhxeE6ZDnsWDPt/GdnMkH+JpbFpHHLdZacmBt3ASAmtbBfiwuOrbguHMOSzWdJzXCw8Od0brmuesk2RhA7A1vh7eUgKak69U9453P8vtj8unLIClgvrker63P+WqNWEeeqJOcjr4v9Wvi5Kp78jqk4Su/8FeeYAXbGZmH0svDlQTttGl5+Ay2nL5auScAEfL7yHGNvKfwm2+WyjzgoeX+UVP79mLdvCu/vICDIo1YB10LOMcUDgYS7db0Y8MFUtyOu8qyBgbB/f/EPD31viRTm559/Zv/+/dx3330AtGrVitOnT2MymVwJh8u1bNmS2NhY6tevX+i2d+zYwa233up6vXPnTlq0aOFWfE2aNGHt2rX5vteqVSu+/PJLatSoke+sJ/7+/oSGhnL06FH+9re/FRlrVFQUkDOyYc+ePdxzzz1uxVoVKbkglcLIkSNJSUnh5ptvxmQyYbfbGT9+PLfccgsAiYmJANSoUSPXesHBwRw/ftzt/bVs2RKLxXLlgQuQ80TCrl27iIyMxGQq2VNYkpf6tWyoX8uG+rVsqF/Ljvq2bKhfy0ZF9Ks9PZ3kLVsw+fhgKOL/zY70ZBzxO/Fq1hKTX4Db+0pLy2TjQSeBDZrh5Zt7Ghlreio+R36mcaMQvHx9XMszrMnsyDqAf51IPD39L98k1tQUhjQ9zvJ9oTSs4c3ASH/W7k9jcJsAAg0GHOnJZB/fzdHGXYjwy8ZUwEOShcVWXBeO4f52NVjxu5PbO/oQ6FOyufbtqcnUSDnANlM9zDUSsNdqgZd37psltvRkzId2Ui+oOZ6eAa71Unbvx1yrAZw9WOi5Ksn5yBWjMyexcKFfizpXxZHfMRVHaZ6/wo75Uo1amNnyRxZRDTzwMuc+zxf64rZBLfh0dTp3D6qBuWbx/k07HU6yjzjwqG8kOzOlRP1RUgX14+V9U1R/p2Slcdi6k9b1auDv6ZXrvQvnONQvnD0cd+t6saam4Nixl/rBEViMntjT0wmIisLkU/T50vdW2bFarXqwMx/W7JKOoiqf/VitVhITE3E4HJw+fZr169ezcOFCbrzxRlcSoGvXrrRr146xY8fy5JNP0rBhQ06dOsUPP/xA7969iYyMZOzYsYwePZratWvTr18/jEYjMTExxMTEMH78eNf+1qxZQ+vWrenYsSMrV67kt99+46WXXso3tnPnzvHoo48yZMgQIiIi8PX1Zffu3SxevJhevXrlu86AAQN45513GDNmDI8++iihoaEkJCTw9ddfM2LECGrVqsW4ceN48cUX8fPz44YbbsBqtbJ7926Sk5O5//77Xdv68MMPadCgAY0aNeK9994jKSmJIUOGlKifqxIlF6RS+OKLL1ixYgWvvPIKTZo0Ye/evUyfPp2aNWsyaNAgV7vLh0YVNUS7ICaTSf9xKAPq17Khfi0b6teyoX4tG+rXsqO+LRvq17JRrv1qMmGEnJ8ipicAwGHHZKDAm/SFMRouDI4wguHyKQiMpGY5eW9TBn/v4km1P6cTMhoA7H+uks9OjVDNy8mNDT3ZeSontuYhXviYTZj+PB6jI+ep6MLiLjy2Yh8hOJ14exhoXsuCj8VQon4CwACpNic/JdjpFOLM9/gNRjBw2fkw5Byv0eks8lwVdT5wOot1ri+0KfJcFUO+x1QMpXn+irtvX4uRvxRQa+FCX5g9Dfj7mrB4mtzuE4PRUOL+KKmC+zF33xTZ3wYjdgq/bo0GJzjdvF6MgNPh+sxy4v7npb63Sp/6MzcPkwE/bxOpGXZstvKZMsrP24SHmx8S69evJzo6Gg8PDwICAmjevDmTJ09m0KBBrmmCDAYDb7/9Nq+99hqTJk3i3LlzBAcH06lTJ4KDc+rIdO/enQULFjBv3jwWL16Mh4cHjRo14vbbb8+1v3HjxvHFF18wdepUQkJCmD17Nk2aNMk3Nl9fX9q2bct7771HXFwc2dnZ1KpVi9tvv53Ro0fnu463tzcffPABs2fP5uGHHyYtLY3Q0FC6dOniGslw++234+XlxTvvvMOsWbPw8fGhWbNmrhqwFzzxxBMsWrSI33//nXr16jF//nyCgq7uOk6lQckFqRRefvllRo0axV//+lcAIiIiOH78OAsXLmTQoEGEhIQAcPr0aWrWrOla78yZM64PLhERERERqXrWxXuAxcHHW1MZdUNgsdfbd9qLn+Ot2BwG3vjxLDc29WPr0QyiG/qWYbQF23rURobTXGih3+J472gNUgywbkcgjdqVXnxSflauSSM9A5avOsMDQ2tXdDgiUg48zUaubxlIdnkUSvmTh8mAp7n4idUZM2YwY8aMYrX18/Nj8uTJTJ48ucA23bt3p3v37oVuJzQ0lHfffbdY+7RYLDzxxBM88cQThbaLiYnJ9TokJISZM2cWus6AAQMYMGBAoW0aN27Mxx9/XKxYryWqTCGVQmZmZp5RCSaTyTUyISwsjJCQEDZu3Oh632q1smXLljyV5UVEREREpOq4rmY2J5Ic9GtV9BQnl2pUPYuaPk5SrQ76Rvjy/YFU6levuCdpm4WY2PpHJhGh5ivaTt+QJE5nQLsmSSVaP9lqZNGmLM6nV/5iqydOZTJnfjwnT5dsGqnSkJZpZdVhD5IyijfFSKbNwQ/7M8i0Fdy+1w3eZGY46NOz+Mmya5HV6mD7b6lYreUzjYxIWfM0G/H1MpXbjzuJBZGS0lUmlcKNN97IggULWLduHfHx8XzzzTcsWbKE3r17AzlDroYNG8bChQv55ptv2L9/P8888wxeXl6uugwiIiIiIlL1bD7lQa1AI2v2pLu13uFznsQlg4cBPtiWhMHg5P0tJbshXxpW7bHibTHy+c60K9rOxwlBeJngp90lKwq9LCGIcxlOPt6aekVxlIf/fHKa9Ew7/1tVcbFu/C2BVCss25lVrPabYrNIznSwObbg9jt2Walbx5NtO927pq81e/alk55u5/cY9ZOISGWl5IJUCpMnT6Zv375MnTqV/v37M3PmTO68804effRRV5uRI0dy7733MnXqVIYMGcLJkyd599138632LiIiIiIiVy4p08E7m86SlFlxT47/JSyb6l5G7ujk3v/7G1XPIqKGkWreJu6PqsbZdAeDI0tWULg0DGnrSZCP+8dxuTtqnyXTDl1bnyvR+oNrnyXI23DFcZSHm24MJDPDSc9uXkU3LiPXtQzFajfw11aFFza/oG2YhYTz2bQJK7h9j2hvAvxN9LqhWilFeXVKTc3ms9WnSU3N//OlaSMvTp+10aRhxZ1/ESk7MTExroeKK7OwsDBiYmJo0aJFRYdSKanmglQKfn5+PPvsszz77LMFtjEYDIwbN45x48aVY2QiIiIiIteuT/ekkGSFT3cmM7xzxRQt9LPA/dd74+Xj3pRGh8950jjYQlRDX9YdTCXIx8iyXSk8W8u96ZVKS6C3kVE3XPkN/a8SAwn2hh0HA+kQ7f76ARYHI9p6YnKzPyvCN98n4eVt4LuNmbTtVjExHEtMo1l1BwcSHdSrVXT7nfFWalfz4Ld4a4G1Nfx8jQzsr9qBa384T0qqnW9/PE//v+SdLuzA4UyCg8wcjM2kXWTlT4aJiFyLNHJBRERERERE8tUl3Ju9J7PoUr/inhxOtcK7v2S4XSOgUfUsjifbSbfaGRLpT1qWk7vaB5RRlEVLynCw8MekK651cG/4Gfw8oX5oFlbrxcKgrqfA0wufnz7LbuDHw9mF1gSoLO6+LRhfbxO331JxN5abhlfDx+ykY3jxns3s3NCTQC8j1zX0LOPIrn5NGnmy/2AGjQvoK41cEBGp/JRcEBERERERkXwt2ZaM2Qjvbj5fYTGsi/fgfKbD7RoBh895YrXDgUQrn+5KoVGwhR8OZZRRlEX7dGcW59LdP47LhVjsdAs3YjAYiDlodS2/8BT4up8KP8at531JznIWWhOgsqhV04vHxoQRGlxxky5YPEy0CXHgZTYUq72X2cgNzbzxUiHVIi1beRYnsHzl2Xzfv3TkgoiIVE76thMREREREZF8PRgViNFgYHTXkhUPLg1XUnPBYoJmNS30jfBlV0ImHcMq7mny0qq5kJxtZG+ig9NJHjSsf3Eqmeuj/Dh91kZUu8KPMdI/nYRkR6E1ASqL4o7GKEvWbDu/JRrJtDmLblzcbVqdbP8tFau17I7rZFI2/1xxhpNJFVcvpSh3DqqByQh3DKqR7/vFHblw6nQ287fU4Nj5ynusIiJVlZILIiIiIiIikq+E1Gz+2iqAhJSKu7l7oeZCtRLUXKgTYMLbbGLJ5vMYgLd/KVkR5NKQU3Mh0O3juNznJ6pxPBXOp5qIPWJzLf9lSyrBQWa27Ch8RMKuFB9qBxj5Ld5aaLvKoLijMcrSgaPnSbcZ+PVo6d243nfASnq6nd9j0kttm5eb/0MSSRkO3voxqcz2caXSM6DPjdXJKGBgQnFHLvxvdSqZNiNvbU4rgyhFRKQwSi6IiIiIiIhIvuoHmvn+QCr1q1+8IZ6Z7WDD4TQys8sn4WC1w4bDVrdrBJgNWXz8WyaHT2dyZ7sArHa4p0NgGUVZtEybkx/2Z1xxrYN+NZPw9IDGdTKJaHJx9MENXQOwWh10jcr/Ke/kbCP//t1OM98MAr0MV0VNgBu6BpBVyDGVB3drLmTaHEWe50YNzMWuJXD2nJXF7ydw9px7yaB/dPYnNcvBPdf5u7VeeaofbmHv/nTqFTCKprgjF/7a04dsp4Gh7fIvoC1SWThtWTgz08rvx1b5p7+Tq1/FTVwoIiIiIiIildrSHckYDE7e35LEszfl3ODbGpdBcpadrUcziG7oW+Yx7DtrxLdaTo2AG5oV/+bhZzEhOIBv9qfh72kkwNPA8l0pdG1YMTdbtx61keE0u30clzuY5kW7mgbOeTmxWC7WAThy1Erzpj7EH88iNJ/f9D8/UY0UD/jiZHVGt/fAdBXUBDhy1EqLQo6pPLhbc2FTbBbJmY5Cz/PhP2wEB1k4GJtJu8jCp8latvIMqel2ln9xlmFdQ4od93cxGTSpaeH7mAyahlbOKbB+/CkZT08j639Opv9fzHnev3TkQmH9tHu/jfqBVjYfyyayVllGLFJyTlsW1v2/4My8sro77jB4+WFpdj0Gc+kkkyMiIpg3bx69e/cuVvtNmzYxbNgwtmzZQkBAQKnEUJiePXsybNgw7rvvvjLfl1xU+f83ISIiIiIiIhViaLsAnE4Dw6IuPvFfP8iUZzRDWWoU6CAhyf0aAbdGJGIEbmrmy4NdqmNzwPDrquVpt/lQBncsPMGmMi72HFnbg+Pns6+41kEr/wyOpzrJshmwWi/WAWjayIvEMzYa1c97kxYgOiiFw8nQvUblnSbncheeXC/omCqjtmEWEoo4z82bWvD1NdEywqfI7Q0eUAN/XxOD+ge5FcetbX3JtDoY2Lb4CcDijLooTb17VCPA30SvG6rl+36r5j7F6qdunbywOgz0a1r5R+PINcyenZNYMFswePuV+Q9mS87+7MWf0m3ixIk89NBDBb6/YcMGbrjhhtLoDZe5c+cycODAItulp6cza9YsevXqRWRkJNdffz1Dhw7l+++/L9V4xH1KLoiIiIiIiEi+jiTZuLGpH0fO2V3L3tuS5BrNUB4OJxmpHeh+jQCb05M72njRKNiLrfFZtAj15Ocjeedun/NtEnYnvLq2bI9nV0I2dap5XHGtgz0p3tjscOKsmZiDF7d14HAmITXMHL6kDsOlPk2ojq8H/O9Y8BXtvzxdeHK9oGOqjHbGW6ldxHm2WAy0i/TDYin6lkxQdQsPDK1NUHX3klL7Ttro2MCLmJPF77tLR12UBz8/Dwb2D8bPL/9hKRaLsVj9dPR4Nk2Dsjh41l5oO5HKwOBhwWD2Kvsfj9IfsRQSEoLFUjEjof75z3+ydu1annvuOb788ksWL15Mnz59OH/+fIXEIxcpuSAiIiIiIiL56lTXiwAvE53CL07vMqpLdQK9PBjZpXq5xNA8yEGAp9HtGgHNgzPx9zTSKdyb29oGUN3bgyFt807LML5XIB4GeLx32dZj6BRuJtDL/eO4XIfAdCJqGAgLtuWquXDhKe/mTfK/8XNv+BkCPWF4/VNXtP/yVNQxVUadG3qWynmuiDgqS+zuat7Egq/ZQYc6V88IF5GrUUREBGvXrnW93rZtGwMHDiQyMpLBgwezdu1aIiIi2Lt3b6719uzZw+DBg2nbti133XUXhw8fBmDZsmW8+eab7Nu3j4iICCIiIli2bFm++/7+++8ZPXo0PXr0ICwsjNatWzN06FAGDRpUYLwpKSlMmTKFLl260KFDB4YNG8a+fftytfnuu+8YPHgwkZGR9OrVizfffJPs7IujPSIiIvjwww8ZMWIEbdq0oWfPnnz55Zdu911VpuSCiIiIiIiI5Csr20nMqSyyLineHODlQY/GfgR4lc8k+BYTdGtkxqsENQJsdic//5FGcmY2x5NtuY7jgiA/E/7eBoL8ynaaJy+zgRuaeZfoOC7laXQSXc9EiwYZuWouADidBawEBHg4iK6T037RpizOp18dT3kXdkzlwZpt57dEI5m24gXiZTaWynm+IDU1m89WnyY1tfhTm0BOAfG9J6zFjvsCq93JhoOZ5TY1UqGxWB1s/y0Vq7XoWJwUryaGiJSO1NRUxowZQ7NmzVi+fDmPPvoos2bNyrftnDlzmDhxIp9++ikmk4lJkyYB0L9/f4YPH07Tpk3ZsGEDGzZsoH///vluIzg4mB9++IHU1OLVrHA6nYwaNYrExETefvttli1bRqtWrbj33ntdox3Wr1/PU089xdChQ/niiy+YNm0ay5YtY8GCBbm29frrr9O3b18+//xz/va3v/HEE09w6NChYvZU1afkgoiIiIiIiOTr0z0pnM/I5tOdya5llxZ0rsz2nfZiX2I2v5/I4vUfz5Kcmc2in8/laTfr63OkW528/FXe964me/alk55uZ9/B/Kfj2ZbkQ6oV3jlSk3MZTj7eWn5FRUuqqGMqDweOnifdZuDXo+7d3C8ta384T0qqnW/Xuzdt13+3pnIu3eHWed4Um8Xu41Z2H8sqt6mRCnPh/P8ek15ou30HraTbDGw7fvVMnyVytVu5ciUAL774Ik2aNKFHjx6MGDEi37bjx4/nuuuuo0mTJowaNYrt27eTlZWFl5cXPj4+mEwmQkJCCAkJwcvLK99tvPDCC2zfvp3rr7+eIUOG8K9//Ytff/21wPh++eUX9u/fzxtvvEFkZCQNGjRgwoQJBAQE8NVXXwGwYMECRo0axaBBgwgPD6dbt248+uijfPTRR7m21a9fP26//XYaNmzIY489RuvWrVm6dGlJuq1KUnJBRERERERE8jWklX+e6YSa1TSzPT6DZiHlMwWJ1Q4bDlvdfpK6UfUsLCZoVtPCA9dVI83q5K72eadFurGpJ1nZ0LNZ2U4Fk2lzllqx3KxsJzFHvdwq6FzL08oXfzjpH3qWIG8Dd3Tyu+I4ylplKOjcNLwaPmYnHcPLZ6TO5W7oGkCW1UH36/3dWq8kBZ3bhlkwGpyYjIYrLjxeHEWNyihuQedG9c2cTfegVc2KOUci16LY2FgiIiLw9Lz43RkZGZlv24iICNffQ0JCADhz5oxb+4uKimLt2rX8+9//pm/fvhw8eJB77rmHefPm5dt+z549pKen07lzZ9q3b+/6iY+PJy4uztVm3rx5ud6fMmUKiYmJZGRcfICiffv2ubbdrl07jVy4hD55RUREREREJF+BXkaGdw7KtWzlnlS8zAZW7UnN815Z2HfWiG81J5tjs7ihmXfRK/zp8DlP6gSY8Dab+OlIJo1qWPjhUAaNg3NvY9nOnCLPn+7I5O7rSzX0XLYetZHhNLt9HPnZftJJpt1IzEEr13XMWXaxoHMWHfP5Tf/do8E4nPBRfAhzbvfE5FO200CVhosFnfM/pvJg8TDRJsSBl7lipt05ctRKi6Y+xB2z0sq3+NfNpQWdQwOL13k74604nAZwOvkt3nrF12lRXKMyfjxP/7/kTSBdKOhclMNHbAT5ZLPnVDY9GpRBoCKSh9PpxGAo3ueih8fFz6AL6zgc7ifazWYznTp1olOnTowaNYr58+czf/58Ro4cmafQtMPhICQkJN8RBv7+/q4248aNo0+fPnnaXJo0yU9xj/1aoJELIiIiIiIikq+kTAfvbDpLUubFJ4sLK47sjpNJ2fxzxRkSUwqe+z8t00psshEPI24XmW1UPYvjyXbSrXb+0tibE8nZ3HTJE9DJViMrN5+lS4OcGwR/aVq2N9ubhZjY+kcmEaFX9hR+otXEhqMOnE5nroLORT3l/4+6Z7DaoaanlaTMip9PvziKGo1xLbjQB00a5D9VSEFKUpy5eaiZs6nZNA4xl0tR5949qhHgb6LXDdWuaDsq6CxS/ho1akRMTAxW68Vp63bt2uX2dsxmc4kSDQBNmjQhOzs7VwwXtGrVitOnT2Mymahfv36un6CgnAcjWrZsSWxsbJ7369evj9F48Zb5jh07cm17586dNGrUqEQxV0VKLoiIiIiIiEi+8qu5EOjlwfDOQQReYUHn+T8kkZTh4N2fC55PfeNvCWTYIP6cw+0CuYfPeWK1w4FEK//ZnkytAA++uWTu9uXHq5GaYefnP3KmFlp3oGwLHK/aY8XbYuTznWlXtJ33jtYgLQuOnPTMVdD54lP++c87v/m8H74WiMvw5H87r4656S+Oxrg64i0LF/rg4B+Zbq1XksLSn+1Mw8fTREKSvdQKUhfGz8+Dgf2D8fO7ss8Si9lAZGgmnh56klgqP2e2Facts+x/sktWqyYlJYW9e/fm+jl+/HiedgMGDMDpdDJlyhQOHTrE+vXreffddwH3nuqvW7cu8fHx7N27l7Nnz+abKAAYOnQoH330Ebt37yY+Pp4ffviBV199lc6dO+Pnl3eEU9euXWnXrh1jx45l/fr1xMfHs23bNubMmeNKgowdO5bPP/+cuXPncuDAAQ4dOsQXX3zBnDlzcm1rzZo1fPLJJ8TGxvLGG2/w22+/8Y9//KPYx1jVKbkgIiIiIiIiuXz83UHuXZ2C2eAg0+akS30vXvzmJKdSrZxKtbr+fiX+0dmf1CwHt7cv+Ins1o1qEJdk5NCZbE4muVdQt1H1LEwGJyYj9Gziw66ETDqGXXwau3dIMmdTsvlb65xl93Up/tz07rLaIayagUAvY65aB5k2h9t1GO6uexY7EBaSlavmwoX56Zs3yX+u/J7ByRicYDRA34jKPyUSXJ0jF4pzTq1WJ9t/S8VqLfq8167lwebtKdR2s57A+XQ7C39M4nx68ZNmN7fy4dh5G8F+plKpDXKlrFZHsfrJanPy20lvsrKdhbYTqVAmDwxefmCz4sxILfMfbNac/Znc++zYvHkzt956a66fN954I087Pz8/3nrrLfbu3cvAgQOZM2cOY8eOBcgzRVFh+vbtS/fu3Rk2bBhdunRh1apV+baLjo7ms88+44EHHqB///688MILREdH89prr+Xb3mAw8PbbbxMVFcWkSZPo168fjz/+OMeOHSM4OBiA7t27s2DBAjZu3Mhtt93GHXfcwZIlS6hbt26ubY0bN44vvviCv/3tb3z22WfMnj2bJk2aFPsYqzrVXBAREREREZFcPvw+FoCvDln5R8dqvLP5PEaDk0U/n8MJJGdms+jnczx7U2iJ9/FdTAZNalpYf8hGw6D8fzVdv/MY2U44luTkrR+TeH5AjWJv//A5T+xOAzjg3c3nMQBv/3KOeUNykghrEwMI8vdgW3w2UQ08OZ5UdjdTc+pGGGhVx0K1S2odbIrNIjnT4VYdhrgMT+oHwNkUc66aCxfmp7elJ+W73nenA3AawOmAr2LsPBh2xYdV5oqqI1EZFeec7jtgxWa18HtMepE1BVatOYfBAKu+Oc+wriHFjuO/W1M5l+7g462pjLohsFjrfLknHU8PI1uPZBLsZyrzmgtF2bMvnfR0e5H9tO+glXSbgW3HbfRwc/ookfJiMHtiaXY92N1LlF8RkwcGc/GnOJsxYwYzZswo8P2YmJhcrzt06MCKFStcr1esWIHZbKZOnToAdO7cOc86LVq0yLXMYrHkm7y43IMPPsiDDz5YaJvvvvsu12s/Pz8mT57M5MmTC1yne/fudO/evdDthoaGukZlSF4auVAKJk6cyEMPPZRn+aZNm4iIiCA5OTmftUrX3LlzGThwYLHaRUREEBERQfPmzYmOjuaJJ54gISGhTPYnIiIiIiJXnz4dcpIGXesaSUjO5s52AZxNdzA40p/r63kRn2Snc70ru4l3a1tfMm0O+rfK/8ZHaroVL7MHZifY7NArIveNzvRMI6u/SiM1Nf8bNc2DM6kfaORMup3+Eb5k2aGmn8lVP6J/aBLWbLirkx8HT1m5MaLsbqSaDQ7+b2sW6/an53qSvHmo2e06DE18MzmXBSGBtlw1Fw7/kca0l48QezT/ESXtAtI4nwm+Jjt/a3V13Kkvqo5EWfvj+Flm/WcrU3+2sPK3lGKt0zbMwvHz2bQJK/jJ3UYNzDl1FBoW/W+ob69AMjIc9P1L8RIEF9zZyY8gn9wjZYpya1tffMzQpZFXudRcKGpkwoXROC0vqZWSH9VckKuFweyJwcu3/H7cSCyUxGeffcbWrVs5evQoa9euZfbs2fTr1w8vLyX5riVKLlzlnE4n2dnuZT2bNm3Khg0b+OGHH3jttdfYv38/jz32WNkEKCIiIiIiV50tB87haYQdpxzUDvDgvzuSCfIxsmxXCu9tzXky/sKfJbXvpI2O9b04kJj/tC0/boslKT2TjD9fL9qQ+6Gtn38LJCXNzrc/ns93fYvJyck0J74WA8v3pAJwINHmqh9xIM2LZnW9+GhrKn6eRv5vc/FuHpfEsoMWnMBv8TY+3prqWv7ZzjS36zCsORWIjwckpXnkqrnwwcensdqcfPR5/tv6d3wwBgMkZpmJSbw6po8pqo5EWfvkmz2uv3+0s3h9tjPeSp1qHvwWX/C0YYf/sOXUUYgtuo7CrzvSCavjya+/FVybJD/VfEyMuiEw10iZouw7aSOqoTeB3qZyqblw6ciE/FwYjWOxFB6Lai6IVIzExESefvpp+vfvz7/+9S/69evHCy+8UNFhSTlTcqGcbdu2jXvuuYc2bdrQo0cPXnzxRdLTL36Rfv755wwePJj27dvTrVs3nnjiCc6cOeN6/8JoiPXr1zN48GAiIyP5/PPPefPNN9m3b59rVMKyZcsKjMFkMhESEkJoaCidOnXijjvuYMeOHaSmXvxP7qxZs+jbty9t27alV69evPbaa9hsOf+hW7ZsWYH7S0lJYcqUKXTp0oUOHTowbNgw9u3bV9rdKCIiIiIiZeiRW1viBO5p48/2+AzubBdAWpaTu9oH0DY059fIC3+WVNswC3FnbWRYHdjseW/cdmpZlyxrNoFGJ06guo8pV92Fts1SOHvOQecCnsxOtRrJsNpJzXIwoEXOVEh+ngZu+vMp6Ka+mew/lsHg9r6cTbNze4fiP+Htrj71cm40Gw0QVf/ik6QXRm8MbFv8eg8Da53H3wJBAdm5ai70uTEQhwN6dcv/iflBNc+Q7YRw7yzSrc4yn1P/VFI2/1xxhlPJJS+UXdE1F27pHuH6+22ti7dO54aeBHoZC33yv3lTS7GeyAdo0siT/QczaOLmSIKS1PMozqiL0nRhZEpxRnAURjUXRCrGyJEj+e6779i1axffffcdkyZNwtu7YqdTK20xMTH07t27osOo1JRcKEcxMTE88MAD3HTTTaxYsYI5c+bw66+/5srq2Ww2Hn30UVasWMG8efOIj49n4sSJebY1a9YsnnjiCb744guio6MZPny4a0TChg0b6N+/f7FiSkxM5Ouvv8ZkMmE0XrwcfH19mT59OqtXr+bZZ5/lf//7H//+978B6N+/f777czqdjBo1isTERN5++22WLVtGq1atuPfeezl//vwV9Z2IiIiIiJSfX/adpnWwidX70/EyG/h4RzKNgi38cCiDbSdyblZe+LOkdsZbsdnhQKKdI+fyPpm+9fdjOJyQ4jBgBBJT7Lz148XREjv3+xNU3cimS0YCXOqHP/xISHXgcMIXMTlP86dmOfnmz6ekvzgZiMXDwNJNKQT5mvjftvy3Uxo2n8y5WWt3wvwfLh7DhdEbMSeL/2R+gIeDpjWMOBwGYg5efDr++w3JmM3w4+b8n5hffqoGHgaITfciJjGnJkBZWvBjEkkZDt7ZWPLC3xdrLlTMyIXDx88RWt2bcD8nNQOLd8PMy2zkhmbehT75b7EYivVEPsCylWdxAstWnS1u2EDu2g/FVZxRF6XpwsiU4ozgKMylNRdERKR8KblQStatW0f79u1z/YwcOTJXm3feeYcBAwZw33330aBBAzp06MCzzz7LZ599RlZWzhf+bbfdRo8ePQgPD6ddu3Y8++yz/Pjjj6Sl5R7a+sgjj9CtWzfq1atHaGgoPj4+rhEJISEhhc5vtn//ftq3b0/btm2Jjo5m8+bN/P3vf8fH5+JTEw899BAdOnQgLCyMnj17cv/99/Pll18C4OXlle/+fvnlF/bv388bb7xBZGQkDRo0YMKECQQEBPDVV1+VVleLiIiIiEgZu7tnY6p5GRl3fTWqe3vwyA1BVPf2YEjbAG5pnvN7w4U/S6pzQ08i61hoWcuD+tXzPpl+Q4eGhNcMoGl1B/WDoEGwB2MuKUzbpU0SAX4met1QLd/t92iQSoPqHkQ38mH8DTXwMkH7up4MaRsAwKA65/H39uCpPtWp5mPMte3SdntTK8HeEOBl4Om+1V3Li/OUe37ahxrw9nTkqrnwjzuC8fY0ctff8h+B8XCDU/iZoV/oOVrXcn+f7hp9QyDVfIw8UMBIiuK4MOd+8ybl8yT95W7o0JCa1X2JDLbTMbxi6lT8445gPM0G/nFbsFvrleTaKun1WFLFralQFNVcEBGpOFdHFaerQOfOnXn++edzLdu5cydPPfWU6/WePXs4cuQIK1eudC1zOp04HA7i4+Np3Lgxv//+O3PnzmXfvn2cP38epzNnWF9CQgJNmjRxrRcZGVniWBs2bMhbb72F1Wrl22+/Zc2aNYwfPz5XmzVr1vDee+8RFxdHeno62dnZ+PkVPkx4z549pKen07lz51zLMzMziYuLK3G8IiIiIiJSvrKsdhLSckYmNAvxxNPDyIUJRxrU8MRAOg1quHcD8mRSNvN/SOKhHoGEBnrgZTbSq4UPqWmZ/Lg/93Qm55IzWPnDXhrXCaBjjWwSnN7sSMi7TWchs6BYTE7CA03EnrHSKMiXekFmPC95mtzT5CQ8xEJqpoNDiTZOp9oJDSybX5GrecNfW1uITzES4GXkh/0ZdP7zBm5JJ3K5fD2bzYnV5sRWwNQwNSx2WgXByQwzyScdRDVz4lWG92I9zQZqB3rg6VHyqWrOnrfy/frzBN/iTfEnjio9FrOJ8Jr+tHU48DIXbz7/TJuDTbFZdG7oWSp1C3x8TPj5mfDxMULxS3MAJbu2rHYnGw5mEt3Eq8zrLlyoqQBgy6eUpNXqYM++dFo19yl0lIdqLoiIVBwlF0qJt7c39evXz7XsxIkTuV47HA7uuusuhg4dmmf92rVrk56ezvDhw+nWrRuzZs2ievXqJCQk8MADD7jqHVy6v5Iym82uWJs2bcqRI0d4/vnnmTVrFgA7duzg8ccfZ9y4cURHR+Pv78/q1atZsmRJodt1OByEhISwdOnSPO/5+/uXOF4RERERESlfb362h+RMB2/+cp4bm/nz9s+peJsNfLozmW8PpOIE5m08R9eGxf9//vwfcqbJeevHJJ4fUKPQtqvX7+NcSiY7DmSR4utBfHo2Nju51v35t0AyySnoPLB/3qe69532YneiDbvTyKvrzpBld3A8KZtPdyZzb2sTv57zIb26g9nfJGF3wMyvzvH+8Fpu9VNx7TtrZHdSNtkOA2/9kETHBl5sjs3CCa6pa25oVvzf8bafdJJpNxJz0Mp1HXOWXVrQ+bm+edf5/EQ19mVAapYfAdl2Pt6ayqgyHK3x8dZUzmc4WLYjm7YdSraN/3xymvRMO/9blcr4bqUbX3HE/JFIRlY2+1KMFLPkQq7piNw5pwW50Af/WX6GsX2Kf32WJI5NsVnsPm4FpxOLyVAq8V+JSws+X0hCiIhI5aJpkcpRy5YtOXDgAPXr18/zY7FYOHz4MOfOnePJJ5+kU6dONG7cOFcx58KYzWYcjpLNefrQQw+xevVq9uzZA+QUna5Tpw5jxoxxTW90/PjxIvfXqlUrTp8+jclkynN8QUFBJYpNRERERETK38i/NifL7iTTaufnP9IYEulPps1JxzBPfP/8LbJrfS8yswv/HeTSorIPdAvACQzvGuB6b+3edH44kJWnoPONUY1wOp00rBPA0SQDyWlOsh1wz3UXkxltm6Vw5qydwAATVuvFOFJTs1n1bRq1fLMI8nKSme3gjnYBOBwQEWJxTYvUOiCDM8nZDLveD7szb8Ho0lTD08GJcw7SspwMbOvL1j8yqeFr5OvdqRw6ZS1WAd2TSdlM+yaDY5ke2OxOLB7OXNMi9b+pGg4HtGzqgTX74hPcmTYHPx7OpmdwMtU8IcRsxWSAfq2ubCqaovRr5UNCUja9m5uK1d5qdbD9t9Rc53Jg/+rYs+Gvvco21oJENAjBx8uD5kHuFUVOKKIocmqag89WnyY1tejrrf9N1bBmOenfq1qxY4CST4sUWcdCZF3PcpkaKb9zfqniTpukgs4iIhVHyYVyNHLkSHbs2MHUqVPZu3cvf/zxB99++62roHOdOnUwm80sXbqUo0eP8u233zJ//vxibbtu3brEx8ezd+9ezp49i9Va/AJM4eHh9OrVizfeeAOAevXqkZCQwOrVq4mLi+P9999n7dq1Re6va9eutGvXjrFjx7J+/Xri4+PZtm0bc+bMYdeuXcWOR0REREREKtbhhBSsDjifBfHnbSzblUL7MG8W/nyODCcYgINnbGw9mlHodi59ejr2TDa9W/jwx5ls13u7j1vZeyI7T0HnnftPUCckgANx5zmTaSDDAVnZTr6PybikjT9ms4F9BzL4/c8izQBrfzhPaqqdrw4FcjbTgJeHkY93JBPsZyIzGwK9cgbw7072pkaAB2v2ZOBpylswujR9dshCpgOSMh38++cUvC1G5nx7nlOpDg6eshWrgO78H5JIynSyMC6ErGwwmZxYLBeTCOt/TsHTE2IOZ/P7iYs3YzfFZpGc5eS70wHU9AYbJrzNBtbsSc9vN6VmzZ50agd6sHafvVjtL31K/YLf9mTQsL4Xe2IqplCvxWyiZYMaWIqXHwFyiiLXLqIo8g8bMkhJzRl1U5T1P6dQvboH6zelFD8IildYOr91erXwoVcLnzKfEgnyP+eXujBtUlGFr1XQWa4WVoeVDHt6uf1YHeVTnF2ubUoulKPmzZuzdOlSjhw5wt///ncGDRrE66+/TkhICABBQUHMmDGDNWvW0L9/fxYtWsSECROKte2+ffvSvXt3hg0bRpcuXVi1apVbsd1///2sW7eOnTt30rt3b+69916mTZvGwIED2b59O2PGjClyfwaDgbfffpuoqCgmTZpEv379ePzxxzl27BjBwe4VnxIRERERkYrTol41/C05c7aH+nswONKf7fEZDI70x+4EsxG61PemU3jh06a0DbNw/M+nuJuHmtn6RyYRoWbXe2YTNK2Zt6Bzlzb1SMuw4mnJ+aXVbIC6gSYGtr04836nlsnY7Q5OnLRyMjHL9fTz9VF+nD3voHt4EmaDnT/O2TDi4ESSnRMpNo6ezwSgqW8m+49lcFcnPwwOyLLDoUQbB06W/s2YWxtb8TSCp8nA36P8SE6z4e/lxGhwYjQ6+PdPyUXu9x+d/UnNgnvqnMHLA1LSDSz58DwbfjmP1ergphsDycoCX28DNXysvPNTFufT7TQPNbMtPptmPulsOwE47GTYnG6PXDiXnMF/v43hXOH5JADOplo5dCqD/Ses3NAk722Hs+esLH4/gbPnLh5z/XALe/enUyvUw/U0+/VRfpw+ayOqXfkUGL6c1WZnT+wZrMXLjwBQJ9DE5ztSqR1YcEaia2cvrFYH3bsEFLm9W/pVx+mEW26qVvwgyD1qqCzXuRIq6CzXEqvDym/nd7Dl7OZy+/nt/A4lGKTMqeZCKZgxY0a+yzt37kxMTEyuZW3atOHdd98tcFu33HILt9xyS65ll24jv20CWCwW18iDwowbN45x48blWd6hQ4dc23366ad5+umnc7W57777ityfn58fkydPZvLkyUXGIiIiIiIildOyDX+QlJWTRMjKdvLprhS8zQY+2pGMyQB2Jxw4bcPLw4g9q+Dt7Iy3UufPp7j3nrDibTHy+c40Rt0QyM54a06RZYOd7OzchVjjTyaRkWUjJS0bJ+BtAbOHgZiTNlfR5eOJniQl5xSC/WVLCqEhnrSL9OOXLakEVTOy/mggR5NztncmJ5/A+QwHb/x4lhm9fPniZCAWi4GPtqZy4XnndCu8/NU5Fg0LLdX+PJNlxNfbgM0OH25NJdtuICUTHE44lw5OnEXu97uYDBoHG9mS5EfDAAN7D/titdvZtDUFP18Pvl+fhIcHnEt28umOEMKrO/l4a059DC+zgX8fC8EOnMr2JNiZM7LAnZoLq9fvIy3TysrDZjpHFt52xabzJJwHcPLxr9n0vTH3+8tWniE13c7yVWd4YGhtAH78KRlPTyOrvzpH86Y+/B6Tzh9xmQQHmdmyI4uw+pfvpeyVpObCm98n4XDCm+uSeP3OkHzbHD2WTfOmPsTFWwmqXviUWAknsrmuvT8Jp7IJ8i3+zfOS1lwozXoRRSmqoHOxt6OCznIVsDuzSbenYzaYMRvKPhFmc9pIt6djd2YDRU+9BzBx4kSWL18OgMlkombNmvTo0YPHH3+cwMCc74uePXty7NixPOs+8cQTjBo1ivj4eHr16oXJZOL7778nNPTi99qpU6f4y1/+gt1u59tvvyUsLOzKD1QqnEYuiIiIiIiISC5/7RyOpxE8jDk3pkP9DOxKyKR/hC8OZ85TanHnrRw6nfMYe7LVyKJNOU/KX+rS0Qq3tvUl0+ZwjT64MKqhde28z7w1rBtEaJAfnh7gAKxZcORsNjV8L/4K62GyY82pPUtggAf1wiwc/iONHbtSAejbOInG1XPaGgG/P1e9o13O0+L9Q5OwZsOw6/3x+/O+iwEY0a3op8ndFe7nwNvsxO6A29r7YnfY8TFD3YCcRI3DCQPb5jy9fT7dzsIfk/L05c2tfDiR7ODGGsk0qebEYs7G6QSHAwL8DQT4Q3Y2eHtC74iznEh20K2xFymZ2Rw976C573kcgAc5T6W7O3KhT5emgIEutW289HVaofUpercNwGwETw8Dd3TMe35v6VcdnPDXvtVdy27oGkCW1cGN3QPYuz+demEW17J2rSx8tjOIpIzyeaL+gpLUXHj4xkCMBnj4LwUnbsLrerD3QM4xFqV+uIV9B9KpV7d4NwcvKGnNBR+zAev/s3ff4XFUV+PHv7N9V6suWe7dkm1Z7t2y6R3TWwgECIFA3uQXSkhITwi8hDTeAIEQQi+hdwdMMeAC7r3JTS5yUW/bd2fu74+VVlqry1rb4PN5Hj22ZmZn75wdaVf33HuPro7a7IWeIDUXxNeJVbNiN9sT/tXdBMbs2bNZvHgxCxYs4N577+Wzzz7j97//fdwx/+///T8WL14c93XNNdfEHdOrVy/efvvtuG1vv/12XLJBfDNIckEIIYQQQgghRJx5y/aBBhEFlT6dhbsCGAa8tcmD0wpBBd6g4m9fVALw5sEMqv3RkfLNvb3OG5utsLU0zKRBDopKo/MEGmc1bDzYspO6eH8VZrOJsB4diRwCgmH4v09rYsd8+FXTqPDq2giLvqrjhVcriOiwZ3+EQ147NUENswaaBn4FNjO8ujY6nWG710FuPwfvrvcSbOjHN2nwweaer0Ww5KAFTxBsFnh2aT26oRHSNXZWNh3z0nIvAK+s9FDtM1rE8oNNPnqnmPisMoX5xRAIWYjo4A8YvPpWJfv2R+PoD8InRRn0TjHxr0V17CjT8YVhoycNgDAmAmG6XHOhtNLD2GHZfLTHRl3AaLc+xZpdPpx2E3YrLNzRspP64KEIUyYkc6i06bXfsy/EqBEuPlsUncGw6Ku62LZPFvupD5h5Y83RXVO/OzUXDtTqXDjezcHattdS+nJZALsteo0dWfhlHTabiUVLj07NBYtZwx9WLC9uZ0rScUZqLgjRc2w2G9nZ2fTu3ZvCwkLOPfdclixZEndMUlIS2dnZcV8uV3zC+qKLLuLNN8f4yG0AAQAASURBVN+M2/bmm29y0UUXJfoSxFEmyQUhhBBCCCGEEHFOn9gXfxAMHZwWFRtdf/nYZEwGWIl22J82zMX336uljzXA5tLoSHloGn1/Tr6LJBsEIoohmRb2VYXxhgwCYYNx/W3srQrjDxmEdUWtx88L89ZQXefHabewaWcZkYhB41hkBbjtJraXhnh6SZAJueVNDVbgcEAgqDAM6NPLTO+kIL1c0bbbTJDhAn8EagM6O6vCZFrDfLKmln2VYYyGPm6nDb49NbnH4zm1VwQM8AYUKqLwBBV9UuLXKdYNWLMnwDn5Lg7WRlrMLIjO/FCclV3L+GyFx28iNRksluhMgOSGZptN0ZkLdX4Di9lAMxnUByHfFe2c1ojGonn9is4Y0i+D8lo/Q5MjVPkUl090t7lG/5iBTur9Bm67ifPGtJy5MGKog/LKMMOHOPB4Irw9r4I+vS1UVIU589TUWD2CQQNsrNtYj8enU1Zv44xRHffy92TdgFBYZ92OclaXmgiEOzcqvjMzBk4qdJKSbOa0OWkdnm/SeBclB4JMGtu1mSZtzYBpTyAc/Vl0WbUuzXjorsbX3uM5gjWRkJoLQiTKvn37WLRoERZL11fVP/XUU6mtrWXlypUArFy5ktraWk455ZQOHim+biS5IIQQQgghhBAiznMfbScIRIDy6IB6FDC/yAtmDZ1oJ/YbGz0EdXjpYDZWE/xrcXQkduPo+w83+bBZTPhCiqeW1BHSoehQiOXFQdaVhAjrsL1cZ091mPnLd+P1h/nv4iLe/mwLAI3dwyaineKldToPzK+mxqdYtbVp5kI4Al8saRrpf6hMZ/7OVPbWgVmLFmtuLETsDSn+vszHY8W90BXUBqMzIwDCOnxW1ImKxV20vMxCwIgmN2pCNFy3ItJwXRCdJfLnj2r4YJOPPqmWFjMLtpaGmdjfwk6vg2c3RmdZVNdCSrKFZSs9eBouPxiKzlyoC0J5vaKsYXD8Fl8yKVawoKjxE5tB0lnF+6vQdYON1RbsFnhttSdujf7m5q2sQTNBlc9ge3nLTvntuwJkZ1rZURzgky9qqPfozJtfTVaGldXrfLF6BAu/rKOqRqeyCvxhEx9v6bijvK02dUfR7nL2ldVTXGti1b7OdYB3ZsaAO8nEhedm4XZ33GE3/9NanE4T8z9ve6ZIa9qaAdOeZcVB/GGF1ax1acZDdzW+9p8urDmi80jNBSF6zueff86ECRMYO3Ysp59+Ojt27OCmm26KO+Yvf/kLEyZMiPtatmxZ3DFWq5ULLriAN954A4A33niDCy64AKtVkoDfNJJcEMeN0tJSfvKTnzBt2jTGjRvHhRdeyMaNG2P7lVI8/PDDFBYWMnbsWK699lq2b99+DFsshBBCCCHEN9P50/qjK2jeLWw1QU6yRiikomv3azCpvwVdwVh3Lf4IXD89mb2VYdaXBLCZYNYwB6t2+1m3L4hJU4TCOuUeg7wcK+P627CaYXCmGd1Q9MlwUFHjwxcI43bFd7oaNLRFg+umJxOIKArHNc1cMJugYHTTmvRmM8weUEv/ZGLXkd5Qn1YB9UGYk9ZsTaIGaS5YVxJkb2XPLq8ytVcEpxlSrE1t6B8tO4DFBIMzokmGW09Kic1cOCXPGTcCf2SOlaV7wnxa4WZIcnQmSUoyWCwap8xOic1cMGkweUANvkB0xkZjJPNd9XjCEEZDN2DF7kCXRrX3z0ml1hckx2kQjMDlE91xNTUaldVGCOs6/jA4rRojslt2+I4Y6qCiKjpzYfoUNxVVYU6ZnUJ5ZZjZM1IwmzV27g4wabyLtFQTKW4YluXn0gkdd0q11qbuyhuczcCcZIakGkwa0LmRu52ZMeDxGu2O2A+FDNas9xAKGZx/djpKwflnpHWp7VdOdpPhMnHFZHenH9NYB2VsJ2pB9ITTT0qLzeAorYjw4IK+7K9p2t88Dq2JzXzwNe0PRBRLSsIEQp2/t4UQTaZNm8bbb7/Nq6++yrXXXkthYWGLego33ngjb7/9dtzXuHHjWpzrsssu48MPP6S8vJwPP/yQSy+99GhdhjiKJLkgjgu1tbV861vfwmq18sQTTzBv3jzuvvtuUlKaiqk98cQTPP300/zmN7/h9ddfJysrixtuuAGPp/MjMYQQQgghhBAd++e8ohbbQgbsqNRjo/z9Edh4KILLAls8qbht8M56L3/9uAZ/GPZUR/jXojqqfBDSYdPBCFsPRQiGDd5Z52VdSYiBGVYO1UWXYlm+tQyAsiovlbWtjzoPReD1NV7GD7CwcVc6WkO/taFg89ZQ7DiPDxbtS6WkYZl6BVQ1mwgQUfBeedPMh0YV9VDrN/jrJzVdDVm7lpdZSHJoNOsDZU9VNEGjFJTWR5MsWw6FYzMXXlxWHzcC/+11Xg7Wwf6AlbUV0XPUNsxK+GxRHT5fNBiGgvlbs4koqAmATjRxscmXHJsJ4gnDhv3BLo1q/2r9XvSIwQGvKTZzoXlNjUb/XFhLbcO3h+oM5m1s2YG+fVeArIzozIWlKzxkZVj5bFEd2ZlW9paEOFQWwufT+WhBLdlZdgb2tTKqj59UZ8ddGK21qbtsVjNjh2UzMcfAYe3cqPjOzBj4YrG/3RH7m7b68Pl0Nhf5OHgowtQJyRws69rSQWkuMzfPSSXN1fmCEY11UNaXhDo+uAe43ZbYDI7X3vPgC5l4bFHT/uZxaE3jzIcvvmqabbRyfwBPSLFsS1mimy/EN5LT6WTQoEGMHDmSX/3qV4RCIR555JG4Y9LT0xk0aFDcl8PhaHGu3Nxchg4dyh133MGwYcPIzc09WpchjqKuL5olRAI88cQT9O7dm/vvvz+2rX///rH/K6V47rnnuOWWWzjzzDMBeOCBB5g5cybvv/8+V111VZeeT9d1dF1GMvSUxlhKTHuWxDUxJK6JIXFNDIlr4khsE0PimhjHIq7/MzePe1/a0GJ7pFnnuAICEXCaYVpGDStrM7CZNb4zPZl/fF5D31QLc4Y7+PsntRiAGQgGFSVBnVq/n/mbox2CMwZprN3bufXsbWbISjJRXK4zoLePqrroCGuLBaZNTGLxsmiHcloKnDqkls92O6hryFPYFcR3UeocPt5OVxAIw1WT3LE6E9EEhgGqu2v4G8zqq/PqTgvhZi9hlgu8wWhM01zgDyvOHO3CbtH4v08qqfErFm9X3HZaGrqCC8YmsbPUT22dTkaSmW010SWf9h8MceHZ6QRDOg5HhJoaKBxazpJdOQzKgN1V0RkMo5PqWVufGnt+bxDK6nWqvDqpzTqg27rmORMG8clXQVKppy5i5voZ0YFgD35Sw1WTo20EOHO0i40Hokv4WDSYNlgjgLnhdNGDBvaz8ta8es46JZVtOwwcdo1zT89g7/4QwwbZqa4OU7wnwIVnp7NsjYfyyjDVh1KYNkRnQFb70T5rtCvWJkPpsWsJhcIU7akgb1AWNmvnOtxDYZ1NxeWMUxq6InaN7bl8kpvXVnm4rOEeai56+WZOmulk8bIIpxamxmLS3PDBdj5dVMvY0S5CYYO35tVz0bnpUBuNoTJAYW7RplqfzqsrPVwx2Y3dqrG8OMjUIfZOL3E0ebCdFbuDTBpsjztv2z8HBmhNsenw50UZmNHi7oVGF56ZxCtvhblhuoav4X4Znetk8zYfo0Y4W43T2FFOXni9gkvOdrG+yEXvdMXAVCuPbK7nrpNdnfqdKe9biSMx/Wb44Q9/yE033cS3vvUtcnJyuvz4Sy+9lN///vf87ne/6/nGieOCppTq3Kc4IRLo3HPPpbCwkEOHDrFixQpycnK4+uqrueKKK4BoEZnTTz+dt956i9GjR8ced+utt5KSksIDDzzQqefRdZ21a9cm4hKEEEIIIYT4xnhveRVrd/o61ZkKkOwwEdYNNE2jd7qNcMRANxQRHUIRA4/f6PS5OuK0aThtpmjx2Uj0OWxWiESaOlrNJpgwNImVO7o3ej07xcL/nN+7ZxoMrCv28tZX1XHbNKJLGKmG/7udJkb0dTIg28b81TUEQgqzCcYNSeL8qemsK/ay40AAgI17/PFLVpnh1HGpfLm5HkMpQhGFw6rhDSpUQ4ev2URccgOiyYkJw6Ln7+x1NLZhRF8ne8oDePw6yU5L7Bx/eXM/nkBT61qL5XvLq/D4darqdTKSzXGPX1fsZcU2D7qhcNjMhCMGpTVhTCbom2HnutNazjhp7dzNz9l4Xl/QIMluZuyQzhVH7s5jekLz520txm1pfu0Dsm3HpO3d1Z1YP/L+QfxBA5OmMXN0Mkl2M6t3efD6ddxOS4f3ijg6xo8fj9nc+Rk03wSBQIDi4mKGDBkSG9Hv132sqFqOVbNi1RJfdyCswoRVmCkZU3GaO/czdffdd1NXV8ejjz4at/2SSy5h/Pjx/OY3v+HUU0/l0ksvjfXXNXI6nbjdbkpKSjjttNN4++23GTVqFJFIhLq6OlJSUrBYLGzZsoWLLrqITz/9NG5Q8TdNa/fAN5XMXBDHhX379vGf//yHG264gVtuuYX169dz7733YrPZuOiiiygvj66nmpmZGfe4rKwsDhw40OXnGz16NDbb0VlH8kSg6zobNmygoKDghPvQkEgS18SQuCaGxDUxJK6JI7FNDIlrYhyLuA7oW8M/nl3M9mrQI4eP+I9XkG3i4sx9vFLZj16pNq6cnMyakiDFFRHOG+Pi3fUe/EGDMk8Ej7+h09kEFZ7obIbCYSbW7TWoaaXMQarLjBEI4zVMaMCoPhbSXGYGZOjsC1ZRXJZBcrINv18xa1oyb7xXiaFg+ng7ky27SDH6sGCXgQnolQyH6pvObSNMiGgHj9MC2W7YWwNpTo27z0xlQHIErzfAkh2K1MG5OJKc3YplyOdhpPEVZ+Q6+Hhb9PoznDAk24pZixY9zkwy4bCauWa6C7tVw6G7WLDVx9AsG9+d4SLVFWHoKCuLDQ+B/aVMKcjgqQ0GvbJN1NbBVRdl4QsorhmbxevvlnPZ8FKW7ckhN9vB0j0BUmxwbnIpL+zPoT6sk+E24w/DqD52vtdw/kbtXfPA/rVEylbSKzuZk0ZZCA5P4rVVHi6f1HSOu89O5/fvVBFWkOnSuO1UExUsI7lvAXZ7tDDEmdnpfLqolrPOTWPpKi+nzU7F6o7e22P7uYmkwMHSECfNTGHbzgA7i+vwVnj4YaGdAcntLw/Ub0ZTmyzKE7uW4SNsbNtTwbBBWYQ7OXNh+Aidzdv3k2cUMdSUjSPpyDrp/aE61ga3x8WiNWP7udm8zcfoXBd5ISefLqrl1MIUqADLIBORQD3WnesYmDESu71pKeHm1263aqzYHWTKYAsOa9eWVDpcW/dEyOfBtecrhg2Nxqajn5f6oJddoXWMGZhJsj2+s21UhmL7lzs5eUAmO9jQYYwArr4yi/+8VcmFpzmpWLeX0wYMZFZaCv9eXs2PrpxI3/6Z7T4e5H0rkUKhEJs3bz7WzThumDULLrMLn+4jrHq2rk9bXGYXZu3Iu35vuOEGfv7zn8cKOz/00EM89NBDccdceeWV3HPPPS0ea7FYyMjIOOI2iOOXJBfEcUEpxZgxY7jjjjuAaOf/jh07+M9//sNFF10UO07TtBaP6w6z2SwfHBJA4poYEtfEkLgmhsQ1MSSuiSOxTQyJa2IczbjuKKlldXnb+90m8DSselLpN3hhdzK7AmCzGpg0SLKZuHFWtGNwdB87lZ4IxZVhkp0mTBjsbKilrAPbSltPLAB4/Dq2hoLMaS7Iy7FR6dOJ6IpDlRbqPIqK6iCZ6VZSU83kDndSUxvB6TRBCJwWE2BgAGX18edOwiBEdNaAPxJNLADUBxSvrvRw85yUWE0EMIEWv7RMdZ2feYu2ct7skaSnxHekrt16gHmLtwHgsIARsZJkV6TZoCYEnhD0TjFTWhem3GNw1eRklu8JYtIgHFHsrghh0kxcMclNRlL0Na+s13l3U5j+JhtTskBDUVEJFjPUe3U+X1yDZlLU10O9P1pjYl9NhDSnhekDILlGR49ECzqXeqB3ClT7dMIRhbnZn1mmNq45FNbZvq+OQS6dL4rDTBoSvQEO1ETizpHmMJGaChU14A0qHvwkxDlzNJL7g2aKHlReFWLtBg81tWGGD3GydWeAYYPtLPyyjjkzU7BYTPTpbWfztgAHS0P0zrFQGwjjsmpxbT1caW2ERz6rYcpgBy6bRiTUdC2hiGJvaR2D+2Vis3VumSCbzcSg3il8sMTMASPImWMdnV5iqDXRy9cpq4zwxrv7+dZlWfTu1XJEazROGppJw+4wM2iAA7vdDCg0k4ZmAg0ds0ZcPFw2jZG9bbhs0Y0axI7ZWxnmrx/XcOcZaQzMjCbVAmGDZcVBpjUsnbS3MsyfP6rmlDwX5xa4Ytfa1j0BJlAq9hxtHwceX4gFK/bSa5TesFsjFDLYtNVH/kgXYV2xp9JKeIgCS9MxHQZUgdWmUdDLh9OiUVFvcNCj4w3qXfp9Ke9bPU/iGc9msjE2bTy6OrJkX1eYNQs2U+cH1v7xj39sdfvcuXOZO3cuAAsWLGj3HP3796eoqGXdpkajRo1qd7/4+pGCzuK4kJ2dzbBhw+K2DR06NDYrITs7Op2xoqIi7pjKykqysjpYdFMIIYQQQgjRJX96rWW9heY8zZZTP+CBXQE3ABsOhHnsi9pYIeJlxUE2Hgjx3nofFR4ormxKLDQ62E5NYV2Bn6aCzO9u8LHpQIj5m3WKDyRR74FgEA6Whnnx1Qp2Fgc4VBpm5boAC3e7+WhHUyfO4SvAVzfMWjh8uJKuYNXejosdz1u0Fa8/zH8Xt+wkaUwsQLQuRQioDkYTCxAtcP3fjQHW7NOpDyj+/FFNrAjwKys9rNkbpsKjxxWW/uvHNVT6YEO9k3+tA4WGYUAoDG++X01NnaKyquH7DdlUe2FtSYQ9lRE+LorwyO5e1Da72EN1sKcywmMLa9u9zkZFu8vxByO8tt1GXcDgsYW1PPpFLbV+I+4c/1xYS0VDswN6dIbKvMXxf7O98GoFoTBs2xlk2ap6incHeOv9Suo9Om+9X8muPX7WbfSyfFU9u/cGWLYqyMEaG2+saX+076Nf1HKoTuejzb5YIexGC1cX4/GFWLRmd6eut9GS9Qc55NH4sjjc4pzd9fq7HnwBnZffqGh1f/NCxrH/b2tv/lDUsuJg3M9e84Lgf/24hvpgfLHy1o6p9hm8v8HbY9faaOHqYryBENs3Nd2Eza/zsyV+6gNm3lnf+XP+5/UKfAGd1+c1/aw++GU1/jDc/9K6nmy+ED3CZrLhNLuO2ldXEgtCdJckF8RxYeLEiRQXF8dt2717N/369QOimc/s7GyWLFkS2x8KhVixYgUTJkw4qm0VQgghhBDim+6nlxd063E2U3RE/edFHl5YWsuLX9WyZX8AKy078bsjPQlSnBp9kuML2VrMUDg9GZ9fEY6AyaRwmiNo3azBHDHgo81+lu7yt7q/us6PNxCkstaH2aTh8UWzBh5fiL89+3mnnmNoJmgquiRTXo4FT8DgwnFJXDnZzZi+ZsxAnxQzNT6d7aUhKut0IgYMdQYZ18r4KqPZteb3KkcpGJIZrbNgMcNod12LxwR1OC2vc8s9DemXQXmtn5FpEQwF352ZwjXTkvEGDb49tWn5mqunJsctkaABM8fG15u4ZG50iQybDbIyLCgMhg1xkOQyc/H5mfTrbScQDOPxRPAHdBwOqAtYOGmEiRqfzuMLa6nxtSwWe+OsFGxWGJJlZWz/+E61yaP7UV3rZ9Kovp263kYTcrMJ6RoZLo2x/W3tPj9EZwN8sc1PIGy02L5kRwRfwMTAfuDzKU4uTGnx+KrqEMtW1lJyMMjwIQ4GDbCxdbsPqyVaz6Jkf+v3JMC4/jYO1kQY299G31Qz76710Cc1Onr85tkpRHTF9dOT+WSLj0+2+BiSaWHl7gB5OdbYMRpw+kgnU4fYuxSnjswYO5BwyGBoXtO2/JEukpLMjM5zMWuqg2DExNmj2z7H4S48Nx09AqfMdDBvWwp1AYPL890EDbjmtKE92n4hhBCtk+SCOC5cd911rFu3jn/+85/s2bOH9957j1dffZWrr74aiC6H9J3vfIfHH3+cjz/+mG3btvHzn/8ch8PB+eeff4xbL4QQQgghxDfLtPzuFTMOGbDlUIR9VYpKH1T6ocIHdT20vHRFPXiDsKsqfrtuwMefN42er6iG1WVJhI7guRTwzyWtj96et2grVTUBlIK9B2tjo+EXri7G34lr1Yguw2S1gtKgPgSGUhSVhklzmclw20h2mthdGebVlR4emF+N34i26WDIxuaq9s+/qSyb3ilQUgNmMxysg5W1aa0e+8TilkmH1hTvr0LXDXZ7zAzJMLO7MsKCIj/Detn4rKipw/uzIj9JrmiNDIi2+cv18YWId+wK4nJqKAP2HwxRXWNQVh5h6GAHGek2KqrC1NQYBMPRmSlV1dGEz8urIryy0hOb5dGijZURRvSyYzbB+pL4V3/l5v2kpzpZtaVrNfvWbCvHZlZU+RTrS0LtPj+0nA0Qv13x1fpUNm41MJngw2azCBq9+V4lNXU6JfuD7CgOsPDLOmw2E6+9U0kwrHjh9dZnOwCsKwnRJ83C+pIQj3xWi67gkYafi8U7A4zua+eddV42HgixcX+Qp5bU4bSZeGedN3ZMfj87nqA6ouWfWlNSWsuQAWlUVzYtdWSzmRhf4MZmM7Fvf4RRvX3saGc5tsOt3+RnyCAHn30ZwBMy8c6WAK9t8mA3wQuf7urR9gshhGidJBfEcWHs2LE88sgjzJs3j/PPP59HH32UX/ziF1xwwQWxY2666Sauu+46fv/733PppZdSWlrKU089hdvtPoYtF0IIIYQQ4ptpUjdXH7Vo4E5QdT9DgT9kkJUUv93liHbUN+cLH/mfu6Ozoc6v8+qCLazdeoD7/v059/37c/YcrMVomDkR1g1Wb4nuW7P1YKfOawLSnBAIg90MWS4Nl1XxzFd1rNkToNITotYbHfk+a5iD3u6maRpuQgRaHzQfxxuE3snRmQt2EyTR+jrfV0xKihtpX16v898tHmo98SPkh/TLQNM0XBbFzkqdwZkWzsl3cbAmwtn5TYWOT8lz4vEZcTNVxo2IzlzweCI88ew+lq/2kOwGNOidY8Xlgr37/dTURmcruJPi12o3aeCyGXxnmpWLxiURCEVneTQXCBv4QgYoA7NJazFzYcbYgYTDOtMLBnQcvAahsE6a24ZZg2y3ibH9bdFrrm265hqfzkMLqnloQQ01Pp1pQ+ykOkwtRv6PzLGydm+E0UM99OsTrU1w/tnpLZ7z/LPTsdk0Jk1wMzrPxaTxLvbs8+NyRV9Lp91EVW3TDVBaG+G371ZSWhuJe+4Lx7mo9SsuHBttZ2O7LxyXRGlNiLJ6ncsnuWOxrPHpBCMGbpvGFZN7/m9sq9nE4lX7MJma7gyPJ8Ib75azdEUtA/pZqPBYGZgOny5Px+PteNrR9CluKirDzJ5q50C9lcKBVi4amUTQgCtPGtzj1yCEEKIlSS6I48Ypp5zCe++9x4YNG/jggw+44oor4vZrmsaPfvQjFi9ezIYNG3jhhRfIzc09Rq0VQgghhBDim2112wOk2+XXwZPAepW1gehI/EaaBoEg+AM9/1ybymHxbj/eQCiujsKR0onWIgCoC8COighbS3W8wWj9hU0HdMIK6gKKfy2qY0ez16Ik0rIAcGuqA01Fqr06+Gi9uOqrq7xxI+2f/MqHP2Tw0YrdcccV769CKUWJx0Qwonjqyzo+2OSjT5qFDzc11QN4aXk9h+c+Fq2N1tD75IsaivdG95aWK5wOE4dKw5SUhPH5FavWevh0YQ3rNnrQm/Ut6wa47Tp7qmBraZhJgx0UlcZPEVlWHKSoNExZvYFuqBYzF0pKaxk+KJP9ZZ2bqQHROhNlNX40LTrbZH1JKHrNqU3X/MpKD5sPhNl8IFqnw2E1MSfX2WLk/9vrvDisGkvWpVFTq+FOMrGsldkPBw9FmDYxhbQUKzabifmf1hKOQG1DsyuqI7z3kTd2fPO6F82f++mv6jFr8MxX0Urmje1+5qt6qv1Q5dV5bZUnFstXVnrwhcBm0Uhz9Xwh3ne+2IJSsH5507ZPvqjhYGmItRu9fLkiQJY7zIsrweM3sXBJ28s/NVq6wkNWppWPFwVwWgxe3xTg1U0ezMBzn+zs8WsQQgjRkiQXhBBCCCGEEEK0MKdrS9PH0XuiwEI7mv8hq1S03oBq5zm1tnd16GCdTlVdz2cuUmzRJYN0BbU+hcsaXfonqEeLQCsgGIHpg604Gvp63ea2ZyC0xwKE2oiC0wrPfFlPpKE3f9YQMzUBhWEY7C+r5YV5ayir8uDxh6j2BOiXZOCwaHx3ZkqLUfwAl01sOep99vjoWjdzZqaQ0TBY324Dv9+gbx8bUycnk54SfVULRjvJ6WXB1Ky5mgYuawRfSDEyx8qBhroCzQ3JtLC9LEiyXWt15kL/nFS276mgX6+WdQ7akjc4m4E5yQxL0dlV1Wy2RrNrPiffBVr0BqwPGOytDPOPz2t4d52HT7b4YjNCLhqXRCCimDWuhow0hc9vUDi9qVZF4yj+yuoQG7d48XgjhEIG4wtchBvyKKaGWMyY3DQr4pppyXga6l40rwdxzVQ3uoJvT3XH2nmwNsL1M5LJcIHNqthWGmbT/iBj+9s4Nc/J9tIgaU5Ti3oRRyoU1skbnBmNabNyLoMH2jhwKEwgYDA+30a5x8qFY6Cm3srkCXZCIYM16z2EQgYeT4S351XgaZa5nD7FTWVVmDNmO/BHTFyW7+DbY5PRgRvPHtGj1yCEEKJ1klwQQgghhBBCCNHCF82Wph+d07PFXY/U4V2fRgfJjATnOrqlttnAegOo9LV+3OtrA3gaOpd9OkS0ro8qby8dUdEwCP6xL6Ij3J9bEW1YSbmH1z/ZhNcf5q0FmynaXYHPH6YyYGJoZrTmwuGj+AFeX+2JS2OYNVi3PZpR2LMvxIB+Luw2jVAYIjpUVkXIyrDidFowWzTe/aAaj1fFvaZKQUmtk+1lBu+s89K3oa5Ac08uqSMUhu1lkVZnLny1fi82q4WlG/Z1Om42q5mxw7LZ4zFj1miardHsmj/Y5ANloj4I28tC/PXjGoorIszf5GPj/mBsRsjW0jDjB1jYvMvNwbJoLYwPmtVcaBzFv3xlPbX1Ohu3+Nhc5OO9D5uKYRuAxQIffdE0qn9BkZ/hDXUvmteDeG21F7sFXl/tjbWzT6qFd9Z56ZVq41BNNJG1tiTE+pIQLyyrx6RpLNzub1Ev4kgV7S6neH8tVovG3malEN56P1o8pKwiwieL/WS7w7yzEdKSw6xcE2TTVh8+n87mIh+ffFFDvUfn04VNMVu6wkNmhpVFy4P0TQ6zeG+Yedt8pFjhrSV7e/QahBBCtE6SC0IIIYQQQgghWriiYQXSq8YlM3d0z6/B3l5ZBrfTyvB+aV06n93acpurYTkbEzBrYCsHNEju+VVgekymE1IbVkKyAEF1JPMw2jZpANz+yiFCzdY08vhCVNT4qKjxsb+sjjpfmKogLN8bIaIbrN7jp+hQiHQnXPbPQyza5uPqqck0XxFIKZg5NtpBPmKoAw3o19eMUuCwweiRTrZs92Ey69TWRTjn9DSGD3XGJSg0wBPU+HKXzqAMMwdbmblwzbRkIrrC7VBsLwszODP+Dmtec2F/WS1/f3EJ+8tqOVx1nZ+n3lnJ0++upqzKw6qiUkwoDtYpTECW20SqwxSrS3BOvguzWTE8y0RYh+tnJNM/zYTLBmX1Onk50ftuXH8bh2oNJo+uY2KBFT0CwZDiUFl0VsycmSlYLNC3r5VQSGdvSQgwmDY5vrZEKASnzmpaGuuicUkEwtG6CVdOdpNkg0BE8T8npZJk0/jpWdHEzpWT3WS4THx3VgpmTTGioaZKToqZvBwrV0xyEwgrpg62E9JVj85eGNIvg94ZbgwFI8c2bZ/bUHMi2a1x0nQHFR4r354MbqeB1RrmtXcqKN7rZ3Sei+lT3JRXhkhKMrFiTT2hkMHwoXa27fAzYYyFKr+ZU4fYGJyiqAvD0BxXG60RQgjRkyS5IIQQQgghhBCihQ2VZvqlmNlwKMTzq1p2wh6ptkbTO+1mcgdns2N/TZfOFwy33NY33YzTqmE1w+ZynZeuGYi5lb75eh3OGu3s0vMdLZV+qGlYlSnU/qFHZMU+2Fvd8XEAYSM606HaB96g4uVVfhTw0II6Pivy43SYYskBA/hyfbQTefuuAAooKzOwWkEzaRRtD7CvJEjxnggaGouX1rN7TyCu5kJ0EoOGAv692EOfVmYuLCjyY7eaKKuD+oDBU1/G11ZoXnPh9Y83EgzpvP7JphbXNm/RVsqrvJRV1vPWgs1s3VPFnjoThoJNB8Os2hMkv68tVpfgg00+BqTb2F+nSHaYeGe9F6fNTH0gWtfgnXXRmQPrSkL0TjVxoNyOP2DCZAKPV+flN6IFNfbsC5GeZqWy0sDXMDHhjXerWLLMG9c+pWDBkqZluraWhpk0KFo3Ic1lxmYx4QspVuwJ8sR3chiRE03CpLnM3DwnleLKCLrSOFivYTdDrS/axldXech0m1m1L4Q/rHp09kLx/iqqPX4cNjPFzUqXrN3gw+HQ0HX4Ymm05sLeajhtajVfrYjeAJuLAthsJpau8GCzmli3wUvx7gCbi3y8+V4VCvh0cYgMp86C4hBf7o8+7ouN5T3WfiF6ihEKoft8R+3LCCXyXUOIqPYGiwghhBBCCCGEOEHdWGDn6U1hbpqRzsHaMA98Vhnb1z8ZSuqP7Pzn59t4f1NTx4fDqpGS4iI7LYnZEwYTCATZXFzZzhnaZ0KnpNbE1RNTeWtjPXecFF3z/f/NzuDBhVVxx7qscOG4JELhEJ9tP7wcsWiNAS3WmzKATQf9hMKQkQSV3uisg3EjqnnuZRe5w1ys2+gjNRmMAFjskJZqot5joGlQXaNITzNjtZrYtaf1zm0NqPfr9E81c+1Th7i5MIVPtvo5N9/F0h1+XObo8lEXjm0a8e8LhNi2p4KyKi+Xnp7PaVOH8c4XW+mb6mTH3grmLSritKnDeP+LrXHFqCtqoksfpVoUFgtoJghFDFbtCTA408IHm3ycmufkiUVVBIMQDOkEw4oLxyaxpyIImpkLxyWxtzLM66vqKRyu0bd3kJ0bQ4QjYDZBRrqFQ2UBdu3206+3nWS3mcVLoz9cF56bTiBg8N9P4pN7E8dY+PeSHP7fKTrj+ifx6koPsye7qfHp+EI6noDi0glJPL6wlisnu0lzmanx6byy0sNF45KI6IpeSRqfbPUzso+dC8cl8ckWLx9s8nPmKCcuq8bUIT23FFre4GxKK+tZueUAI3Obtp86J4VnXyrHnmTm9EIntVsN8vvA+ztcDB4Iu/dCwWgb9z+4l0vOzyAQ1CktD7Jvf4A5s5K5ZG4Gr7xZSeFUC0tX2MjNasowDsk+PpOF4sRlhELUr1mD7vV2fHAPMSclkTxhAiabreODE2TZsmV85zvfYcWKFaSkdL7mjfj6kJkLQgghhBBCCCFayE4y8/OTM+jltvHeZg/pzqYh/wc9R37+JcVhrM2WI7JYLNx08RQuOmU0bpftiBILAAZmQjq8tbGef1zan2FZ0c7GKQPd2A77S9gXhqLSMMv29ExiwW4zY7WcmH9uH6iJzmyoaVZDYtHabLxenY8+i84mqG1ITHn9ipIDYUIhRW1D//nqdT5Wr2u7800HPtzk42+f1hAMR2dL1PoNHvmiFh2oa+hffmZpU/ZryYb97D5Yg9cf4uOlO1i8dg8Ws8aBsnre+HQTwZDOu4clFpqrjWjkpJrRTCYO1hoUlUZrK1T7DF5cVs+BWvDr4ItAtd/gH1/U0ivVRq9kM0WlYf76cQ3ekGLJTp2Vm1PYvU+hFOgGHCoL8/IbFfj8BpXVYYq2+7FYwGqF/QfDbN3espj4J4vCeIImnlgSYl1JKDaT45WVHvbXGBhK8eKy+lj9BSBWj+GddV5OG+WiPgS5ve2kOU1sLQ3z5a4QJg2W7w5iNWs4rD13/9qsZnbsq8JmMbF1fdP2BQvrMFs1wmGDtZtCjO/vZdNBKCl1UFun0be3la3bQgSCBm+9X4XDbqa+XuH1GcybX82OXUFyhztZtiaCRVO8v60p21Vc7m+lJUIcOyoSQfd6MVmtmF2uhH+ZrFZ0rxcVaa/qTrz//Oc/TJgwgUizx3i9XvLz87n66qvjjl25ciV5eXkUFxf3WIzE19OJ+WlHCCGEEEIIIUSn3Twjnd7JVk4Z5sBmjo7+nzmw+yOb7Wa4bnoymW6NYRnR0einThwUd8zMgv5H1GYLYcwmuHl6eot9/2+ag+bD7rOTYOoQO3ef1fLY9qS4ogmXzNSmUaEpbjuXnZ7PsAEZ2BNYy8FmMRg1Ivr8mgb5I9uuKXG0RXRwNvQ2qIbva2oVBaOb4qQboOuQkWamTx8rWQ01AAwFSa72S3B7Q+ALga4g3QH7qnV8oeh2BYR1OGOkgycW1fDkslrW7ywjEIwQDOuUHKyhstZPRFeEdSP2b0dFv7eX6VjNBskOyO1l4+opbjYdCHLaSCfprujzaoCmoF+qiYM10SzH2P42rp+RjC+gyEqC3IFekpxgt0XrhNTU6owvcMXqCRTkJ5GcBO4kMyNHOKisbjmDY9oEjbqAhUvGmRnX3xarQXHlZDeDMsz0SbVw4bgkdpSFOCXP2WxGg8HZ+S7eXedhR1mAPZUhstxmUuwaFXXRGIZ01aJexZEKhXUG900lENIZkd+0ffaMZMIhxYB+NmZOcbBmXxLDs8FiVuSPtBIOK845PQ0UnH92Ou4kM0opnA4Tp8xOobomyPZdfuZMs6GZILPZ4OyMpBbNEOK4oFmtmOz2hH9p1q6/J0ybNg2fz8fGjRtj21auXElWVhYbNmzA729K2i1btoxevXoxZMiQHomL+PqS5IIQQgghhBBCiHb1ctv49Zm9uWlGL5751kCmDHTzwzk5vHTNQFyd7Id0WIjVOwjq8PoaL//4Vg42q5lUh8baHWVxxxftPbKZCxGs9Ek2saqkZefsuN52Uq1N3cnlXnBYTeT3szOmb+c6ZCxmDV8QkhxWPH6dEQMzmTiqLz+6agaD+2Zw6WljwJS47ILFDJddmMH//now9/1qMNt2tFJ04hjyHDYNIByBjVtarv9dcjCC2WSivNkS+VU1nX+eypYD+wF4fqmXxbtbbo90lEVoQ1jBwVpw2824HSZeWuHBatb41+I6qhomWqiG8+8o1ymt0ymr11lfEuLtdV5sVthZAQtWZuBwmrBaNAIN4fj487pYPYGqqggZ6XZ697Lx1vtV1Na1bMuyNYoUR4Q31+lxMxfSXGbG9ncwOMvKM1/V47abeHF5fdyMhg83+Zi/yc/+akWdX7FyT4C/fVpDpKH9NT7Vol7FkSraXc6W4kosZo3tzcpc/PfjGhxOjeoanX37I/hCJj7YDJlpYUoOGGRlWlm60sPwoU6WrfSwbqMHhYbJBJ8tqmPXnjC6DguXhZjR30tls9ur6uitPCPEN8bQoUPp1asXy5cvj21bvnw5p512GgMHDmTNmjVx26dNm8Y777zDJZdcwoQJE5g1axZ33nknlZVtv38HAgFuvvlmrrjiCmpqagB44403OOeccygoKODss8/mxRdfTNg1ip4nyQUhhBBCCCGEEN1223QnDSvwtyndARMH2jh/jINkG/RKNnHn6WkA3DjDhdNm4swpg+Mec8lp+aQ4zdiATCdkueLP6bC00avcYHRmPYPTzVw6rvU1nn88rDRWdPiGGU3DnH9wUio5DQ8pbNakJKeV7PTo0koOm4mczGQuPS0fp8PKZafnk5xkZ/aE+Gu47Ix8rGaNPk4DDUiywbTBXfszPNMJFg0yYkvIK9xWOGdafOfN1ZdldXguJ2AGBqd1qQndMig92uHQeLXZWXD5hRktjrvk/HSGDXYyfYo7ti1vRDTB00rt7RYGHzbZJMkcTWLdcXpq3OvXyNatfI/CYYZzxzgYlm3jislu7jwjjWSHibvPSmfiQCtZSdEZMJMGWJk00MaEAXbmjHAydYidH5yUysB0MwX9TJxXWEGfXhZmTktl+BArFks0Ln1725g2KYWhgx1cfH4mKclmvn1FFpmHXZ/TrnHZ+U6SHQY3zbIxbYidVIcpViOh8fs7z0gjzWXi1jmpXDnZzdAsC3NGOLlispuz850MzjQzcaCNOSOc3H1WOik2yHTB0CwLt85J7U6Q2pQ3OJupY/rjdtmYML1p+7cuyyLJaeaqS7MYNcJGkt3gorHgtBvMPTuJlOTovpRkMxefn8m0SSnkZFmZNjmZi8/PJG+4nSSXiSvnukmyGozObDp3weCevQYhThRTp05l2bJlse+XLVvG1KlTmTJlSmx7KBRi7dq1TJs2jXA4zI9//GPeffdd/vGPf1BSUsLdd9/d6rnr6+v57ne/Szgc5plnniEtLY1XX32VBx98kNtvv53//ve/3HHHHTz00EO89dZbR+V6xZGTgs5CCCGEEEIIIbptVLaNn484yP3bB8S2aUCytWn9e4sFgmGDdQfCJDlM/OysdAZmRjuQ7RaNVIcJqyW+17dXhptTJg3incU7qA1A71Sg2Tr+VisEGpaFzs6C8oro/9NSwGHXCEWsFFVEqAtESHW0/NN3SHKYn1/Rl7pyLzOGNi3xlJNq4dGrewPg8QbIy1GkDRmJwx3t3ff4QixcXcycidGlIAb0jnZi7jlQzaRRfXG7mtZmSXU76ZPppjC9nI/2Rduws7z9RMzhKhtWoaiJrUah4QlDzWF1L1wuE1ZLdIZAi0rLQB9bmMvz7Pxzg87ums4lOLRWz9QxiwmG9bJxoDpE43yK8gp49e34QtpmM2zc4mP4ECd+f3SqQ3S5oGj7FJCSDHXtFA/fXR3/vVeHJAv86ePaVo8PdaOshkvTcDvh9FFJBCOKn7xewU2zUkhzmiipDvPlrjAZTjglz0VNwODqqck4rBrLiqOzZio8OrsqdHqHYTjQr6+FsvIwO4rDpCSbSEk2o1T0iv0Bg3kfV3HgYICiHT6GDXZSWd20FEkgpAgEDDKTwgQjij/Pr2DTQYNkexqj+tpYVhxk2hA7ZXU62/eH+cF/Kkh3wMg+tthr6bSZmJ0bzdZZzBpZbjMTBtvxhwyqvAYvLa/nhlkppLk6l4kJhBXLtvkZ06v1/aGwzoGyOgIhHb3Z8u82qwmHXeOLJXWcPN3SEIPoMlrFe8L062PnoccPkZ1pJjPDwuiRLiqqwowfE01EaZqG3a5htWhsLNXYURN9/LBk+MONUzvVdiFEvGnTpnH//fcTiUQIBAJs2bKFKVOmYBgGzz33HADr1q0jEAgwffp0Bgxoeu8fMGAAv/zlL7n88svxer0kJTUl7isqKrj99tsZOHAgf/3rX7E1FJl+9NFHufvuuznzzDNj59ixYwevvPIKF1988VG8ctFdklwQQgghhBBCCHFE/r6zT9z3iqbEAkC5B6q8EQwFJk3x109q+PuV2QC8uS6AL2Tw5cb9nH9y/Gjj95bsAqJLzZTUxD9nvd/RdP6Kpu01daChOIQDq6Z4aGEVf76gb6vt3rLPTzIGy4uDzMl1tnrM4RauLsbjC7FozW6UUnh8IV7/ZBMWk4m3Fmzm+5c1dWrOW7QVbyDEa9tsRFT3OuobHZ6S+HR1NjNPbfr+hVcrGhIL0NqY/4MhK//YCDqdH7rf3fZGDFhQ1HIJpMPpOmzbGaSyKkJldbTXPxiC9ZublrJqL7HQFm/n65d2ik+B3wN//aQGb9DAF1L87ZNa+qSZ+dfiaJanyg/vbvDRP83Mqys95PW2UReI3ltPLK4lqMOeKpi3OIu+/cJs3BL9AamrN3jh1Qoy0i3s3hsANGrqIug6gMGqdfGFiZWCdz4KMirHzEOfhThQG32d/vxRDd8/KTX2nG+s9tA4t6c6AGv2hajyGeyriuALK8rqokHqlWxm8XY/h+p0anwGSkFpnc6rKz3c3MkZDCv3hfErK6v26UDLZcUWri5mZ0kVhqFY/RWcNDm6/c33KimrjFBRFaGuzsToZBNvr4dDIQeW+jAbt0SzieWVOstW1lO03Y/NZuLThTUoBdt3BtANeOU9D/XephlKO7txzwghohrrLmzYsIG6ujoGDx5MZmYmU6ZM4ac//Sk+n49ly5bRt29fBgwYwObNm3n44YfZunUrNTU1qIYs4cGDBxk+fHjsvDfccAMFBQX83//9H2Zz9H2oqqqKgwcP8stf/pJf//rXsWMjkQjJyclH98JFt8mySEIIIYQQQgghjsitQw612GZv1r/tMIG14XuTBtdPb+o0uGScA5fNxMwx/Vqc45SJ7RV1bnsIutUCTsKEFUzp33bh6VEDnKQ6m5aU6Yxxub05WF7P2BE5zJk4hOSkaAFnp8PKxaeOjjv2vNkjSXLauDw3RJYLknuwBMOYweVx389otqxQa2kBKwY3jAStnbgd7mh0GGRlaKDFt8l6HA6DVEBJtY7FpFAKzh5tY1+1Tv9m/e/pTvAEdSo9EVbvDWA1QWaSCaMh0eaywtT8akoOxNfHMHTFgUNh0HSqa5syIxpNdUqaGz4ItpW5ODUXUhpu3e8VJjOuv429VWG8IYPLJsZXNLaZITPJzNn5LkyaIs2poRvR++TCcUn4gwYmFU3khSOwZm+QvZUd1/EI6VDr11leHGBEdus3eO7ATHRDoQCnC7xeA48ngtlsEAwqUlLMnF7opNxj5ZzR0D8nwIB+FtJTm+IwsL+VnbuDbNnmR9cNJo13YbNFE1Rj8uKD1MvWoglCiE4aNGgQvXv3ZtmyZSxdupQpU6YAkJ2dTb9+/Vi9ejXLli1j+vTp+Hw+vvvd7+Jyufjzn//M66+/ziOPPAJAOBz/++Okk05i5cqV7NixI7bNMKJp8z/84Q+8/fbbsa/333+fV1555ShdsThSx+FbthBCCCGEEEKIr5N63YrTEi3UbDT2a5tgTI6VAzUR6oMK1TD03qTBO+u9TBgUnXmQ4jQxa4gLl6Nlj+D2fa0vbWPWwGQyEW6jn1w3INQwgvrtzV6umJjZ6nE2i4nZI5ytduC25bMVu3DYLXy+sphvnzuec2blAsTNWGiUnuLkylPzcO0u57ypKdzwUlOh3NaWHEqywdBsKxv2d9ypu2lPNs0XjPj0i6ZzW00QPmyqQxgTu+rBadLwdbAyU4ZLY0DfbM4/eTQbth/CFwyzZstBaj1+It1YVqgtmgaBAHh88dvDPTzzoCeVeyDbrTFvU3RmRklt/D67BTYeCJPs0EiymXh9tYdgwwttMsGiNZmEDru+xu8rm60aZTaDYbRezWTHnugMoJdWgsumkWRTLNwRwGyO/kwUHQqx8UD8zJG6IFR6dT7c5MNQGnuqdHRDYTbpPPNVPWGDWDsDOoS9RtwMo7ZsrTKxsVYnYmj8d1OQIRktZwDNW1QU+39NJSxe4sFq8rNnX/Q+r/forN0Uopc7zI5yKBjuo7jWRHVDbBWwflNTjZVVa31U1+j4A9F76KvV8VGqOY7vHyG+DqZNm8by5cupra3lxhtvjG2fOnUqixcvZt26dVx66aXs2rWL6upqfvKTn9CnT3QG48aNG1s9509+8hOSkpK4/vrref755xk+fDhZWVnk5OSwb98+LrjggqNybaLnycwFIYQQQgghhBBHZHKal/NHaqQ4YPLAaE/97BEObpyVQrZbo3+6Rp/06AwGQ8GFY5M6OGO0toHLbiXL1tQF3zi/oKAvmLW2e7l1Axq77i8a3fFzdcV5s0fidtk4tzCvS4+r9RsMaijOm95wIc6GpIZFgzF9zAzMsHLrnFT+56SOl4PIHxQ/c+HKSzLRgGGDzcwe1rROVONYcgsGs/vCj4cdbPe8MwdrZCVZYjNJ8gZnk+Swcfas4Zi1I1nYqSWlwOPr2XMeDeUe1eqSUcn26OyEQCSaROudYubyiUkowKaB0wpnTKvE3cEtmeSEjHQNm4VYHYLm+ueAoTQuHgt5OSbCYThUGyEryRR7jWYPazkbp6w2wvzNftbuCWC3KNwNK4tdPyOZZEfDDCMg1RZtv9UEpbUte+r3l9Xy9xeXcKDCQ2+nQVW9wcE6nWmDLByoDfHXl5dx378/54EnP+e+f3+Ox98sWaZBUhKsWO1B06LX1yfHxpTxdnaWWXl2Gby5IJOt273xsW32I2GxwKTxSWSkRZN0J0230DxVN6N3+/EV4lhS4TBGMJjwLxXuOEndlmnTprFq1Sq2bt3K1KlNifMpU6bw6quvEgwGmTZtGn379sVqtfL888+zb98+Pv30Ux599NE2z/uzn/2MuXPnct1117Fz504AfvSjH/Gvf/2LZ599luLiYoqKinjjjTd4+umnu91+cXTJzAUhhBBCCCGEEEfEblZcPsbJVYUp/PbdSjJcETYdCJHf186gLDvVPoODNRGUSQcFzyytj81caMvC1cVEDJ3B6QqbX6Pcqwjq0c7EDQdAVx39ORvtuV9REuSKiT1znRCdjfDtc8d3+XFvrAuyuyraaVsfii5T49ejszB6p5n5/YVNI8RzUi38c2E9ejv97ht3x89cGDMqmft+nUzYV8u9DzaNWm9MwUQw8doO+NmQEDZz64WNNcBhtTJ7qDM2k8RmNTNmeA7/XVyE3WYlGAnGjv36pQU6NrhvGkop9hxsfdZMezyhppk7pfWKXRVhVu0NYtIgrKL7du13UdtBTYCIAYZuJtjGFI6S0ujMhf9ugaFZJgx0qryKBz+tYUw/O2X1EcpaeY7qhsH/9SEI1ynsFo2MJMU767xkuq0EI+HofB9Nw2xSlNXrPLawlp+cGp8Nef3jjQRDOu8s3kmW1UpNQ4mM55b7KfM23RWR1m4QBYuXROtIBEPRmQcHS0OsWKvYUZFMRMGeQ044bKW1mtpoUiESicbx3Q+qSXKZcbsVe/eD26rwNPSlfnEAbm8/xEIcdZrFgjkpCd3rhSPo+O8Kc1ISmqXrXb/Tpk0jEAgwdOhQsrKyYtunTp2K1+tl4MCBsZkKf/zjH/nb3/7G888/T35+Pj/72c+49dZb2zz3L37xCwzD4LrrruP555/n8ssvx+Fw8OSTT/LnP/8Zl8tFbm4u1113XdcvWBwTklwQQgghhBBCCNFjfnBSKg8vqCYr2cLY/jb6pJr50/xqfnBSKguKvOyuNLjz9LQOzzN5dD/e/GQjZwyKYE938feFIYZkwN4qyEiCaq9BRLU/Gd9lhVtmpvfQlR2Zk4ZZWFYcRtfg2mluXlnhITUJqr3xNSga3TInmX98Ed9DnG6B6ob+5pH9y4HWl6y5enIpL67oy8jeFg7WRKj0R5MB5wxsOPd0jYeWKDSiyxmYAV2Dcf1tXDzOwdp9Lc85eXQ/dpdUkoxBPSZOHmFGNxQLdxrMGWaioH9Si/b2pLyscooqchJ2fogmUk6ePIRwRGfvwfUoovHpYBWpGKNZZ7qZaALnzDw7b2+I9r5XeiF80EbecNiyre3zBIMQDLa9to/FBBFD48xc2FkViXXinzTMxvwtAVJdcKiuzYcDENahf5piT7XONVMdvLrCS1CPzr4wmxRuN3gCGt+emkwwrLO2xMeuzes4d3YuvdLd7C2t4aypg9i8biO6is6P2V/XuXTTsKGwM1qrHaXA5TAxZbwdo7KEVSVZZKUFqKhxtXhcJAJWc7Tthq7Q0PEHod5jMCylkh210fvj6pFdWOdMiKPEZLORPGECKnL01u3SLBZMtq4XIenfvz9FRUUttvfu3bvF9vPPP5/zzz8/blvzY6ZNm9biMb/61a/41a9+Fft+7ty5zJ07t8vtFMcHSS4IIYQQQgghhOgxOakWzsh3UxcwWF8S4tOtPpLsJt5Z7+V3c1uvfdCalZv3k55sZ0WZhQN7wqQ4NUo9igy3iWqfgdkCTrtGMKgItTII1KJFO2EP1hsMy2q5/2h7eU0Im03DbtH4aleQ3D52dpSF6J1iiqtB0Wh7ecsOqOpmm7aWtL0Wfl7vIM9d78JuT+Gyf0aHgCvg5e0wdiRsKTORbDfwBhUWM+T2tsZeG483QGtzElZu3k9mqpMdnujw98+36/zo1FSG5hikOkzMyXUmJLlgNkFGmsa2iravt7ErubWubbNGuzNAGh8/fmQfPL4Q67eXUlnjJTPNhdtlo6LKiycQ7HK7dWDroRDL/PFPXue1Etzd5dPFiTRkO97ZCBZT0/nf3hDEYuo4sQDRmOyoiP6MPPuVF0U0fjWB6Kwabxh6p5j4rMjPoHSNTaVhdKXz+iebsNssuBw2du6vZUtN1zsuGxMLjSqqdFasDbK3JpUUO1TVtj2rqbHOigL8DS+LUrCjtun+OGuYu+UDhTgOmGw26EZnvxDHM6m5IIQQQgghhBCiR43rb+NgTYSx/W1cMclNlVfn8old6/CbMXYgoYjBzD4Rrplkwx9SXDPVjaYZZCRBRDdx+skOMlqZmJCcBBqKoRlmCvq0XHv+WLhphoM+qWbOyndx60mpZLhM/OysdNJcJm6dk9ri+IvGJeE+7C/2Xs1q5c4cHV9zoS3Xz4guaZNi1vnB2Oi2s/PM2C0KmylaZLgzr8243N4cqvIxPjO65NKVk5yMzLGyaneAvJxo8eyzR1k71aaumDE1iZo6xawhbV/vD05Kjl1ncxk2mDEo2qbRQ+ITW8P7pcX+f8FJI8kdmEnx/ipGDMiIq6sxa2yfbrc9Em49qxEMtbq5TW2Nw1dA/7Sm7yf2a0o8dFakoWh0Y0sVYOjgD0Nxpc7iHX4+3eIjEIGwbhAM6dR5gtR5g6zdUY6Tro/CbuxbtTf8O3iAjdxhFio8JuqC0CezO0mq6P2Re3xMVBJCiBOGJBeEEEIIIYQQQvSodSUh+qRZWF8S4tVVHjKSzLy22tOlc5SU1jKsbxr7PCbe3xwhJ8XMa6u9JNktVPvAZDJY/FWQQ2UtH+vzg8UMniBsONj1UeeJ0CvZzD0XZjF3nJucVAs3z0llRI6N383NJCe15aICW0vDeA7rKC7zg8tkkGSFWl/nkjUr9oQYkAr9HBH6J0eXr/mwSEfTTOhEa0B05rX5bMUu7FYTm6pspNph8a4Qb6/z4rCZeGddtPjuwp09v474V8u92KywbE8WrsNyF1MG2zlrtJNTRyWxYk/LHvuqEOysMshIcbC3tKnD2mLWOFTlxWo24XbZGDOiN/MWFaGhMW/xtlhdjfQUJ0vWt18Auz3eHlr9pL2JF7urorMzAFbv75nna/4qekOws6rtY/3dWBAj1PBSBUNgt4PXZ/DufB+qofz4/opktC6vbBSdubCtusvNEUIIcQQkuSCEEEIIIYQQokeN62/jQMPMhR+clNrm6Pz25A3OxuWwMDLD4KYZDtJcJm6alUJVfQSHCcIRE6NHmhg/Jn5mgtUCugH+iMb+Op0+yV/PP3uHZFo4fB7A+F7gM0z0d8OUkZ1L1vzgpFTSHBrf6V8Z23bFOCv5fa0U9DVjNUfX1e/IebNHkuS0cXluCLdd487T0ygc5mDTgSCzhkWXsfnhSa2/xsmO7i+XdFJhMi6XxtWTSxmQDsMbJiDcMCOJDJeJKyZHkywXjWs5c+GSMSYKBztxO21cdno+Q/ulYzFrXHpaPpedMQa73cJlp+cDtPi+0WmTB3S77T0lM12jVxurQik6XvbpeOWwR+tLlFVEyBvatF0jjOryNUVnLgzt2q8ZIYQQR0hqLgghhBBCCCGE6FHrSkL0bZi5MCfX2aVaC41sVjOjB2di2x0d9f+7uZn89t1KIiq6HjzAF0sicNiyLOFm3/oj8M8vq/nzBU6+bp5cUsfh8wDWlkWXyCmuhdMcnet9zUm18OsznNSt02PbUh0mfnRqCo8vrMVsMfisyM+InPbXAU9PcXLlqXm4dpdz3tRkHElWfvxyOVazxr8W1/H3K7NZuz+EwwJhA1IcGnaLiWBYp8bfcfKiLV8t83D3D9Owbt/FWfnROhKteear+lixX6sZclLMXDghmYXbFJefMhKH28m3zhkX95gfXz0z9v9+vVLjvm+0Zlvnlp9KpOoaRWaGhcPv9eOd3WZm9sTBfLJ0Z6v7m5eyWLmh6f+qRVqtM6LZl1213XioEAmiup4lE98QJ9Jr//UcwiGEEEIIIYQQ4rg1bYidVIeJqUN6tt7BD05KZWC6mSEZ0e/nnu3gkvObFll3J8H4gqZisBlO+H9zMnq0DUfLD05KZUCz9eMHpJu5dTpYNbhlQs88x5WT3XGj/7vqzjPSSHaYuPP0tNj5Jgy0kpZk5q4z0zk730lOisZZM8qxmJuW75k60YnVHH8uTYOC0fEJDqsVvn1F56px33lGGplujXF9zWS7zbE2Hamzpg0iqWFhotG9uv54R7Plfdzmto+zN/Sn25uFwNxQE2PWNDffuiSTrLhR+U1rZrXVsZNu796I0sE9ULfAbILLTs8nyWHjrBnD4/bZbdHrGtDXhLmh8acVWki1hjED6SmBTj1H85WTsmzRJNCV+a4jb7wQR8hsjv6wh0JdLLAivjF8Ph8AVmvP1yI63sjMBSGEEEIIIYQQPa5xzF6NT+eVlR6unOwmzdVO72on6YZCB3pnhhg8MB2/v+nP2oH97WRnOejTK4DuCZNsd2G3fD3H1OWkWvjd3Gz+9EE5ReXR687vbefRMdvQc4axrgeeY391hEU7/Mwa5ujWazMw08rfr2xaryfNZeb2MzLZXG9heHKEQZkWHNYQNQ4DhwM80dIMZGXYSM8IUFYevUvMZiicnswphem4kyr4aoWP7EyN/v2c9Mqy05kR+8GIwh9UONIt/OH0FNJcZjxevcPHdWRvaR1eNEZkgc1mxmnWCetgBoLAVZOcjO7r4A/vV2PWoh3eugGNXYqBZoNXPc2a406KJk+qaxra3zBNpXmxZ92IHjNmtAur1YTFYkLDaPjZarqv7YC/lbZXB8FphnQnlHeh5MnuI6hbUDjYyrTpE3G442cLpSU7eOWjjUDTNSqlxWorfLo4ggkTCog0e7kz0qGqjfY0HxccJpn/Oy+FLJcTvaFTT4hjxWKx4HK5KC8vx2q1YjJ9Pd+HRNcppfD5fJSVlZGWlhZLNH2TSXJBCCGEEEIIIUSPWlYcpC5gsLw4yJZDIap9Bq+u9HBzF+suHO7RL2rZU2UQ1MFstvL+h14OltbF9m8uCrJ3Xxh/AHTDSnVA54mvqvnlGTlHeknHxCsrPRQ1rMpzoNbg8a9C/Lgbo+fb8sf51QTD8MD8ap77bu+eO3GD6H2geG95Nt5mg9H/+0n82jW6DkuW1pOTbeerFdGO4fJKRTgS5NOFNZx7cscjPx+YX019EFbtDfbIvdZo/vK9AGyvAA091qHd2P/98io/rg1+wgrCXVgFozHR0pFwGF58tYKsTCvlVUarxZ1bSyzE9ung71ot9SOyeHeYadNbbn/j000ttpUcjE/+GA0Fnet9TbOP2kosHK425OCdLQFunPT1WwJNfPNomkafPn0oLi5mz549x7o54hhIS0ujd++ef189HklyQQghhBBCCCFEjxqZY+WxL2q59aRU8nKsPLawlgvHdX/d/UbXTEvm/v9WkeqCaj/MnunAZnXy7+ejPfBWC4we5WD5qqaRy5cUHPnzHitXTnazt9zP1nLom2ri+zOs0Pry9d1y91npPDC/mp+d1QPr4LRi2hA7i3b4OWVyJe8vbkrwDBussWu3iusoz8wwM3yIg369Yf8hsJhh0AA7p81JAzruif/ZWen88YMq8vrYu73MU2uG5rjZVVqHBchMgWa5LADmDDMxcZCb/1tQ1+rj22IyRZcOCneijILVanD+mWm89mYFByu7NhvDqoFNA6/R8bE9YWr/1kfpzigYwKK1exP63EOkmLM4jthsNkaMGCFLI52ArFbrCTFjoZEkF4QQQgghhBBC9Ki313lx2Ey8s85LXm8bkwY5KCoNk5N6ZH+CLijyk9vHzvbSIMmuCIu+DHDTdVloWjlKRTtqtxY1DZEPG/Dmhnp+2fvruQ57msvMfZc2jXzUPXV0rQu7ffn97AmZsdDIYTUxa5iFX8yLL8K8c3fL8fel5To7igPsPxT9PqJD3nAXbreFcCdWuRmRY+PJ63v+WnaVRof9R4BASCPZrgjrEGhICizbbVDlb2/uQOsMI/rVGZXVcLAswvfP6sPvXirp0vPYrJDsMBOs1zGbINhKbsJuBkNFf16OhN0MdaHWl3/5asO+Izt5Jzy7NsSpwzs+ToijxWQy4XA4Oj5QiK8xWfRLCCGEEEIIIUSPal4ouCeLOzee98JxUF1nZfzY6HI5l18YLdqc4jZROD1+psKZeUlH/LziyMwaVxP3/aRxLTvbUlNMDOxv46RZ0VkHw4dY2bk7gMfTiaH9CTRhRCYAKVYwoQhFIC/HwpjeGjYz3HVmGtdMS6bx7k5zavTvxAj6gf0trcahNWkpMDo3miAb1L9xa+fWYJpb4OTsfCdDskwMzrLwPyclY2m4HogW2f5eYTIDj7DuuVWD0b3NTOjX+jUVjh/UrfM67PFFrtsz8eu5+pkQQnytycwFIYQQQgghhBA9Ks1ljlvzfk5uz6yD3njea5/0gwYffOxnygQYX5CCUiZ8Pp2PPotfpP2ZFTVMGdhzy+SIrtu8Kz7+23fGLxNisYDPb7DoqzqUglG5TiqrwliteqdrLiRKZW2IZGu0doEeBk2DSp/i71c29WQ/vrCWvlkWbGY4Oz+Jvy+obeeMDeet1jl4qHOJk3oP2Gwmwujs3d+4VevUY19f7eeV7/dm7rim12B7eYTPtkZnW2gaLNweYHZuMsGIj5Ka7hXBHj/ITrJV4bK1MXNhffdmLgSC4LBrdCaZsuJQt55CCCHEEZCZC0IIIYQQQgghvlZuO82CzaK44uKmDtP8kS6SkszMPbupfoDNBHeclHksmiiayR3YVDMhLdXMFRdnktwwoWTEUBORCDjtJqZNdnP6SWmkJJu54Jx0KqvCTOvB+gndcda0QWQ4FOeNsjAkS6NXsok7T0+LO+bKyW4GZZjpk2phbH8b10zteBmuiQVJXH1ZVufacGpTou6cU7tWWOC7s1rG75x8F+6G2QAOC1w4Lom9VWEmDohP4lg1yEqCqQPiH28/bCnxWQMhw2Xi4nZmYlx2Rn6X2t3opFluLjin7ZogGpDZsHtW/zYPE0IIkSCSXBBCCCGEEEII8bUyqq+NH1y+n8EDm9ZLsdlMjC9ws3aDD7Mp2umYlaQxLKtnZk2I7luwMiM2zj4cMairV3ga6ihs32WgaeD1Gyxb6cHttnDhuVms3+QnM8PKspWeY9ZugDS3g+vHhLl8oos/XZbDI1f3YmBmfCd8msvM2P4OBmdZWV8S4uKJKS3OYz5sosGBQ2HyRrhJdnfcLbNybVNyZuuOQDtHxtOAr4qDLbZ/sMlHRGmYgLAOzyytJ6zD8j1NM0pMwMvf783j1/amPmQmzaExMCeFCSP7YHfaSUmyk5niIC/dwGm3cvOcVFKcbV/L4L4Z9M/penH1kv1hVq7x0iu79YU3MtLN1NZH27umtMunF0IIcYQkuSCEEEIIIYQQ4hvjkrmZ9MqCdIfOrVOl3sLx4LzCCtJSIT3NxKxpKYzOc3H5hRloGpw6JxmnHZKTzXGzFMbmO9m9J0DB6K9HcmhIpoVPNvsYnBntBG8+eyHdAXqzVX16ZWnkjXASChlcc0X7sxc0Dc5pNlNierMYdTQ/wmWD785smei4crKb8QOssToMNxemcKg6iG4YsXoRVzdr/xl5VmoDivHDezEutzeRsE6fbDdzZw0l2QaXjOtcPZXTZnSt7oLdDmeemsolczNJTjLH6k1kNpvIMGSQnWEDwQDyZZKSEEIcdVJzQQghhBBCCCHEN0ZGuo2bv52BsWoT/dKyj3VzBJCVFuFH38/AYW/q6B5fkML4guj3Ho+i3qOzbKWHC8+NLq3zzn+rMVng3Q+q+Z/ruj7i/Wh7ckkdmgZPfVnH7+ZmUuZROCzRpEL1YZMNZk5zEQ5pbC7yMb7AjcOuEQorDKPpGE1r+nfx0npyh0UTZe/Nb6op4uugTd4Q7K6MtDrT4rbTmyo4P76wlkP1YCio1SHVqfH59iAXT4zuf255AJMGC1bvITPNhctpIxjSyU5zcd7QCKntzFhoLjXZSVIKeOs6dTiRCKxe5+PCc7O48do+/Pb+3QBUNiursm6jj3BD6QqpuSCEEEefzFwQx6XHH3+cvLw87rvvvtg2pRQPP/wwhYWFjB07lmuvvZbt27cfw1YKIYQQQgghhDhSc2amEAoZzJ7RlHz41mVZJDnNXHVp5+oSHGs/OCmVNJeJWxsKmRcOcxCIRJcdmtKsZsHEvHJGjrCRlGRmdF50dsA1V2Rht2oMGRg9xmaF6VOSSE/V6NvHysXnNw3Jv6ZZnYbBae23KSdZIy+n42LY5+S7cNoUfVMt/PTMNJId8XUlfnxyEnYLXDBrBOfNHonbZePcwrwOz9uagUPjv3c540tTpzeUbbBZYeQIJ6fNaWrH1ZdlYbXAmac03SfTJicxY2K0a+vs4d1qkhBCiCMgMxfEcWf9+vW88sor5OXFf1h54oknePrpp/njH//I4MGDeeyxx7jhhhv48MMPcbuPbZEvIYQQQgghhBDds2dfiJEjXOwtCZGRHq2j0buXg9tuja6DE/a1rBtwvMlJtfC7uU1JgH8tahqev7kU0l0avqCiaG8m59s0xhc0/Q07dHASv/5pEg8+WkJSkk6S08zcs7KZe1bT+ZURXVepf7+mZaJ218S3wQQ4bWDSINVppk+ahXfWebl5TvtFoD/Y5GNQpp0Ml4kJgxxMGBRfmHlotpVvTUwlLSsZh9vJt88dD0DI2/V6GEUb4r/3+eO/rwnA7VeXkNx/fNxMF4C8EW5+//No3D7+vA6lYMkyL7+5LYPT3ZsYkj2qy+0RQghxZCS5II4rXq+Xu+66i3vvvZfHHnsstl0pxXPPPcctt9zCmWeeCcADDzzAzJkzef/997nqqqu69Dy6rqPreo+2/UTWGEuJac+SuCaGxDUxJK6JIXFNHIltYkhcE+NYxFXXdQyiI4qVUu0eawCGyRxdU779Q1t/vGpcAsYAZRy+FzQNXcWvWR/tZzU3PKSVJzUAzYQB6K20v7HNEH/errWts1q/hu7QVbTdBhoaplavXxmgMMc9X+xxmgYdvFbdeT0Ob2Pzfzt8rYDRuU42b/MxaoSz1WNau6bOOJav3+2np/G/H1TiC8FdZ6Zjs2j8+aMqziqsBKNXq9f5rUsy+c9blVx1cWYrr6uK/XvB6Xbe/cTPuaPhv5ubjrlqios1e4NkJVu4aLyb+Zt9XDbJ3WG7L5/k5rVVnjaPbTuO8bHpMN7KYNIMWLG4aZM7CbIyzOzeF/39dkmBRkf3C8DcM9N4d34Nc89Mo7pa5511GdwyXadfSvTnW9d16MTvTHnfShyJqRAnBk119ElRiKPoZz/7GampqfziF7/g2muvZeTIkfzyl79k3759nH766bz11luMHj06dvytt95KSkoKDzzwQKfOr+s6a9euTVDrhRBCCCGEEEKIo+uR9w/iDxq47Gb+5/zex7o5HXrm0zJ2l4aAaAJz0vAkdpcFunQN7y2vwuPXSXZaqKgP4/XruJ0WrjtN6qwcb8aPH4/ZbD7WzRBCJIjMXBDHjXnz5rF582Zef/31FvvKy8sByMzMjNuelZXFgQMHuvxco0ePxmazda+hogVd19mwYQMFBQXyoaEHSVwTQ+KaGBLXxJC4Jo7ENjEkrolxLOKq+3zUrViB2eVC6+Bzs+GrwyhZhyN3NGZ3SrvHtsbrDbBkhyJ1cC6OJGfcvpDPg2vPVwwbmo0jyRXb7g/VsTa4neS+BdjtLYv9hjz1GGu3MCgrD7uj5X7DV0fkwEb2DZtBnjuCWWtxSIdt66y2rqE7dE8d9Ru3ofcbwkbbfjKGjsLhjF8iNuyrw7pzHQMzRmJvWFam8XHW3oOhake7r1V3Xo+4Nioo8lhice3oteqM1q6pM4631+9IYqEMRWSPgWWQiUigPi4ePz8zjQc/reH201IZkBw5oja2pq04Hh6bjuJdH/SyK7SOs+em8eY7lVRXK4YPcXDGuWnUVNXx+luV/LDQSg3LOozRmdnpfLqoltNmp+Kt9fDu22XcPD6LfuEwus9HypQpmF0dv17yvpU4oVCIzZs3d3ygEOJrTZIL4rhw8OBB7rvvPp566insdnubx2la/Kf+7k68MZvN8sEhASSuiSFxTQyJa2JIXBND4po4EtvEkLgmxlGNq9mMiega7iatjZ735gwds0abnfTtMWkQ/VhvAs10+F5QqsW5TRqA3vCQVp7UBCgDE2Buo/0mI7pkR3vtbr9tndX6NXSLFm23QqEwWr1+zQQah70eDY8zKdXha9Wd16M1jcd0+Fp1QqvX1AnH2+vXGItQRLFlu5f8kS5stq61SzNpLeIxOMvK369M3Ij9tuMYH5sO462Z0FGkZZi57ZZBcbscFgu3n7qf3smDqFEd3y+N+zSTRnq6mWvHVpHjzon+6NP135fyvtXzJJ5CnBi6++4qRI/atGkTlZWVXHLJJYwePZrRo0ezfPlynn/+eUaPHk1WVhYAFRUVcY+rrKyM7RNCCCGEEEIIIY53W7eH8Pl0Nhf5jnVTvrY++aKGeo/OpwtrjnVThBDihCYzF8RxYfr06bz33ntx237+858zdOhQbrrpJgYMGEB2djZLliyJ1VwIhUKsWLGCn/zkJ51+nsaZDlLQuWdJEazEkLgmhsQ1MSSuiSFxTRyJbWJIXBPjWBZ0JhymozK4RjiMMpnRI2FUKND154qE0TQL4YgOwchh+yLRgrGRMJFm59bDYcBMJBImaAq2OGdYj2DWTOjhMJFW9hvhcKygcyQUQLUxQLq9tnX++lq/hu6dK9pu3TDQMBHWw5jC8denG2EsmKPXrgUOe5yO1sFr1Z3XI+4YBeCOxbWj16pT193KNXXqccfb69cQi4EDYNmKICPz3ATDnYyJARpmQuFQt+PRXW3F8fDYdBTvsK5jRiMcCRM0xY91bbwmQ4+AqeP7ZfRIG2+8U82lF6bH/bzrJpMUdD5ONMZUSr0K8c0mBZ3Fcat5QWeAf/3rX/zrX//i/vvvZ9CgQTz++OMsW7aMDz/8ELfb3cHZokKhEBs2bEhks4UQQgghhBBCCCEEUFBQIDUvhfgGk5kL4mvjpptuIhgM8vvf/57a2lrGjRvHU0891enEAoDFYqGgoACTydSifoMQQgghhBBCCCGEOHJKKQzDwGKRrkchvslk5oIQQgghhBBCCCGEEEIIIbpECjoLIYQQQgghhBBCCCGEEKJLJLkghBBCCCGEEEIIIYQQQogukeSCEEIIIYQQQgghhBBCCCG6RJILQgghhBBCCCGEEEIIIYToEkkuCCGEEEIIIYQQQgghhBCiSyS5IIQQQgghhBBCCCGEEEKILpHkghBCCCGEEEIIIYQQQgghukSSC0IIIYQQQgghhBBCCCGE6BJJLgghhBBCCCGEEEIIIYQQokskuSC+Fh5//HEuvfRSJkyYwIwZM/jBD37Arl27YvvD4TB//vOfmTt3LuPHj6ewsJCf/vSnlJaWtnq+U089lYULFwJQVFTENddcw9ixY5k9ezaPPPIISqm440OhEA8++CCnnHIKY8aM4fTTT+f1119P3AUfJRLXxJC4JobENTEkrokhcU0ciW1iSFwTo6O4Ajz88MOcffbZjB8/nilTpnD99dezbt26Vs8ncY2SuCaGxDUxJK6JIXFNHImtEKJLlBBfA9/97nfVG2+8obZt26a2bNmibr75ZnXyyScrr9erlFKqrq5OXX/99WrevHlq586das2aNeryyy9XF198cYtzbdmyRU2YMEEFg0FVX1+vZs6cqW6//XZVVFSk5s+fryZMmKCefPLJuMfccsst6vLLL1dLlixR+/btU+vWrVOrVq06KteeSBLXxJC4JobENTEkrokhcU0ciW1iSFwTo6O4KqXUu+++q5YsWaL27t2rtm3bpn7xi1+oiRMnqsrKyrhzSVybSFwTQ+KaGBLXxJC4Jo7EVgjRFZJcEF9LlZWVKjc3Vy1fvrzNY9atW6dyc3PV/v3747Y/8sgj6kc/+pFSSqkXX3xRTZo0SQWDwdj+xx9/XBUWFirDMJRSSn3xxRdq0qRJqrq6uucv5DgjcU0MiWtiSFwTQ+KaGBLXxJHYJobENTE6E9f6+nqVm5urvvzyy7jtEte2SVwTQ+KaGBLXxJC4Jo7EVgjRHlkWSXwt1dfXA5CamtrmMR6PB03TSElJidu+YMECTjvtNADWrl3LlClTsNlssf2FhYWUlZVRUlISO37MmDH8+9//Zvbs2Zx11lk88MADBAKBnr6sY07imhgS18SQuCaGxDUxJK6JI7FNDIlrYnQU11AoxCuvvEJycjJ5eXlx+ySubZO4JobENTEkrokhcU0cia0Qoj2WY90AIbpKKcX999/PpEmTyM3NbfWYYDDIX/7yF84//3zcbndse2lpKUVFRZx00kkAVFRU0K9fv7jHZmZmxvYNGDCAffv2sWrVKux2O//4xz+orq7m97//PTU1Ndx///0JusqjT+KaGBLXxJC4JobENTEkrokjsU0MiWtitBfXzz77jDvuuAO/3092djZPPfUUGRkZsf0S17ZJXBND4poYEtfEkLgmjsRWCNERmbkgvnbuuecetm3bxt/+9rdW94fDYW6//XaUUvzud7+L2/fpp58yYcIE0tLSYts0TWv1PI3blVJomsZf/vIXxo4dy0knncTdd9/NW2+99Y3KnktcE0PimhgS18SQuCaGxDVxJLaJIXFNjPbiOm3aNN5++21efvllZs+ezW233UZlZWVsv8S1bRLXxJC4JobENTEkrokjsRVCdESSC+Jr5Q9/+AMLFizg2WefpXfv3i32h8NhbrvtNkpKSnjqqafiRtJB/JQ8gKysLMrLy+OOaXwzbMygZ2dnk5OTQ3JycuyYYcOGoZTi0KFDPXZtx5LENTEkrokhcU0MiWtiSFwTR2KbGBLXxOgori6Xi0GDBjF+/Hj+93//F4vFwuuvvx7bL3FtncQ1MSSuiSFxTQyJa+JIbIUQnSHJBfG1oJTinnvu4aOPPuLZZ59lwIABLY5p/GN3z549PPPMM6Snp8ft93q9LFu2LO7Nbfz48axcuZJQKBTbtnjxYnr16kX//v0BmDhxImVlZXi93tgxxcXFmEymVt9gv04krokhcU0MiWtiSFwTQ+KaOBLbxJC4JkZn4trW4xpjJnFtSeKaGBLXxJC4JobENXEktkKILjmSatBCHC2//e1v1aRJk9SyZctUWVlZ7Mvv9yullAqHw+qWW25Rc+bMUVu2bIk7JhgMKqWU+uCDD9T5558fd966ujo1c+ZMdccdd6iioiL10UcfqYkTJ6onn3wydozH41Fz5sxRP/rRj9T27dvV8uXL1Zlnnql++ctfHr0AJIjENTEkrokhcU0MiWtiSFwTR2KbGBLXxOgorl6vV/31r39Va9asUSUlJWrjxo3qF7/4hRozZozatm2bUkri2hqJa2JIXBND4poYEtfEkdgKIbpCU0qpY53gEKIjeXl5rW6///77ueSSSygpKYnLiDf33HPPMW3aNO666y769u3L7bffHre/qKiIe+65h/Xr15OamspVV13F//zP/8StBbhz507uvfdeVq9eTVpaGueccw633XYbDoej5y7yGJC4JobENTEkrokhcU0MiWviSGwTQ+KaGB3FNRgMcuedd7Ju3Tqqq6tJS0ujoKCAW2+9lbFjxwJIXFshcU0MiWtiSFwTQ+KaOBJbIURXSHJBnBB0XWfmzJk88cQTsTc7ceQkrokhcU0MiWtiSFwTQ+KaOBLbxJC4JobENTEkrokhcU0MiWtiSFwTR2IrxIlFai6IE0JNTQ3XXXcdBQUFx7op3ygS18SQuCaGxDUxJK6JIXFNHIltYkhcE0PimhgS18SQuCaGxDUxJK6JI7EV4sQiMxeEEEIIIYQQQgghhBBCCNElMnNBCCGEEEIIIYQQQgghhBBdIskFIYQQQgghhBBCCCGEEEJ0iSQXxNfGiy++yKmnnkpBQQGXXHIJK1eujO3zer3cc889zJkzh7Fjx3LOOefw0ksvdXjOoqIirrnmGsaOHcvs2bN55JFHOHylsOXLl3PJJZdQUFDAaaedxn/+858ev7ZjZcWKFdxyyy0UFhaSl5fHJ598ErdfKcXDDz9MYWEhY8eO5dprr2X79u0dnlfi2nZcw+Ewf/7zn5k7dy7jx4+nsLCQn/70p5SWlnZ43hM9rtDxPdvcb37zG/Ly8njmmWc6PO+JHtvOxHXnzp3ccsstTJo0iQkTJnDFFVdw4MCBds8rcW0/rvLe1T2PP/44l156KRMmTGDGjBn84Ac/YNeuXXHHyPtX13UUV3n/OjLtfY6V+7X72oqr3K9Hpr37tTn5rNU1HcVVPmt1j/QT9DzpJxBCdIkS4mtg3rx5Kj8/X7366qtqx44d6t5771Xjx49X+/fvV0op9ctf/lKdfvrpaunSpWrfvn3q5ZdfVqNGjVIff/xxm+esr69XM2fOVLfffrsqKipS8+fPVxMmTFBPPvlk7Ji9e/eqcePGqXvvvVft2LFDvfrqqyo/P199+OGHCb/mo+Hzzz9Xf/vb39T8+fNVbm5ui3g9/vjjasKECWr+/PmqqKhI3XbbbWrWrFmqvr6+zXNKXNuPa11dnbr++uvVvHnz1M6dO9WaNWvU5Zdfri6++OJ2zylxjeronm308ccfqwsuuEAVFhaqp59+ut1zSmw7juuePXvU1KlT1QMPPKA2bdqk9u7dqz777DNVUVHR5jklrh3HVd67uue73/2ueuONN9S2bdvUli1b1M0336xOPvlk5fV6Y8fI+1fXdRRXef/qvo4+x8r92j3txVXu1+7r6H5tJJ+1uqajuMpnre6RfoLEkH4CIURXSHJBfC1cdtll6je/+U3ctrPPPlv95S9/UUopdd5556lHHnkkbv/FF1+sHnzwwTbP+eKLL6pJkyapYDAY2/b444+rwsJCZRiGUkqpP/3pT+rss8+Oe9yvf/1rdcUVVxzJ5RyXDv/QYBiGmjVrlnr88cdj24LBoJo0aZL6z3/+0+Z5JK7x2usAb7Ru3TqVm5vb4o+25iSuLbUV20OHDqnZs2erbdu2qVNOOaXDP3gltvFai+ttt92mfvKTn3TpPBLXeK3FVd67ekZlZaXKzc1Vy5cvV0rJ+1dPOTyurZH3r85p73Os3K/d19HfB4eT+7VzOhNX+azVdR3FVT5rdY/0EySe9BMIIToiyyKJ414oFGLTpk0UFhbGbZ81axZr1qwBYOLEiSxYsIDS0lKUUixdupTi4uK4x9x9991ce+21se/Xrl3LlClTsNlssW2FhYWUlZVRUlISO2bWrFlxzzt79mw2btxIOBzu8Ws9npSUlFBeXh4XQ5vNxpQpU2JxB4lrT/B4PGiaRkpKSmybxLV7DMPgrrvu4sYbb2TEiBGtHiOx7RrDMPj8888ZPHgwN954IzNmzODyyy9vMT1a4tp18t7VM+rr6wFITU0F5P2rpxwe19bI+1fHOvocK/dr93Tm74PDyf3asc7EVT5rdV1HcZXPWt0j/QTHhrxvCSEOJ8kFcdyrrq5G13UyMzPjtmdlZVFeXg7Ar371K4YPH86cOXMYM2YM3/ve9/jtb3/L5MmTY8dnZ2fTp0+f2PcVFRVkZWXFnbPxOSoqKto9JhKJUF1d3XMXeRxqjG1rcW+MD0hcj1QwGOQvf/kL559/Pm63O7Zd4to9TzzxBBaLhe985zttHiOx7ZrKykp8Ph9PPPEEs2fP5qmnnuKMM87ghz/8IcuXL48dJ3HtOnnvOnJKKe6//34mTZpEbm4uIO9fPaG1uB5O3r86p6PPsXK/dk9n/j5oTu7XzulMXOWzVtd1FFf5rNU90k9wbMj7lhDicJZj3QAhOkvTtLjvlVKxbc8//zxr167lscceo2/fvqxcuZLf//739OrVi5kzZwJw5513dnjO1ra39rztPfabpq3rbyRx7b5wOMztt9+OUorf/e53cfskrl23ceNGnnvuOd588812r1di2zWGYQBw2mmncf311wMwatQoVq9ezcsvv8zUqVMBiWt3yHvXkbvnnnvYtm1bq8UZ5f2r+9qLK8j7V3e09zm2rf3NSVxb11FcQe7X7mgrrvJZ68i0FVf5rHVkpJ/g2JD3LSFEI0kuiONeeno6ZrM5LgsO0dG0WVlZBAIBHnzwQR555BFOPvlkAEaOHMmWLVt48sknYx8aDtfayKbKykqgKYPe2jFVVVVYLBbS0tJ64OqOX9nZ2UB09ECvXr1i2xvj3haJa+eEw2Fuu+02SkpKePbZZ+NG0bVG4tqxlStXUllZySmnnBLbpus6DzzwAM899xwLFixo9XES2/alp6djsVgYNmxY3PZhw4axatWqNh8ncW2fvHcduT/84Q8sWLCAF154gd69e8e2y/vXkWkrro3k/atrOvocK/dr93QU10Zyv3ZNR3GVz1rd01Fc5bNW90g/wbEh71tCiMPJskjiuGez2cjPz2fJkiVx27/88ksmTJhAJBIhHA63yGSbzeYW2fPmxo8fz8qVKwmFQrFtixcvplevXvTv3z92zJdffhn3uMWLFzNmzBisVuuRXtpxrX///mRnZ8fFPRQKsWLFCiZMmNDm4ySuHWv8Q3fPnj0888wzpKend/gYiWvHLrzwQt59913efvvt2FevXr248cYb+fe//93m4yS27bPZbBQUFFBcXBy3fffu3fTr16/Nx0lc2yfvXd2nlOKee+7ho48+4tlnn2XAgAFx++X9q3s6iivI+1d3dPQ5Vu7X7ukoriD3a3d0FFf5rNU9HcVVPmt1j/QTHBvyviWEaCGh5aKF6CHz5s1T+fn56rXXXlM7duxQ9913nxo/frwqKSlRSil1zTXXqPPOO08tXbpU7d27V73xxhuqoKBAvfjii7Fz/OUvf1F33XVX7Pu6ujo1c+ZMdccdd6iioiL10UcfqYkTJ6onn3wydszevXvVuHHj1P/+7/+qHTt2qNdee03l5+erDz/88OhdfAJ5PB61efNmtXnzZpWbm6uefvpptXnzZrV//36llFKPP/64mjRpkvroo49UUVGRuuOOO9SsWbNUfX197BwS15bai2s4HFa33HKLmjNnjtqyZYsqKyuLfQWDwdg5JK6t6+iePdwpp5yinn766bhtEtuWOorrRx99pPLz89Urr7yidu/erZ5//nk1atQotWLFitg5JK4tdRRXee/qnt/+9rdq0qRJatmyZXG/Q/1+f+wYef/quo7iKu9f3dfR51i5X7unvbjK/dp9Hd2vh5PPWp3TUVzls1b3SD9BYkg/gRCiKyS5IL42XnjhBXXKKaeo/Px8dfHFF6vly5fH9pWVlam7775bFRYWqoKCAnXWWWepp556ShmGETvmZz/7mbrmmmvizrl161Z19dVXqzFjxqhZs2aphx9+OO4xSim1bNkyddFFF6n8/Hx1yimnqJdeeimxF3oULV26VOXm5rb4+tnPfqaUUsowDPXQQw+pWbNmqTFjxqhvf/vbqqioKO4cEteW2ovrvn37Wt2Xm5urli5dGjuHxLV1Hd2zh2vtD16JbUudietrr72mzjjjDFVQUKAuuOAC9fHHH8edQ+LaUkdxlfeu7mnrd+gbb7wRO0bev7quo7jK+9eRae9zrNyv3ddWXOV+PTLt3a+Hk89anddRXOWzVvdIP0HPk34CIURXaEq1Mx9MCCGEEEIIIYQQQgghhBDiMFJzQQghhBBCCCGEEEIIIYQQXSLJBSGEEEIIIYQQQgghhBBCdIkkF4QQQgghhBBCCCGEEEII0SWSXBBCCCGEEEIIIYQQQgghRJdIckEIIYQQQgghhBBCCCGEEF0iyQUhhBBCCCGEEEIIIYQQQnSJJBeEEEIIIYQQQgghhBBCCNElklwQQgghhBBCCCGEEEIIIUSXSHJBCCGEEEIIIYQQQgghhBBdIskFIYQQQgghhBBCCCGEEEJ0iSQXhBBCCCGEEEIIIYQQQgjRJZJcEEIIIYQQQgghhBBCCCFEl0hyQQghhBBCCCGEEEIIIYQQXSLJBSGEEEIIIYQQQgghhBBCdIkkF4QQQgghhBBCCCGEEEII0SWSXBBCCCGEEEIIIYQQQgghRJdIckEIIYQQQgghhBBCCCGEEF0iyQUhhBBCCCGEEEIIIYQQQnSJJBeEEEIIIYQQQgghhBBCCNElklwQQgghhBBCCCGEEEIIIUSXSHJBCCGEEEIIIYQQQgghhBBdIskFIYQQQgghhBBCCCGEEEJ0iSQXhBBCCCGEEEIIIYQQQgjRJZJcEEIIIYQQQgghhBBCCCFEl0hyQQghhBBCCCGEEEIIIYQQXSLJBSGEEEIIIYQQQgghhBBCdIkkF4QQQgghhBBCCCGEEEII0SWSXBBCCCGEEEIIIYQQQgghRJdIckEIIYQQQgghhBBCCCGEEF0iyQUhhBBCCCGEEEIIIYQQQnSJJBeEEEIIIYQQQgghhBBCCNElklwQQgghhBBCCCGEEEIIIUSXSHJBCCGEEEIIIYQQQgghhBBdIskFIYQQQgghhBBCCCGEEEJ0iSQXhBBCCCGEEEIIIYQQQgjRJZJcEEIIIYQQQgghhBBCCCFEl0hyQQghhBBCCCGEEEIIIYQQXSLJBSGEEEIIIYQQQgghhBBCdIkkF4QQQgghhBBCCCGEEEII0SWSXBBCCCGEEEIIIYQQQgghRJdIckEIIYQQQgghhBBCCCGEEF1iOdYNEOJoMgyDSCSCyWRC07Rj3RwhhBBCCCGEEEKIbxylFIZhYLFYMJlkbLMQ31SSXBAnlEgkwoYNG451M4QQQgghhBBCCCG+8QoKCrDZbMe6GceEYRiEQqFj3QxxlFmtVsxm87FuxlEjyQVxQmnMlo8ePfqEfXNLBF3X2bBhAwUFBSfUL9BEk7gmhsQ1MSSuiSFxTRyJbWJIXBPjWMRV9/moW7ECk9WKZrXG7ftqrx9PyCDZZmL6QCeGvx5VuhnHsBGYXEldfi6vP8yXxRZc/UdgdTri2xHwkLp/GcMGpWF32mPb/WEv6/TdOHuPxGpztzhn2OfFvG47A1OHYre33G/469HLi9g3bAa5dg/mNiY1t9e2zmrrGrp1Lp8Xz5ZiIn0GsslxiOQhw7Hb42OuB+tx7tzMwJRh2GxJcY+zZPdHq93d7mvVndcj7hgF24LuWFw7eq06dd2tXFNnHG+v3xHFwgCtxIzqr6OHuxeP7morjofHpqN4+3Qf+yLryeufgtsWH8vG1zjH1ZtNpvIuxaj5z7vNZMcIh0mZMgWzy9XhY+V9K3FCoRCbN28+YWcthEIhiouLMQzjWDdFHANpaWn07t37hFg1RZIL4oTS+ENtNpvlg0MCSFwTQ+KaGBLXxJC4JobENXEktokhcU2MoxpXsxkTYLZaMdnjOwGnDLGycp+fyQOcWCwm9EgAw9AxW6yYbV3vwDWHo8tnWC1mHPb4P1FDEQsohdlixdLs3GZCoOtYLFbs1lY6fM1BDGVgtlqx2Fvu1yMBlKEDYLE52kwutNe2zmrrGrpDC4UwGTpmkwmFgdXc8vrD4QAaevTaG56v6XFm6OC16s7rEddGBQSb4trha9UJrV1TZxxvr9+RxEIZijA6NquNiG7tVjy6q604Hh6bjuIdDprRIwprK9ff+BqbzBZQXYxRs593s8kK4XCXf1/K+1bPa4znidC5ejilFAcPHsRsNjNgwIATNsFyIlJK4fP5KCsrA6BPnz7HuEWJJ8kFIYQQQgghhBCd5rCYKByS+NHSQgghxNdRJBLB5/PRt29fXJ2YQSO+WZxOJwBlZWX06tXrG5+4lNSZEEIIIYQQQohvpGBEsXiXl0Dkm7MsRXnIzN+WRaj1nHijgYUQ4utA16Mz42Q57hNXY1IpHA4f45YkniQXhBBCCCGEEEJ8I60+EKYuqLNyn/9YN6XHPLsvk/oAfL429Vg3RQghRDtOxCWhRNSJ9NpLckEIIYQQQgghxDfSxL5WUhxmJg9wtnlMIGzwxTY/gfDXY3bDdQMqSXHAyeNrj3VThBBCCHGCk5oLQgghhBBCCCG+kewWrcP6EMuLg3iCBsuLg8zJbTsJcbzItuncPs3COps61k0R3RQKKbYUecgf6cJmkzGfQpwogmGDiH70fndbzBp2q/yOEYklyQUhhBBCCCGEECesqUPsrNodZOoQ+7FuijhBbN0eIhyysbnIx/gC97FujhDiKAiGDZZursXj14/ac7qdZqaPTj3hEgx5eXn84x//4PTTTz/WTTkhSHJBCCGEEEIIIcQJy2E1fS1mLIhvjpEjbOzabWZ0nutYN0UIcZREdIXHr2O1atgsie/sD0UMPH6diK6wWzv3mLvvvpu33noLAIvFQmpqKnl5eZx33nlccsklmEzHPklRWVnJ3//+dxYuXEhFRQWpqamMHDmSH/7wh0yYMOFYN++EJMkFIYQQQgghhBDHrZAOi3eFKBzpwHGCjb4Ux14oorOj3MTAQQpHD53TZtNkxoIQJyibxYTjKC2HFg53fZbE7Nmzuf/++zEMg4qKChYtWsR9993H/Pnzeeyxx7BYjm1X8o9+9CMikQh//OMfGTBgAJWVlXz11VfU1kodomNFPpkJIYQQQgghhDhuba0yUR9ULC8OHuumHBeChsbS/QbhiHasm3JC2L6vBl9YY9W+yLFuihBCJJzNZiM7O5ucnBzy8/O55ZZbePTRR1m4cGFsVgNAfX09v/71r5kxYwYTJ07kO9/5Dlu3bo0714IFC7jkkksoKCjgtNNO45FHHiESafpdmpeXx0svvcT3vvc9xo4dy6mnnsoHH3zQZtvq6upYtWoVP/nJT5g+fTr9+vVj7NixfP/73+fkk09u83GlpaXcdtttTJkyhWnTpnHrrbdSUlISd8wbb7zBOeecQ0FBAWeffTYvvvhibF9JSQl5eXnMmzePq666ioKCAs477zyWLVvW2bB+o0lyQQghhBBCCCHEcWtkhkGK3SQ1ERqsrnXhCSqKD0o8joYRA9JwWRWTBsjCD0KIE9OMGTMYOXIkH330EQBKKW6++WbKy8v517/+xZtvvkl+fj7XXXcdNTU1ACxatIi77rqLa6+9lv/+97/cc889vPnmm/zzn/+MO/ff//53zjrrLN555x0uuOAC7rzzTnbu3NlqO1wuFy6Xi08++YRQKNSptvv9fr7zne/gcrl44YUXeOmll3C5XHzve9+LnePVV1/lwQcf5Pbbb+e///0vd9xxBw899FBcMgXgT3/6EzfccANvv/02EyZM4NZbb6W6urorofxGkuSCOCIPP/wweXl5cV+zZs2K7VdK8fDDD1NYWMjYsWO59tpr2b59e9w5QqEQf/jDH5g2bRrjx4/nlltu4dChQ3HH1NbWctdddzFp0iQmTZrEXXfdRV1d3VG5RiGEEEIIIUSTQMRg8S4vgYhxVJ7PZoZZQ62yJFKDiak+ku0aQ/rITI6jwWYxMzbbwGGVmSJCiBPX0KFD2b9/PwBLly5l27ZtPPTQQxQUFDB48GB+9rOfkZKSwvz58wH45z//yc0338zFF1/MgAEDmDVrFj/+8Y95+eWX48579tlnc/nllzNkyBBuu+02xowZw/PPP99qGywWC3/84x95++23mTx5MldddRV/+9vfWsyYaG7evHlomsZ9991HXl4ew4YN4/777+fgwYMsX74cgEcffZS7776bM888kwEDBnDmmWdy3XXX8corr8Sd69vf/jZnnXUWw4YN43e/+x3Jycm8/vrr3Y7pN4Wk3sURGzFiBE8//XTse7PZHPv/E088wdNPP80f//hHBg8ezGOPPcYNN9zAhx9+iNsdXWPyvvvu47PPPuPBBx8kLS2NP/7xj3z/+9/nzTffjJ3rzjvvpLS0lH//+98A/OY3v+GnP/1pi4ynEEIIIYQQomcEI4rVe/xMHWrF0az45Mq9fuqCOiv3+SkcknQMW9gzAmGDlbuDTBti/1okMOwmxbR+JtZZ1LFuSsKFQgabtvrIHaToZD1SIYQQCaCUQtOiSdZNmzbh8/mYNm1a3DGBQIC9e/fGjtmwYUNcv52u6wSDQfx+P06nE6BFEebx48ezZcuWNttx1llncfLJJ7Ny5UrWrFnD4sWL+fe//829997LJZdc0uL4TZs2sXfvXiZOnBi3PRgMsnfvXqqqqjh48CC//OUv+fWvfx3bH4lESE5OjntM87ZaLBbGjBnDrl272mzriUKSC+KImc1msrOzW2xXSvHcc89xyy23cOaZZwLwwAMPMHPmTN5//32uuuoq6uvreeONN/jTn/7EzJkzAfjzn//MySefzJdffsns2bPZuXMnixYt4tVXX2XcuHEA/OEPf+DKK69k165dDB06tMtt1nUdXe96YRvRusZYSkx7lsQ1MSSuiSFxTQyJa+JIbBND4poYxyKuuq6z4lAELxaW7/Uxq1kSYXQfG2+ur2P6YCe6UhiAYTKjK6Ab/d2Ggmh/hQHq8NkQBmgauiJ6/maPAXPDQ1p5UgPQTBiArlrub2wzwNLiIJ6AwdLiILNHOLvQtk5fYavX0B26irbbQEPD1Or1KwMU5rjniz1O06CD16o7r8fhbWz+b4evVTs2bfHi9Rls2RZiks3c5Rgeb6/fkcSi8XhlqFZf40RqO47xsekw3srAjNbufWsojS7HqNnPe+OXruvQid+Z8r6VOBLTb5adO3fSv39/AAzDIDs7u9UZBo0d8oZh8KMf/SjWH9ic3d7+sn6NSYy22O12Zs2axaxZs/jhD3/IL3/5Sx5++OFWkwuGYZCfn89f/vKXFvsyMjIIBqOzAP/whz/E+hwbmUzH/4CD44EkF8QR27NnD4WFhdhsNsaNG8cdd9zBgAEDKCkpoby8nMLCwtixNpuNKVOmsGbNGq666io2btxIOByOW0opJyeHESNGsGbNGmbPns2aNWtITk6O+yEfP348ycnJrFmzplvJhc2bNx/ZRYtWbdiw4Vg34RtJ4poYEtfEkLgmhsQ1cSS2/5+9O4+Por7/OP7ae3OQAxLuAOFIOBJuiJzKoaAVW7BYf/W2am2trUdbrVfVWsVqa2s9ivWotVq1glar9cSqoIBc4Q5XgAQQQiDnJnvO74+QJUuu3ZBNON7PxyMP3ZnvzHznMxNm8/3M9/uNDsU1Oto6rqmZHSkuqKZPTyfb6zTQ5+6txtbByqK9boamWyCmAwyYWNNYXd6SI8XTsy/APqgKXWMzAX36sSNw7L47kkgO7AUv9RuwTMRi6TGKQoAGkgvEdIB+4wBISo3jm4JqeqY42Vh+bENC43ULV+Pn0BIdYcgZAKTSBb5p6Pzj8MaPZ7sH8BzdzpM5lk0FVQxKH4/dMDdRl5Zcj/ryKmqbG5q+Vk0Z4HSwuaiagWlJeK3HnlM4Trzr19JY1PLtCtDwNY6mhuNYPzZNx7sj0NHatZHzrzmnQiCRtIhiFPL7DpCYCFu2hH966Lkl0pSvvvqKLVu2cOWVVwIwZMgQDh48iMViCSYcjjV48GDy8/Pp3bt3k/tes2YN3/nOd4Kfc3NzGTRoUET169+/Px9//HGD64YMGcJ///tfOnXqFBxBpa4OHTrQpUsXCgoKuOCCC5qt65gxY4Cang0bNmzgkksuiaiupyIlF+S4DB06lIcffpg+ffpQXFzM008/zcUXX8x//vMfioqKAOjUqVPINikpKezduxeAgwcPYrPZSExMrFfm4MGDwTLH7qN2v7VlIjV48GDsdnuLtpX6/H4/69atIzs7O2RYLDk+imt0KK7RobhGh+IaPYptdCiu0dEecfW7XJR9/TXpXWNYWVjNqLSY4NBIPXrFsrKgqmaZyUTAVUagMBdnxmAs8QkRH6uyspol2wwS+2TgjAvtOeBxVRC76yv69U3FGRcbXF7lKWONeysdumfjcHQ4dpd4KsoJrNlE75RMHM766wOuMnx711PQbxzZSQGGJ9s5+s5zeHULV2Pn0BL+ijLK12/B3yOd9fY9dOw7CGdMaGOJ11WGbXsuvToOxOFICG730dJCnDGdOLh/C1PG9W70WrXkeoTU0YB1JWZKiio5I92BYVQ0ea2aYsPCqAG2Bs8pHCfa9Wvuvm2KETDw7Qpg7W3GV13eoni0VGNxPDY2zcW73F3JDk8uWb060cHhDFlXe427xKexgb0Rxaju77vd7MDvcpEwZgyW2Oavl55b0ePxePRiZwM8bTRfUUuP4/F4KCoqIhAIcPDgQb744gvmz5/PlClTgkmA8ePHM3z4cG644QZ+/vOfk56ezoEDB/jss8+YPn062dnZ3HDDDVx//fV069aNmTNnYjabycvLIy8vj5tvvjl4vPfff5+srCxGjRrFO++8w9q1a/ntb3/bYN0OHz7Mz372My688EIyMzOJi4tj/fr1PPvss0ybNq3BbWbNmsVzzz3Hj370I372s5/RpUsX9u3bx4cffsg111xD165dufHGG3nggQeIj49n8uTJeDwe1q9fT1lZGVdddVVwX6+88gp9+vShb9++vPjii5SWlnLhhRe2KM6nEiUX5LiceeaZIZ+HDx/O2WefzVtvvRXsaXBsdyajoTeHjhFumea6SjXGYrHoi0MUKK7RobhGh+IaHYprdCiu0aPYRofiGh1tGleLBTOwck81FX4zqwurg/MrxNksTO57zNt/AT8WE1ha8PXcbKrtXGAG07E9B8xgGPX2bTYB+I9s0sBBzYARwAxYGvmbwRyoeSu6qXo3XbdwNXwOLWKqqbeBgUGgwfM3mcHEMdfDBKM6VLDW3IlRMeXHcc7hncumgio6EGDlTjej+0CT1yoMDZ5TGFrj+nl8BtsOmOjVyyDuOK9fs/dtGExmU4vj0Zxqb4Bl+fXnH2k8jqH3Q7PxNpnxYzR535pNBhh+PD6DTVsrGTIwFru9mWtX5/fdTE0nqkj/vdRzq/UpnqGsFhPxMRYqqvx4vW0zZFR8jAVrhP9IfPHFF0ycOBGr1UpCQgIDBw7krrvuYvbs2cFhgkwmE8888wx//OMfueOOOzh8+DApKSmMHj2alJQUACZNmsRf/vIXnnzySZ599lmsVit9+/Zl7ty5Ice78cYbee+997jvvvtITU3l0UcfpX///g3WLS4ujmHDhvHiiy+ye/dufD4fXbt2Ze7cuVx//fUNbhMTE8M//vEPHn30UX7yk59QWVlJly5dGDduXLAnw9y5c3E6nTz33HM88sgjxMbGkpGRwRVXXBGyr1tvvZW//vWvbNy4kV69evHUU0/RsWPHiOJ7KlJyQVpV7S/gzp07mT59OlDT86Bz587BMsXFxcF/bFJSUvB6vZSWlob0XiguLg5OlJKSkkJxcXG9Yx06dKjBHg0iIiIiItI6RvdwsuqAn9FpLXvrW04cDrPB+G5mKI7+IP2D0mIoP1jJ2HQHAcMb9eNF09aCEvxeEysLfExLavvj105qPTgjhlbMIzRoWb6bsuoAy/PdTM5o39/5zVs9eD12Nua5GJ5dfygTkZONw2bmjMGJ+NpiopQjrBYTDlv4idV58+Yxb968sMrGx8dz1113cddddzVaZtKkSUyaNKnJ/XTp0oXnn38+rGPa7XZuvfVWbr311ibL5eXlhXxOTU3l4YcfbnKbWbNmMWvWrCbL9OvXj9dffz2sup5ONDOFtCqPx8P27dtJTU2lZ8+epKamsmTJkpD1X3/9dTBxkJWVhc1mCylz4MABtm7dGiwzYsQIysvLWbt2bbBMbm4u5eXl9WaVFxERERGR1uO0mpiYHhccEulUVO0N8NmWKqq9bTNUxenAbjUzaUBMyNvvJ6sBaUnE2gxGpbXPu5kbNrtwufxs3OKKaLuW3Nc56Q4SnWbGpjc92WpbGDjATlychcGZxzcUlciJxGEzE+e0tNlPJIkFkZZSzwU5Lg8//DBTpkyhW7duHDp0iKeffpqKigpmz56NyWTi8ssvZ/78+fTp04fevXszf/58nE4n559/PlAzccqFF17Iww8/THJyMomJiTz88MNkZGQwfvx4oCYzOGnSJO666y7uv/9+AO6++26mTJnSosmcRUREREREai3Pd1PhPjHe1pYTj91qYWhqAKet9foNeDwGm/IqwhryZ8jAWDbmuRg0IAb2hP/Gc0t6ITht5hPmd8BuN6nHgojISUDJBTku33zzDbfccgslJSUkJyczfPhwXn/9dXr06AHAtddei9vt5r777qO0tJRhw4bx/PPPh8zQfscdd2C1Wrnpppuorq5m3LhxzJs3L2R8vkcffZQHHniAq6++GoCpU6dyzz33tO3JioiIiIjIKWdsuoOVO90nxNva4XAHTKzYE8CaFu1BclrO4wvw+ZYqxvU9OWLa1iIZ8sduNzM8Ox4jYOAl/HHac9IdLM8/ee5rETn9HDt80YmqZ8+eJ01d24OSC3JcHnvssSbXm0wmbrzxRm688cZGyzgcDu6++27uvvvuRsskJSXx6KOPtrieIiIiIiIiDTmR3tYOx6rSWCriDQ7vc9B1YHvXpmG1Ezovz6+d0FnqGjjAzo6d0R3y52S7r0VE5OSkwbdERERERETktHWyzbkwMtFFB4eJ9G7u9q5KowalxZAYc2KM3X8iqh3yp7khkURERE50epKJiIiIiIjIKcntM1i8o5JqX+OJg+V1xqY/GTjMBjk9zNis4Y+/39ZOpQmdRUREpHF60ouIiIiIiMgJy+OHxTs8LepZsGqvlzK3nxUFVY2WGdbTzt4SH0N72o+nmiIiIiKnHSUXREREREREpEHVYbz5H22bD5kpdxst6lkwsruNBKeF0WmNjz2fW+ihe5KVtYWe46mmiIiIyGlHEzqLiIiIiIhIg1bsqabCb2ZFQRUT0+PapQ4DOwYotbVs/H6H1dRsvcemO1i50635AVpZtTfAip1usnucuMM3iYi0JcPrBr+v7Q5osWKy6dkm0aXkgoiIiIiIiDRodA8nqw74m3zzP9rsFpjQ1xa18fudNjOTM9rv/E5Vy/PdVLgDrNztJ6ZHe9dGRKR9GV43ni1LMaor2uyYJmc89owzWi3BkJmZyZNPPsn06dPDKr9s2TIuv/xyvv76axISElqlDk2ZOnUql19+OVdeeWXUjyVHKbkgIiIiIiIiDXKG8ea/SENqe4Rk9bCw0d/etRERaWd+X01iwWbHZI3+HD+Gz1NzPL8Pwkwu3H777ZSVlfHUU081uH7x4sUkJia2ZjX585//zMcff8y///3vJsu5XC6efPJJ3n//fQ4cOEBcXBwDBgzg6quvZsqUKa1aJ4mMkgsiIiIiIiIi0qpqe4S4PF5QckFEBACT1Y7J5myTYxne1p1LKDU1tVX3F4lf//rXrF27lnvuuYd+/fpRUlLC6tWrKSkpabc6SQ1N6CwiIiIiIiISZdVeg8+2VFHtbb/JsdtStTdw5Hw154KIyKkgMzOTjz/+OPh51apVfPvb3yY7O5s5c+bw8ccfk5mZyaZNm0K227BhA3PmzGHYsGFcfPHF7NixA4CFCxfyxBNPsHnzZjIzM8nMzGThwoUNHvvTTz/l+uuv58wzz6Rnz55kZWVx2WWXMXv27EbrW15ezt133824ceMYOXIkl19+OZs3bw4ps2jRIubMmUN2djbTpk3jiSeewOc7Oi9GZmYmr7zyCtdccw1Dhw5l6tSp/Pe//404dqcyJRdERERERETktFXq8jP/81JKXNF9vX5FgZey6gDL891RPc6JYnm+m7LqmjkXRETk1FJRUcGPfvQjMjIyePPNN/nZz37GI4880mDZxx57jNtvv50FCxZgsVi44447ADjvvPO4+uqrGTBgAIsXL2bx4sWcd955De4jJSWFzz77jIqK8OasMAyD6667jqKiIp555hkWLlzIkCFDuOKKK4K9Hb744gt+8YtfcNlll/Hee+9x//33s3DhQv7yl7+E7OtPf/oTM2bM4N///jcXXHABt956K9u3bw8zUqc+JRdERERERESkQdU+g8U7Kqn2nbpv27+yvJyt+z38c3l0J9kcnWYj0WlmbHrrTKx5ohub7iDRaWZUL0t7V0VERFrZO++8A8ADDzxA//79OfPMM7nmmmsaLHvzzTczduxY+vfvz3XXXcfq1atxu904nU5iY2OxWCykpqaSmpqK09nwkFG/+c1vWL16NWeccQYXXnghDz74ICtXrmy0fkuXLmXLli08/vjjZGdn06dPH2677TYSEhL44IMPAPjLX/7Cddddx+zZs0lLS2PChAn87Gc/49VXXw3Z18yZM5k7dy7p6encdNNNZGVl8dJLL7UkbKckzbkgIiIiIiIiDfpqdzWbi314AwZT+scDUO0LsGJ3FaN7xeC0nvzvq6Wn2Nhb4ic9Jfp/HrfnAEHugInlewOMtpqIaYPjac4FEZFTV35+PpmZmTgcRxPm2dnZDZbNzMwM/n/tvA3FxcV079497OONGTOGjz/+mNzcXFatWsXSpUv5+9//zo033sgNN9xQr/yGDRtwuVzk5OSELK+urmb37t3BMuvWrQvpqeD3+3G73VRVVRETU/O0HDFiRMg+hg8fXm/op9OZkgsiIiIiIiLSiPrN4St2V1Hm9rOioIqJ6XHtUKfWdVZmDB0c0e9RsKLAS5VhY3m+m8kZbdG8H2pVaSxVsbCyIo5pbX50ERE5lRiGgclkCqus1Xq0+bl2m0Ag8h6RNpuN0aNHM3r0aK677jqeeuopnnrqKa699lrsdntI2UAgQGpqaoM9DDp06BAsc+ONN3LOOefUK1M3adKQcM/9dKDkgoiIiIiIiDRoXK8YHE4/o9OONoaP7hXDioKqkGUns9o37KNtdJqNtQfab1ikkYku1pphVGxluxy/JTyeABs2u8jobWBr78qcBqq9AZblu8lJd+C0Rb9XUu31HTIwFjXTiZxc+vbtyzvvvIPH4wk27K9bty7i/dhsthYlGgD69++Pz+cLqUOtIUOGcPDgQSwWCz179mxw+8GDB5Ofn0/v3r2bPM6aNWv4zne+E/ycm5vLoEGDWlTnU5GSCyIiIiIiItIgp9XUcO+E9hzf5yTltJnapcdCLYfZYHw3MxSfPBdvw2YXLpefzds8jFLrRdQtOzIJd1v1rqm9vhvzXAzpF/XDiZwQDJ/nhD5OeXl5vSF/EhMT6w1hNGvWLP74xz9y9913c91117F3716ef/55ILK3+nv06EFhYSGbNm2iS5cuxMfH10sUAFx22WV861vfIisri6SkJLZv384f/vAHcnJyiI+Pr1d+/PjxDB8+nBtuuIGf//znpKenc+DAAT777DOmT59OdnY2N9xwA9dffz3dunVj5syZmM1m8vLyyMvL4+abbw7u6/333ycrK4tRo0bxzjvvsHbtWn7729+GfY6nOj2eRUREREREJGyn2rBIcuIaMjCWjXkuBvSyw872rs2pLyfdwfJ8d5v1rhnQ18nHn5UwLCsOOHl61Ii0iMWKyRmPUV2B4W2bBIPJGQ+WyJp+ly9fHvKWPsDs2bOZN29eyLL4+Hiefvpp7r33Xr797W+TkZHBDTfcwK233tpgcqAxM2bM4KOPPuLyyy+nrKyMhx56iDlz5tQrN3HiRN566y0ee+wxqqqq6Ny5M2eddVaD8y1ATYLjmWee4Y9//CN33HEHhw8fJiUlhdGjR5OSkgLApEmT+Mtf/sKTTz7Js88+i9VqpW/fvsydOzdkXzfeeCPvvfce9913H6mpqTz66KP0798/7HM81Z10yYXCwkKmTZvGW2+9pS4oIiIiIiIibSy7u4M3csuYkB7b3lVpksdv4qvdHsb1C5wSE0+fTDy+AJ9scmE2wcheLe8pYbebGZ4dj9dV2oq1k8a01RBhtbbuqCa1k41t+dXquSCnPJPNgT3jDPD72u6gFismW/jJwnnz5tVLItSVl5cX8nnkyJG8/fbbwc9vv/02Npst2MshJyen3jaDBg0KWWa323n88cebrdsPf/hDfvjDHzZZZtGiRSGf4+Pjueuuu7jrrrsa3WbSpElMmjSpyf126dIl2CtD6ovoG9btt99OZmYmmZmZDB48mLPOOotf//rXlJa23YO+W7duLF68mAEDBhz3vqZOncrf/va3469UCy1cuJDMzEzOPffceuvee+89MjMzmTp1ajvUTEREREREpGHr9rrplmBl3T53e1elSZsPOil3B1hRUEW1L8DiHZVU+1o2rrNEZlNBFRv2eli/x83K3f4Gy3g8AVavrcDj0TWJhmpvgM+2VFHtPXHj2zvNzqatLnr1DP8tZ5GTmcnmwOSMa7ufCBILLfHWW2+xYsUKCgoK+Pjjj3n00UeZOXMmTqczqseVE0vEr29MmjSJxYsXs2jRIh544AE+/fRT7rvvvmjUrUEWi4XU1NSQmcbrMgwDn68Ns4CAx9Py7kyxsbEcOnSI1atXhyxfsGBBvfHMRERERERE2kPdxvns7g72lfnI7tY2Q6d4/LB4hyfiRtKBKdV0cJgZnRYTMpSTRN+gtBiyetjJ7uFgVC9Lg2Xqjrcvra/u/AnhauuExOdfluGwm/niq7Lj2o/Ha7B2fwxu38kzn4jIqaCoqIhf/vKXnHfeeTz44IPMnDmT3/zmN+1dLWljEScX7HY7qampdO3alYkTJ3LeeeexZMmSkDILFizg3HPPJTs7m5kzZ/Lyyy8H13k8Hu6//34mTpxIdnY2U6dOZf78+cH1mZmZvPLKK1xzzTUMHTqUqVOn8t///je4vrCwkMzMzODkIsuWLSMzM5MvvviCOXPmkJ2dzYoVK9i9ezc/+tGPGD9+PCNGjODCCy/kyy+/DO7nsssuY8+ePTz00EPB3hi1Pvjgg+AkIVOnTq3X9WXq1Kk89dRT3H777YwaNYq7776byy+/nPvvvz+k3OHDh8nKyuKrr75qNJ4Wi4Xzzz+fBQsWBJd98803LF++nPPPP79e+VdeeYXp06eTlZXFjBkzeOutt4LrbrnllpAJRwC8Xi85OTkh+xcREREREYlE3cb5tu65sPmQmXK3EVEjKYDdYjCulx2n1UzvjhYWba2gd3LDDd3SuuxWM1MHxjJtUCxOW8MTew4ZGEtcnIXBmSf28FrtraU9PHLSHSQ6zRHNn9CShMTxmH5mEgkdLEybnHRc+9m8zYPLa2LVXm/rVExEwnLttdeyaNEi1q1bx6JFi7jjjjuIiWm7odXaQl5eHtOnT2/vapzQjmvgyYKCAr744ouQXgSvv/46jz32GDfffDPvvfcet9xyC48//jhvvvkmAC+99BKLFi3ij3/8I++//z6/+93v6NGjR8h+//SnPzFjxgz+/e9/c8EFF3Drrbeyffv2JuvyyCOPcOuttwaHE3K5XJx55pm88MILvPnmm0ycOJHrr7+evXv3AvDnP/+Zrl278tOf/pTFixezePFiANavX89NN93EeeedxzvvvMNPfvIT/vSnP7Fw4cKQ4z333HMMGDCAhQsX8uMf/5i5c+fyn//8J6QXwzvvvEPnzp0544wzmqz7d7/7Xd577z2qqmreolm4cCGTJk2iU6dOIeU++ugjHnzwQa666ireeecdLr74Yu644w6WLl0K1MzUvmjRIiorj06EtHjxYqqqqpgxY0aTdRAREREREanL7TNYvKsq2FvhmyO9FUb3iiHBaWF0Wts0IAzsGCDBEVkj6bFe/LoUs8ng71+fvmP3uwMmluwN4PY33Njf1mrnU7DbG2+WCDase0/fN9KDPTy2RNbDo3b+BKct/GafliQkjkd8vJVvn5dCfPzxTQc6sL+dOFuAkd1trVQzEREJV8TJhf/973+MGDGCoUOHMn36dLZt28a1114bXF/7Rv8555xDWloa55xzDldccQWvvfYaAPv27aN3796MGjWKHj16MHr06Hpv6M+cOZO5c+eSnp7OTTfdRFZWFi+99FKT9frpT3/KhAkT6NWrF8nJyQwcOJCLL76YzMxM+vTpw80330xaWlpwco+kpCQsFgtxcXGkpqaSmpoKwAsvvMC4ceO44YYbSE9PZ86cOVxyySU899xzIcc744wz+MEPfkDv3r3p3bs3M2bMwGQy8fHHHwfLLFy4kDlz5mAyNf3lbdCgQfTq1YsPPvgAwzB48803ufDCC+uVe+6555g9ezaXXHIJ6enpXHXVVZx99tnBnhUTJ04kJiaGjz76KLjNf/7zH6ZMmUJ8fHyTdRAREREREalrxTc+Drv8vLyyhFWFVXQ90lvBaTUzMT0urEmSW2OYFbsFJvS1RdRIeqzrxiWT6LRy7bjkeutKXX7mf15KiavhuQFOFatKY6nwwMqSuPauSthqG9Y3b2v5UMQno7q9FYI9PDKi38OjJQmJE4HdZiK7SzUO64mROBMROZ1E/MTIycnhrbfe4vXXX+eyyy5j4sSJXHrppQAcOnSIffv2ceeddzJixIjgz9NPP83u3bsBmD17Nps3b2bmzJk88MADwR4DdY0YMSLk8/Dhw5vtuZCdnR3y2eVy8bvf/Y7zzjuP0aNHM2LECHbs2BHsudCYHTt2MHLkyJBlI0eOZNeuXfj9R79sZmVlhZSx2+3MmjUrOPzQpk2b2Lx5M7Nnz27yeLUuvPBCFixYwPLly4O9LsKtW21sbDYbM2fO5J133gnG4JNPPmHWrFlh1UFERERERKTW6K5W9lf4qHT78foJ9laIZHLkth5mpTEJTitn9osnwVn/DenXV1Rw2BXg9RUV7VCztjMy0UUHB4xKqmy+MOCq9vDO55tYsWEPHq8fj9dP7rYiVu03U90KPQnCGe6ntmF9YP/Ta8LfuvNRhNPDQ0REpL1E/HSKiYmhd+/eDBw4kLvuuguPx8MTTzwBQCBQ86XgN7/5DW+99Vbw5z//+U+w58KQIUP45JNP+NnPfkZ1dTU33XQTP/3pT5s9bnNv/x87ptfvfvc7PvzwQ26++WZefvll3nrrLTIyMvB6mx6DzzDC+5LU0Bhic+fO5csvv+Sbb75hwYIFjBs3rt6QT42ZNWsWubm5PPHEE3z7299udMLqY+NgGEbIslmzZvHVV19RXFzMxx9/jMPhYPLkyWHVQUREREREpJbDaqJfJwcWswmbxRTsrRDJ5MjRHGbF6zOxdoM7rLHov8p3sWZvFV/trD+0zLeHxVHtCfDtYdF9o7/aa7TpZLnHcpgNxncz47A0/zev12/wzpJt7NxTwrpt37B26ze88t81LN2wl62Hzaws8B13fcKd0DnMP9FPGK3RW6fufBQVFT7eevcgFRXHH/P25PH62bzjID5Nuiwicko57tT3T37yE55//nn2799PSkoKXbp0oaCgIDhcUO1PWlpacJv4+HjOO+88HnjgAR577DE++OADSkpKguvXrFkTcozc3Fz69u0bUb1WrlzJ7NmzOfvss8nMzCQlJYU9e/aElLHZbMGESK1+/fqxatWqkGWrVq2iT58+WCxNT/6VmZlJVlYWr7/+Ou+8806DQxs1JikpialTp7J8+fJGt+vbty8rV64MWbZ69Wr69esX/Dxy5Ei6du3Ke++9xzvvvMOMGTOw20+vtzxERERERKR1jOzuIMZmZmRPJwDVvgBev0GMzRz2nAvH25To8cPiHZ56jbXbCmJwuQLNNk4DeAMBiip8+AL1G3zX7fWQFGdh/d7oDr2zosAb1V4czc1P4A6Y+Gi3n+d2plBaXT8O1d4AH29y8d8NVfx3Yxl7i8opq3RzsKSSr9bupuhQJWUuL9sOm1lZ4KHE5Q82pJe4/PUa1I82sjdcn3AmdM5dX8mW7S7Wb27fni+RaK3eOrVJlY8/K6G8ws8nX0Q2X0hrJDlaU97OIqrcPvbvUXJBRORUctzJhZycHPr378/8+fMBuPHGG3nmmWd48cUXyc/PJy8vjwULFvDCCy8A8Le//Y13332X7du3k5+fz/vvv09qaioJCQnBfb7//vu88cYb5Ofn8/jjj7N27drg0Evh6tWrFx999FFweKJbb721XiKhR48efP311+zfv59Dhw4BcPXVV/PVV1/x5JNPkp+fz5tvvsnLL7/M1VdfHdZx586dyzPPPEMgEODss8+OqM7z5s1j6dKlIcmCuq655hrefPNN/vnPf7Jz505eeOEFPvroo5C6mUwmZs2axauvvsqXX37JBRdcEFz3+9//nl/+8pcR1UlERERERE5f6/a7g3MtAKzYXUWVL4DNYqo350K1r/6b+a3R0Lr5kJlyt1FvH/3TqoiLNTfZOH0swzja69vtN5GbX4nPb7TJ6/Gj02xRnSy3uYb4VaWxLN0Hu1wO/pVbv0f/p3lVvLm6go82uznogtqr6PEGKKtw4zkyDJYPWFHg5x9Ly4PX96WlZby7roK7/32Qe94qZn+Jm5e+KudQpY+VuxueyyKs4X5MYMJU8z8niWE97ewr8TG0Z8tf8qvbq2P6mUkkdLAwbVJiRPs4UYYkq5XZJ5UYh40uPU6eaynS2jwBD1V+V5v9eAKn13w10j4aHnsnQldddRW/+tWvuPbaa5k7dy5Op5PnnnuORx55hNjYWDIyMrjiiisAiI2N5a9//Su7du3CbDaTnZ3NM888g9l89AvFjTfeyHvvvcd9991Hamoqjz76KP3794+oTr/61a+44447uPjii0lOTubaa6+lsjJ0bMmf/vSn3HPPPUyfPh2Px0NeXh5Dhgzhj3/8I48//jhPP/00qamp/PSnP2XOnDlhHfdb3/oWDz74IOeffz4OR2RfGp1OJ06ns9H106dP54477uC5557jt7/9LT169ODBBx8kJycnpNysWbP4y1/+Qo8ePRg1alRweVFREfv27YuoTiIiIiIicvoa3cPJqgP+YC+F0b1iWFFQ1WCvheW7/VRQ05g5OaNmfU66g+X57gYb1Ku9AZblu8nq3HQd+iYGWFMaYMrg0MZam9Uge4gjrLHobWYzneOt2CxHGzaXFcexlWpy0qyM7OWMWqN/LafNFIxLrRKXn5eXl9M3xcaUzOOcSDfYEN+wkYkuKuNgzZ4AFwypaQqo9gZYvK0alyfAf9dXUlVtUN70SMIA+A3YWeyhVycru4q97D7kY8fBmiSCmQBFXxzinEExFJX7OTPDwsYWzpU9bEgcNquJAb18sLNl+2hruYUeuiVZWVvoqXe9wzVkYCwb81zBxFmvns4j93n4SbCmfvfag91mYWDfTmx172rvqoi0C0/Aw9qSNbj8zfe2ay2xlliGJg3Hbg4v2Xn77bfz5ptvAmCxWOjcuTNnnnkmt9xyC4mJNQnOqVOn1hsZBuDWW2/luuuuo7CwkGnTpmGxWPj000/p0qVLsMyBAwc466yz8Pv9fPLJJ/Ts2bMVzlLaW0TJhXnz5jW4fNasWSGTBh/7ua6LLrqIiy66qMnjdOnSheeff77BdT179iQvLy/4OScnJ+Rz3XJ///vfQ5ZdcsklIZ+HDx/O22+/XW/bGTNmMGPGjEbrt2jRokbXlZWV4Xa7+e53v9tomVpz5sxpMmlx5ZVXcuWVV4Ys+/73v8/3v//9Jvfbv3//BmPS2PUTERERERFplAFuX4AVu6vI7u7A6zP4amcl4/rEhfReGNvLwsoDoW/mO23mRhtYa9+sXlngB2yNHn5HqZluSeZ6jbWuajOff1DJjKmxxMc3/aftyDQn+Yc8weGdak7LwGQCm6V+o380VHsNlm2pIifdEUwivLaigvyDPvYc9hFnbzxW4WiuId5hNkiwmRiZ5CKvKIluXWt6K7ydW0FplYE7wiH9dxUH+MfSCmwmqDvKUgAoq/Dz6WYXt81Ixu2t5JMVyUxPDuCMsJ27tneD1xXZkEDtKZxGfY/HYFNeBUMGxjaYHKs9b4DVaytqejFscTEkLvz7o6nfPRFpe37Dh8vvwmayYTM1/sxrLV7Di8vvwm/4gPB7Uk2aNImHHnoIv9/Ptm3buOOOOygvL+cPf/hDsMxPf/rTem27cXGh8xZ17tyZt956ix/+8IfBZW+99RZdunRh7969LTspOSEd97BIUsPr9bJ3714effRRhg0bxpAhQ9q7SiIiIiIiIsdlxZ5qytx+3sgtC/53w/5qNn7jDpnQ2e03sXy3n7F1Gs6bUzvZ86i0phtZBnYMkOAITVpUew3eW9KJsnI/n3xe0ui2bp/B4h2VLN5Rya7DHpbtOlrnEUlVOKxmBqTamP95KSWuFr5e3wCP18+6rd/g8R7d54oCL/vLfDz47iH+u76Sam+A7wyLI9YG4/qG33PCHTDxxW4/G3fG4PEcfZM9OMyQreHeC+6ACZfPYE+VjaHdzJS4/Ly5upwD5ZEnFqAmieA3QhMLtbwGFFcGeHZxKQ++V83abXE8+dcSFi8tCWsCbqgzh0SY5aOhwuXhv0t3snyfudG5I45V26jf1O/B5q2esCazhjpzU2SEP/zXiSjcCZ3dPtiUH0tFZftff5FosJlsOCyOqP+0NIFht9tJTU2la9euTJw4kfPOO48lS5aElImLiyM1NTXkJzY29N+o73znOyxcuDBk2cKFC/nOd77TonrJiUvJhVayatUqpkyZwvr167nvvvvauzoiIiIiIiLHbXQPJwlOC7OGxLOvzMesIfGkJdrIP+SmWwczi3dUUu0zWFESR7ErwN+/Ko9oAtlwmmvtFpjQ1xbSWLtyl5+eqVVUVwfweANUVNRvHff4Tby2topDLh9fF1Rx2OVnR/HR8efXl8XQKcHKc4tL2XrAyyvLy8Oud3PydhbhcnvZsuvgkbqA12+wbo+HcneAd9dWsmRbNZv3exney8m+0vATG8tLYvmy0KDwgJ28beGPp72qNJa1RfBlcTx3vV/NE4sOU1zZ/HYt5fWDzxdgb1nNZ7cHPv2ilLUbmj/oocMe/vj0bhb+5yDPvLiPClf7NDD/b8UOdu8vZW2RhZUFLcjANGLgAHuzk1nXCmtuilYSzUmgV23ay7LcvRRsb3rfqwqgym3ms8VVYSdgRCQ6CgoK+OKLL7BaIx9Vf+rUqZSWlrJixQoAVqxYQWlpKVOmTGntako7O+GSC3l5eUyfPr29qxGx2uGZPvjgAzIzM9u7OiIiIiIiIsfNaTUxMT2ODfs8VHkDbPjGw+q9Lkqq/DyxuJjcvVUsLfSS3cHFun1+kmLNLM93N9hIeeyyo8MiNT7Iv8fnZ21R/bfGs7qbKXfZwGTC5Qo02Hth80EnKXEmDlb6GdsrhuRYC/1Sjg4NMSrZRZzDwug+TuwW6JvSesNUZPZJJc5pJ6N3CgBrDpj5ZGvNpMgOm4k4hxmXJ0BplZ9PN1cR7zCHPfGuNwABAyxmg8z+R8+nosLHW+8erNcQX+0N8PkOH71i3GwoBi8m9lfA6sLWayxvTF7RMXWpNvjq61L+/EwBT/y1kNfePBCSGKrtrfCP1/dTUgZ+P+z9xsu7i1ov8ROJTkmxGIaBy2diQGpN80lrNcA3Nod4a/XYqK1nictfr777S338+u1i9pf6gmX/u76S3/znEMvyq1myrTqiY5VWBZj/eSllVY3XecvuInx+P/vrjIYSvGfr3AMj0yDGEWDMSAebtrrodRwTY4tI5P73v/8xYsQIhg4dyvTp09m2bRvXXnttSJlHH32UESNGhPwsW7YspIzNZuOCCy5gwYIFACxYsIALLrgAmy36Q0JJ22qVCZ1F2tLLL7/Mc889R1FREQMGDOCOO+5g9OjR7V0tEREREZFTljcQYH+5F4sJkmMs7CnxEjAM9pd76R5r4vFdXfDYDNbsdjMpw8zibdVUeY3g2PPL8t14/UZw2eSMmODY9EM6m1mW3/BxN+08RH6RmUVvlXPvLDu9OtU0SqzfG8DjNeH1BvBYDKZNTqq3bd9kNyv2BeieZGbzN1WUu/0M7Hy0odJhMRiY5mRHvpvSqgAuj0G1NxDSQ8LtNdh20MOwND/OekeAw2VVvPPZJvqldSLWaWdIv87YbRbsNgtZ/btQ4fLwv+W78Jaa2VsGVqufXklWUhKtFBz2sbPYS6nLz5LtVZw/NK7e8esqcfl5dZmbDn4zZhN0SfZitx8dAumDT0vYs7ea1w8YXDLYzOLtPiYMqJk0u8xt8O/dHWm9gZ9axgD27T/akLxvv4/CPdWkplo5UOQjKcFC/m5vvYb3vfsCcJzv8FW4PHy+Kp/JI9OJj7Xj8frJ21lEZp9U7DZLg9s47Ta8Ph/lXnjoo0qS4qqp9gb45rDB44DpyI/NAtMHOTlY4SO/2E/nOBMFpQa3Tk/iYGWAgV1svJVbyQVDDTDDl1+7WLrczco1Ng6X+nDYzXTp7OBbZ3dk05Yqduyqwu83GD2iAx5PgA2bXQzOiGliuu6jaidKP1jh48MNlbywGOJj4PnFkBwHZZVQeqTDy20LDnLpuAT2HvLy73U1Q4bZzL6a3kL9ncF7sbnfgwW5bsq8Zt7MrSa9Y8PzPMwcn8GCj9czeMTR6//BohL27KvmnwuKuOAcB1/lduT7o2FQuotPv67G5Qqw4O1irvi/Lk323KhwBfh0SwKXdwiQcnKPHiXS7nJycrj33nupqqrijTfeID8/n0svvTSkzA9+8IN6c8jWnbi51ne/+12+973vccstt/D+++/z2muv4fe395NIWpuSC3JSee+993jooYf49a9/zciRI3n11Ve59tpreffdd+nevXt7V09ERERE5JSy6YCHPyzZT3pHG9+Uetl9yEvnBBNGAIoqDQ67vOwsBl+wydHH/rJyBne3E2O30DPdwQ9ePEBKvJkeSRaKK/2YTWb6dLKy5YAXr99g0RYPK3b76enei2Gxkr/nEFPH9mX5+kJ27S2msrqmUfGON4uZPTKOgkNe3F4vh8sslLsNUlLM2O1mPJ4Auesr8fkN8FdjFDs4XOXji1014/KYgHvfP8CE9Bg+3VqFhTS67y5i134vBvDy8gpeXl4RLBtvhfIj7aCfbV/RZJwK9tcc473FecHtO8SaKQv2IjjSSOsHI+Bn+wGD6ycnsLbQTaUXKr0Bnl1czrOL67+hP7m/nYyuDt5bX87eEoAkOsdAwX4bL7xSwuCBPgzDxOYtFVQeGUHmwcI0Osd7+HBTMQ5LgI3fGBhEOJtyGzAMKD4coPhwTWv3ocMNv/leUgZ3vN0bcB35qXFGHxvfG5PA/M9KSI6zMKSHgyHd7Px5UTEHyiApDjBMeLauw+0NYLOY+ddH6+iYGIMRgIBh4Pb6cdgs9OySyFdrdzNuaC8K95eS3qMjYFB9pGPNgUo4UBnaKGYc+XH74d31R9/2P1Bekx25553DxFigyg9WE6zeDbOmWvh8SU0vlR27anvt+PnmgIvc9UfPLW+ri+LDHjZtcXHokJ8lqTa+P74TcR4T6za6GWqqSTWUuPy8tqKC742OJynWwuJt1azf62FdQTUlR6pUfiSZUHHMKFrlHnj6s7KQZd4AfLHNzcodB3AFwG4Gi6nmHD7bvoLkeBvVXoP0Hkls3HEQsOM0e+kQa+Ks/nYOVfp4/5ON9OySwJZdB0lOiMPj85GaHENphZvCnbDeVsXoLAeJiWZW5voAH3961g10oKQSqiypdO5msL/IR580M//9+BDTJiexdUd1g5Ng/++rKsrcZuYvr+Ta0Xbe2VDNFVkeOsUq0yASqZiYGHr37g3AXXfdxWWXXcYTTzzBTTfdFCyTnJwcLNOUjIwM+vbtyy233EK/fv3IyMhg06ZN0aq6tBMlF+Sk8sILL3DhhRcyd+5cAO68804WL17MP//5T2699dZ2rp2IiIiIyKljaUEVT6+taV3feODo0EV7So++Vt7Q3Kwl1fDljppWzE8217wNXVgSoLCktuE4wM3/Kq633baDBcH//9vbq+utr/LBK8vrjtdf01i+fmMV6zfubuAMEqg7q4NxZB8fb62pkx8TO/c3PCSTwdHEQksYUCexEGpzkQH4ueedw2Ht6/NtHj4/Zm6FA1VAlRPwU7i3tMHtDlTAgYpT+w3RpTu9LN1Zey/5+So/NE4VJVBzNULH7d9bdDSJsym/KGTd6s37WrWOVUcugc+Aogp4/u1uYW1X7YbPlhyt595vvDy68Jvg54X0om6y5cONVbSm2tv32NGZDlfU/M7UJBaO1DUA1RUG/1rjBmoSJ3uOxPhwec3nwiMJuJ1bYOeWMv7zbmhSo9aWgwAOCo78bubv9pC/28OylTWJv3/9u7EaOwA/t/y3pl7r53/J83efF97JikijfvKTn3Dttdfyf//3fw32TmjOhRdeyH333ce9997b+pWTE4KSC3LS8Hg8bNiwgeuuuy5k+YQJE1i9uv4fH03x+/3qitWKamOpmLYuxTU6FNfoUFyjQ3GNHsU2OhTX6GiPuF72wEeUhzcFgIhIKzIR3lTvTSsq8Yb1b6aeW9GjmJ4acnJy6N+/P/Pnz+eee+4BoLKykqKi0MRsTEwM8fHx9ba/6KKLmDlzJgkJCW1SX2l7Si7ISePw4cP4/X46deoUsjwlJaXeP2rN2bhxY2tWTY5Yt25de1fhlKS4RofiGh2Ka3QortGj2EaH4hodbRnXyBMLjY+Hfvwa23dzxzze9a2pNY9lPua/4R4vnO0iOX60t4nGPk6EY7fWvtozHnVFIzbhzC7RfD3WrFkT9tZ6bklb8Rpe2mICHK/RcM+8lrjqqqv41a9+FZzY+fHHH+fxxx8PKfO9732P+++/v962VquVjh07tlpd5MSj5IKcdEym0C8ahmHUW9acwYMHY7fbmy8oYfH7/axbt47s7GwsloYnQ5PIKa7RobhGh+IaHYpr9Ci20aG4Rkd7xLXDgsIIEwwBotfY2di+mzvm8a5vTa15rNp9NbXPhtaFs10kx4/2NtHYx4lw7NbaV3vGo67Wjk1tz4Xjv8eGDx/e7FZ6bkWPx+PRi511WExWYi2xuPyuVm34b0qsJRaLKfym33nz5jW4fNasWcyaNQuARYsWNbmPnj17kpeX1+j6QYMGNbleTj5KLshJIzk5GYvFwsGDB0OWFxcXk5KSEtG+LBaLvjhEgeIaHYprdCiu0aG4RofiGj2KbXQortHRlnF96a6z2fDhYu79oorWagJxUDsae3RYzGC21EwS7PeBGaMtXg5tkRhrzfwPLdU6A8ec3iwmiHFY8AcCVHlqolnbNB0ba6NThzh27y9p9Tindqym6FDLJhq2miG5oxkTAQ4fDOCt05ie5KyZ76R/J9hWf0qTE0qHeKiohKzBTtZtqA5ZZ8XAB5hNEDAgIR5cVeDzQ0pHE1arGVeVn7Jy6JgMh45MXWIigHEkHjYTjB3SOaJ/L/Xcan2KZyi72c7QpOH4jeP4xz9CFpMVu1kv1kp0KbkgJw273c6QIUNYsmQJZ599dnD5l19+ybRp09qxZiIiIiIip56eCVaent2ZP3xZihHwk3/IR6wN4pwmKlwGhz2Q4Kj52VtmEAAswPj+Dq4/MxGnzUyJy8/rKyq4aHQ8K3a5Wb/HTXYPB9MGHW1cLS6p4u/L3Ng7diEm1knvbkksyd1F144d6JXi4MPPcumcaGFM3zimDYql2hvgi20lWLtsp2OfYTgdR8dx9ngC5K6vxOepwrtjH/sqktl+OEC1FzAgOdZEvxQHveIDvLO5Cp8JjAB0jDMxuLuDmUNieeJ/pdw6PYlenWwUl1Tx7JIqdlZawWTCZDIR77BzqMzF4PRUyqo8dEqIpbjMRefkeKzWo429rioPa7fuI+Dz4zT8uPxgssC3smLpFF/zp/iE/k5KXQEe/fAgxZUwfVAsVjN8usVFotPKj89KZGexj7HpDhZvq2ZNfgUHDlQRcMTQvWcZlaYu+AIW+vZysm5jJdXuAN06m+ht3sOB8q4M7h7L7kM+Otm97Nl1mM8Od2iju6d1mU0wuEsl8c4EYuwO5o6KJ2+/l7HpDpy20LfV95f6ePrzUn40OZE4q49PNgU4aE3FHYC8nUUM6d+F0YN7hHXcCpeHZxcupbI6QP+OUFQJCXEmAoZBcRn0TTFTVBkg1m4Ck0FZBRx2g9UEdit0S7QwdWAslZ4An26u4qxME10HHGT59n4sXeGlW2cLRcV+xo6MJzXFQc8eNt794DDfmpHMN/t9DM6MZeWaCnI3VJDZP4aDu730HODAZLjx79lN707dmTAgiWX5bnLSayY4X57vZmy6gyc+PczXO7xYLDCkm5XDVX4OlRuUhs55jRU4tqnz20Nj6JFsY1RvB2sLPfTvaPDGai/DRgzBERfD2q3fULi/FAI+Znbcy8jBnXHGxVJcUsXLX3sYNmIIHZKOjr3u8frZsusg3bvGsDOQy7A+KSQ4Yli9toIOcVZW51Zy6YVxpFeso2uH3qwzCskvHYTXYycuzsLw7PrjuAOsXluBy+Xnm/0uOlaU0qdTN9xeM1/udJHVR8OwyImnpqFfjf1yalFyQU4qV111Fb/85S/JyspixIgRvPbaa+zbt4+LL764vasmIiIiInJKGpsWy64SDz+ckMKC3DI2fuOiKgDDujlIjbfxvYFmFq3cxielncnsdjSxAJAUa+G6yYlHd9bAcKYOm4nMzg6S0rvijI8B4PxJAwGoKC1laIqfrp1tTOjvBMBpMzOhn5VV1fXfKd+w2cWOXVX4fV76mAMkOC0M6mynzBMg2WnBaTPTM8lGvMnNnQP38ceC3kzu52DjPg8V7gAfbXLx8JxOwfo7bCayu8cwKX1gsG6RmDwqHU9lBdu+/pJ9XjuHq010ireGJFeeW11GudtM5wQTPZNtTM6I4aIxRxMmvTrZABjd28G2vZWkJVWx0xyD3WYiqbOVPXsNrFYTF17QiTf/U8ykHAfJeys5UGFhwoCaOi/dXMLoriUsK+tA9QnYnSMuFipdja9P7WTCb5iId5j50ZQkALokNtyc0SXRyr2zaubpq6j0YbOYGNQnhfW7DmFgRNTlIz7WzhXnZvHVklUM7R3DOUMT6yUzjvXZliqKK/0cLPdz+bgOOG1mqr0BUuOtZPXwsNEPk8bF06ObhcGZsdjtofv7wWXdAOjaueaz1WaiY5KNQ4d9dE6y4XSayehtZ+vBAKN7WVi8rZr1e9z4/AbTBsUyOaPmmmd0cZB/0M/MIbHMGhbPx5tcrN/rwWKCimofW4v89Eux0jHOyoAuNvYe9vLe+iq6JFio8BjBe3RyRgwVldX0T7Fjs1qw2yyMHtyD0YN74KmsIHbn3mDdHTZTsFxddpuFrP5dKHdXhnRfGjIwFpMJzpnSEZOvHLYeXTdwgJ0dO2ti1JgBfZ188nkJE0Y72b0kwMjuNmxmBzH4mDKie5PXSUREWoeSC3JSOe+88zh8+DBPPfUUBw4cICMjg2eeeYYePcJ780RERERERML3eb6Lrwo9TEiPo3O8HYsZKjw1w5UUVfr52Zmp2NzlTOlcQUp6T84Y2Hjj68T+TuwWE2OPvGHdHI/XzycrCgiUmunamWYbdaGmsXHrdhcWs4kBSR4Oe6xsPWRidGcne0q99Ei0EmMzMyrVhvUbH9ed24XFq4s5VOnnsMuPI9XO8nx3sIG2tQzsGCDFbMPmsAeTJLXSkqxs2OOma4KtydjkFnrolmDGVBkgK9WMpWc1Hfs6iIs1Mzgzlg2bXQwcEEvhXjddrAYT+1lxHInZpHQrZWUBnBbaPblgMoHDDj4fTBzXgYT4muTJ6vUVlJR4sVlNlFcG8NYZj6tTJxMd3H4uHGFrdv/V3kDIm/y1DADDFNFcwR6vn22FpWBAtZew7o1hPe3B3jp179ljcxpGmEmOQQNi2LPXzRmj4vjy03JG9okHozJ0+waSdrF2MwM624itm7wwDAZ0sRNrd/Cjs+ysLfQE77m/f+VleJqNwsN++qY0H+fWYLebg70SvA2MFNNcjLbuqCalo4383W7MdS5suLEVEZHjp+SCnHQuueQSLrnkkvauhoiIiIjIKW/HYR+Hq/zsKHYDHfhOdgJ7Sj2AiRsmdsJpNeN3g8NiMCndiuWYBEDdhl6nzRzSMFu7Lqtzw8fO21mE1+enwm1ia5Gfs7yBZhMMW3dUYwD+gMHWYjspHWBwVydgUO0NsHx3FWf1j8dpNeEDVmytYHm+mxgbdE2wMizNEXbyI1JWS80wSMeeQ6zDTEZXB9nd7U2eX066g6WbqxiY7MLaw0yu1cBuNwUbZ4cMjGVjnosBveyws+F92I60v1qA1A7wTXkrnFgTOtihvM4wPA47DOgfg9Nu4ZwpScTHH22SyBoUyyeflzBtchIrcsv5+NNSAgY4HZDWzc6ZCYdIjOnW7DGX5bspqw6wPN/NyB5HG5ytFhNJiU6slvAnCs7bWUTBgXJMfiiuDHDBqObvjdxCD92SrKwt9ATv99o6rdztJ6YHrN/kpmAP+P0Go0c0PVTV1h3VpHaysXRlJZ0SbGzbWY3f48HtMbNit5+JAzoEk3Z1f9+OTebV/Vx7n9X9fbxodDyvLC/n/DQnZ2W2bnKtJTZv9eD12NmY52p0WKTae76qElxeE6v2erGYDCo8Bss2HWDquJNzGDARkZNJ+E9VEREREREROa30TbaSHGOhb6eaBsotB7zk9I7n7MwEOsc3P2503YbehtYVV/r558oqvP76rxpn9kmlT7cEOsUYVHkNlmyrrlfmWEMGxtKvTwzpaTbARLXPwGYxMa5PHDZLzVj5dY+VV1iN0wqYTPx8RjLTBsWG1UMiUpsPmSl3Gw3GYWJ/JyPTHPV6NDSkqTeya98Ct9safzX/x8Mg2ernNzNtDOnR/PGOl91mYnDnmsmTUzuZGDIwju/OSmXOrJSQxAJAfLyVb59Xs3z8mETOn9GR3j0d9EuPwWkP/5oM62lnX4mPoT1D788h/brQv2cnBvdtJJvVgMw+qXRPicNhgTnD6s/v0JCcdAeJTnNIkqp22aheR4cLMoXZhWJAXycHD3mZdEYH4hwWBmfE0q+PjaIKG9ndzVR7DTZ946Haa4T8vtUm82rrfOznY+UWeuiaaGX3obabbNbjCbB6bQUeT6DeuoEDauZbaGpYJI8nwM7d1fTsauWQy8qQzlZG93DSwWEiZ1D411lERFpOyQURERERERFp0OT0WM7O7MDkfnEAjO4VQ4LTwui08N5sbqyhF2oaXA+W+0mNM7HrsLfeervNwtB+qfROCGAN8y9Xu93M6BEdGJnlZEjnapxWE15/TcPlwC4OunawYbMcbdT99rgk0jrZ+O23O5EUa2lst8dtYMcACQ5zg70immv0rbUs302Z22D54ViW7gng9UUwvs8R+1wmzu1ayr5yE98f24EuHSLfRySsZoPJg+xcM3svE8+I5YJzO9WbY6AhdrsZh8PMwIwYYpxmDMAT5vnW7TkQss8j4/7bbeFfZ7vNgsNmpXOswfp94Y0n1dD1PLqs5hyyBjnI6B/D0CFxze5v05Yqqt0BduxyMzS9Zo6G7Tu9pMZ7Wbc3wGsrKjjsCvD6iooGExvhCv4+djA3mASLhtz1lWzZ7mLthsp662p75TR1v3yw6DCFe92892klHWN9bDjgw2k1Mb6HDac9er/PIiJylJILIiIiIiIi0rg6b8s7rWYmpsfhDLO1v7GGXqhpcL18XAeS4yz0Tq4/xrvH62dDfjEZyQGG9bCF9WZ/XXZLTa+FKq/BioIqxvWJY1iPGMb1OfomdMd4O7+Ykczm/V6qvfXfnm4tdgtM6Gs7rl4RNQ3HNXMGVLgN8vdF1oDsDphw+Qz2VNkY2s1MUqyFB2encFaGgwGpFlLjTaTEht9IYDdDjLVmiKWGOks4LDB9UBwT+lmJdQbIHuIIK7FQa8jAWBITrHTr6iB/t5e1exp/g72u42lgb8iAtCRibQaj0lpvVOlwGs5r+f0BDpf48PmO/iIOGmAnzlEzofP3RsfTMdYcnOOhNrFR4vIz//NSSlzhJ0UuH9eBTnHWqA0NVo8p/B4cDenRzY7VaiKzn504W82EziIi0rY054KIiIiIiIg0aMWeair8ZlYUVDExveYt69JqH2/klvHdYQkkOpv+kzIn3cHyfHeTjZWNjfSTt7OICpeH/+238uMp1hY1zI/sbmPdQQsZqTZeXlnCd4clBOeJqLU8302FO8CSbdVYLabg/BAnGqfNzKR0K0UlLlZaTSR1i+zt8lWlsWz1QnG1nZWFfs5OgaRYCzdOTabaW3P+G/d5OFTmZu03Tc+IawKG9rTi8pqIs5uId5jZU+Kl8LAfsxn6dIkhp5cVu8VEtbd+r5Rw1A7z9PXq8iPNz+E1Qted26Oifk4rYl6fn93lZty+9pkl2MDEsedut5kY3rMSp82Ew2HhusmJ9bar26OhofUNOXZelGgbNiQOm9VUM/SRL/IJQEYO64DTaaFfTz9WoxqHNbo9cUREpL4T7xuTiIiIiIiInBBG93DWGwbpjdwySqp8LMgta3b75ob8WXakYb+hYZEy+6RS6vKQZDdYWRD5OPAef80Er6PTYnhrXTnbD7p5fU1pvXK1Qzd5/Eaj80OcSBxmg5weZmzWyBq7Rya6cFigk82H12/w2ZaqYG8Np83MtEGxXDspgXH9YpidFUfd0YPinNZg44EViLVBB6eVO89LZny/GK6ZlMBtMzsyrp+TOSPi6dvNgdVc02tk5e7w3pxvzLAhcQzoa2Noj/pD57SFJWv3UeGBhbntc19YLSY6JlmwRthwXrdHw4kqOE9IBD1aGtoeYO3+mHZLAImEK+Dx4He52uwn4GmFDOtxWrZsGZmZmZSVNf+dQU5O6rkgIiIiIiIiDXJaTcEeC7W+OyyBBbllXDgs4bj3n5Pu4PPNXnon1//T1G6zMCG7G8u+3EdWt8jHT9980EmMI8CKgir6dLSxp9RL7+T6cz+s2OXG5QlgglYdTqeteTwBNmx2kdHboKHBYRxmg7kDTPxrfYBtBw3SzD6W5xPyprrTZmZ8XzufbzEYn5XG2h1FdO+cwPSc/mwrKKba5cJctB2fPY5Lz+gQ8qa70wY/PiuJT/Oq2F9qYHLWxDOrh4WNLcwv1J7TwP527Dvbp+F4wtBuLP9yH3OGtc99MSwrDpvNxKABMbCn6RhUewMsy3eTk+4gKbbhHg2nos3bPLi8NcnEM/tEf6JykZYIeDyUr16Nv7LtEqWWuDg6jBiB2V7/2deQf/7zn/zud7/j66+/xmqteS5XVlYyduxYhg0bxiuvvBIsu2LFCi655BLef/990tPTo1J/OTkouSAiIiIiIiINqvYZrNpTyeheMTitZqp9AVYVVJPeyYajzrwLbr+Jr3f4GDcoENGQQnUbsxuyc185Kc6ayXS7pERW977Jblbs8+N0+Bnew0lhiY+c3kcb0t1+E7n5lSSbDTCZsFlMbTokTEu5AyZW7AlgTQt9k33DZhcul5/N2zyMauQv/XXF4A2YwW9QVB7g3KzGG8yHDehCUnI8Gb1TsNssDM/shqeyglj7VjL6x+BsZALssekO9m7yMb6flTi7GZfHCy1MLoRzTtEW57Tzrb4+EmPaZ+CH2rfzjYCBt5lALst3B3vfnAz3clM8HoNNeRUMGRjbbM+Ggf3tbMrXnAtyYjN8PvyVlZhtNky26N+rhteLv7ISw+eDMJMLOTk5uFwu1q9fz/Dhw4GaJEJKSgrr1q2jqqqKmJiaf1uWLVtG586dlVgQDYskIiIiIiIiDVuxp5oyt58VBVU1n3dXsW5fFf/bVslXO11Hy5XEUeY2Wn1IoeOZTHfHYQfeAGwt8vDOhgq6JlhZt+9o/VYejsXlDmAyQazNxKje0X0zvdobOhRRS60qjW1wQuchA2OJi7MwsH/jjUijO5sY1MHFsO4WLh/XoclEkM1qIat/F+y2yHqNOG1mhqbHtsq8FeGc08nI4zFYvbYCj6d1JxFv7cms29PmrR5cLj8b81zNlrXbTGR30ZwLcnIw2WyYHY6o/7QkgdG3b186d+7M8uXLg8uWL1/OtGnT6NWrF6tXrw5ZnpOTw7///W/mzJnDiBEjmDBhArfeeivFxcWNHqO6uprrrruOiy66iJKSEgAWLFjAueeeS3Z2NjNnzuTll1+OuO7SfpRcEBERERERkQYdO+fC6F4x2CwmDMPA6z/a22B0UiWJTlOrN2rarRYGdgywosAbcaP8wJRqBqZaGdzVyawh8XxT5iO729H6jUp2EeewYDWb6JZkZW1hdMemXlHgbZU5HUYmuujgMJHewITORjMjBzmsJs5MrWBqf1uLG/89fli8w3PcSZJwBMfkt51ajcaRNJxHork5Tk4mAwfYiYuz1Ez2LCJtZuzYsSxbtiz4edmyZYwdO5YxY8YEl3s8HtasWUNOTg5er5ef/exnvP322zz55JMUFhZy++23N7jv8vJyrr76arxeL3/7299ISkri9ddf57HHHuPmm2/mvffe45ZbbuHxxx/nzTffbJPzleN38j9xREREREREJCpq51xwHhkCyWk1M7Czky4dbNgsoQ2+zTVst9TmQ2bKW9Arwm4xmJzuYEr/eLYc8NbrueCwGAxNj2V0bwd7S3wM7Rndt+Ozu1nZ10rHaSjUdYcQiqaWXg85Sg3nzbPbTcc12bOItExOTg6rVq3C5/NRUVHBpk2bGDNmTEjSITc3l+rqas444wy++93vcuaZZ5KWlsbw4cO58847+fzzz6k8Zm6JgwcPcumll9KpUyfmz59PbGzNv39PPfUUt99+O+eccw5paWmcc845XHHFFbz22mttfu7SMvpXWkRERERERMI2Ms2J02ZmZM+jE6dGa1gkgIEdAyQ4Ih/qpcJj5u+rXJRW+xjdKyakB0ZduYUeurdBz4V1+3yt0kOipcMiuQMmluwN4PYfXy+All4POaotGs6rvYFWGYZLRE4vtfMurFu3jpUrV9KnTx86derEmDFjWL9+PS6Xi2XLltG9e3fS0tLYuHEjP/rRj5gyZQojRozg8ssvB2Dfvn0h+73qqqtIS0vjj3/8I/Yjc0AcOnSIffv2ceeddzJixIjgz9NPP83u3bvb/NylZTShs4iIiIiIiIRt3V433Y70ApiYXvMn5eikSta18rBIHq+fDfnFDAMm9I18GJ/PdsYTMPlZkFvGhcMSyDvgJrubI9gLo9bYdAcrd7qj3lg+Os3G2gPH3yg/MtHFSquJpGOGRaodQsjrKm1wu1WlsVTFwsqKOKYdx/HtlpZdD2lbp9LkziLSdnr37k3Xrl1ZtmwZpaWljBkzBoDU1FR69OjBqlWrWLZsGWeccQYul4urr76aCRMm8Mgjj5CcnMy+ffv4wQ9+gNfrDdnvmWeeyYcffsi2bdvIzMwEIBCoSX7+5je/YdiwYSHlzWY9Y04WulIiIiIiIiIStoZ6ATgsBpPSra3a4Jy3s4gqt4/Nh1q2zzP7VJAcY+HCYQm8kVtGSZWPBbll9crVjlMPRPVNb6fN1Crj4TvMBjk9zNiskY1DVTNXA4xKqmy+8AnC4wnUTHzsjdKYW+HUwednbZGZ6lasQ7QmdK6rJZM7q7eDiEBN74Xly5ezfPlyxo4dG1w+duxYFi9eTG5uLjk5OezYsYPDhw/z85//nNGjR9OvX79GJ3P++c9/zuzZs7nyyivZtm0bACkpKXTp0oWCggJ69+4d8pOWltYm5yrHT8kFERERERERCZvbFyDvgBu3L7oNkJl9Uol1WhnYsWXHibcHuGxELIlOK98dlkByjJULhyU0Wr7um96nIofZYHw3Mw5L+zXUR6qt5pFoytaCElxeEysLfK22z/Wb3GzZXsXaDdFL9LRkcue2/h0IJo+imGQRkcjl5OSwcuVKNm/eHJJcGDNmDK+//jput5ucnBy6d++OzWbjpZdeoqCggE8++YSnnnqq0f3edtttzJo1iyuuuILt27cDcOONN/LMM8/w4osvkp+fT15eHgsWLOCFF16I+nlK61ByQURERERERML22upSth908/qahoffaS12m4XBfTpht7Rse4/fxFe7PVT7AiQ6rVyd05FEZ/2RgWvf1h7W0x7xm94nG7fPYElxPNW+6CYYPL4An7fCG/DNzSPRFgakJRFrMxiV1rqjSpsanJa7fbWkt8PxqE0ebcxztcnxRE4EhtdLwO2O+o9xzLBEkcjJyaG6uppevXqRkpISXD527FgqKyvp1asX3bp1o2PHjsybN4/333+f8847j7/+9a/cdtttTe77jjvu4Nxzz+WKK64gPz+fuXPn8sADD/Dmm28ya9YsLrvsMt5880169uzZ4vpL29KcCyIiIiIiIhK2Ph1t7Cn10ju5/Rp8w7H5oJMYR4AVBVVMTI9rtNzyfDcV7gBrCz2n/Nj0Kw4YVPgsfF3g56yk6B1n/S4XxcXVBAIG4/q1fD/NzSPRFuxWC0NTAzhtxzcRdl1ZgxzExlgYnBnbavtsDXWHCGsLQwbGsjHPVRMHX3mbHVekPZisVixxcfgrK+E4Gv4jYYmLw2SNvOm3Z8+e5OXl1VvetWvXesvPP/98zj///JBldcvk5OTU2+auu+7irrvuCn6eNWsWs2bNiriecmJQckFERERERETCNrlfPLH20DkXTkQDU6o55DE3W8+2mtA52jyeABs2u8jobWBrpMzoziZWVvgZk9bC7iBhMgwwcfyN8eGc08nIbjcxPDu+vavR7mqTRwDe1ht1SuSEZLbb6TBiBIav7W52k9WK2X5ivwggJz8lF0RERERERCRsTqu5yZ4AJwq7xWBcLztOa9OjAbf129rRUnd+glGN/KXvsJoY36kCp7X13sJvSHafWMrjDc5IdxAwKlq8n3DOSUTkZGG220GN/XKK0ZwLIiIiIiIiIie5E2F+glp2q5lJAyKbTLghJ9I5iYiISH1KLoiIiIiIiEjYqn0BFu+opNp3fJP1tqWTsc6Rqh1ixt6KcwO0t1PxnERERE4lSi6IiIiIiIhI2FbsrqLM7WdFQVV7VyVsJ2OdRSQ8Hq/B2v0xuH1Ge1dFROS0o+SCiIiIiIiIhG10rxgSnCf+hM51nYx1FpHwbN7mweU1sWqvt72rIhLCMJTwOl0FAqduT8ljaUokERERERERCdvJMqFzXSdjnUUkPAP729mUH2Bkd1t7V0UEAJvNhslkoqioiNTUVEwmDe12ujAMA4/HQ1FREWazGftpMIG3kgsiIiIiIiJy2qr2Blix001OuuO4JyAWkbZnt5nI7lKNw6oGXDkxWCwWevbsSWFhITt37mzv6kg7iI2NpVevXpjNp/73CiUXRERERERE5LS1ZFs1G/e68fkNpg2Kbe/qiIjIKSA+Pp4BAwbg9Wq4rtONxWLBarWeNj1WlFwQERERERGRU1q1L8CK3VWM7hWD0xr6FqHXb3CgPIDXr7GxTzQeT4ANm11k9DbQgDcicrKxWCxYLJb2roZIVJ36fTNERERERETktLZidxVlbj8rCqrqrbNZTHTuYMZmOT3eMDyZbNjswuXys3mbp93q4PH5WVtkptqr5JOIiMixlFwQERERERGRU9roXjEkOC2MToupv663g1i7mVG9He1Qs7bjDphYsjeA23/yJFGGDIwlLs7CwP7tNyHm1oISXF4TKwt87VYHERGRE5WSCyIiIiIiInJKc1rNTEyPqzckEsCKXW5cXoOVu9ztULO2s6o0lgoPrCyJa++qhM1uNzM8Ox67rf0SIgPSkoi1GYxK06jSJyqP12Dt/hjcPvUuERFpa0ouiIiIiIiIyCnJ7TNYvKOSal+g6YLGydMo6Q6YWLongNcXWYP7yEQXHRwwKqkySjU7NdmtFoamBnC2Y4JDmrZ5mweX18SqvZo4V0SkrSm5ICIiIiIiIqekVXu9jc61UGtCfycjezmZ0N/ZhjVruVWlsVS4DfL3RT6M00mUQxEJ28D+duJsAUZ217TfIiJtTckFOS5Tp04lMzMz5OfRRx8NKbN3716uv/56hg8fTk5ODg888AAeT+iEXHl5eVx66aUMHTqUSZMm8cQTT2Ac8813+fLlzJkzh+zsbKZNm8Y///nPqJ+fiIiIiIicnDx+E16/QYzN3OBcC7WcNjOTM2Jw2k6OP49reiCYSO8W2TBOJ+OwSCLhsNtMZHepxmFV7xIRkbamQQPluP30pz/loosuCn6OjY0N/r/f7+eHP/whycnJvPLKK5SUlHDbbbdhGAZ33303ABUVFVx99dXk5OTwxhtvsHPnTm6//XZiY2O5+uqrASgoKOC6665j7ty5PPLII6xatYr77ruPjh07MmPGjLY9YRERERGR01i1L8CK3VWM7hXT4BwGJ4rNB53YbAEOl3sY1ye2+Q1OEg6zQU4PM7nWyLohjEx0sdYMo2I1LJKcWjxeg437Y+iebGBvv7m/RUROS0ouyHGLi4sjNTW1wXWLFy9m27Zt/O9//6NLly4A3H777dx+++3cfPPNxMfH8/bbb+N2u5k3bx52u52MjAx27tzJCy+8wFVXXYXJZOLVV1+lW7du3HnnnQD069ePdevW8fzzzyu5ICIiIiLShr7Kd7FhfzXegMGU/vHtXZ1GDUypZtleg66JFlYUVDEx/fR+Y99hNhjfzQzFGhtJTi1151w4s8/JMbyZiMipQskFOW7PPvssTz/9NF27dmXmzJn84Ac/wH7kdYE1a9YwYMCAYGIBYOLEiXg8HtavX88ZZ5zBmjVrGDNmTHCb2jK///3vKSwsJC0tjTVr1jBhwoSQ406aNIkFCxbg9Xqx2SIbW9Hv9+P3+4/jrKWu2lgqpq1LcY0OxTU6FNfoUFyjR7GNDsU1Otojrn6/nwBggnrDlQYwAIOAYeA3DAJAwGzBX7M4YgEDTKaaPWMcO/FyAEwm/AY1+6+zDViObNLAQQNgt5qYOzSGdUUWRvR04q9zHrV1Bqj0BFi5083YdEe9oZGarlvYZ9jgObSE36ipdwATJswNnr8RAANLyPGC25lM0My1asn1OLaOdf/b7LUKQ0PnFI4T7fodTyxqyxsBo8XxaKnG4xgam2bjbQSwYGryvg0YJiKN0cC+djbthOHdbTW/2xz59zKMfzP13IoexVTk9GAyjv2mKBKBv/3tbwwePJiEhATWrVvH73//e6ZNm8Zvf/tbAO6++2727NnD888/H7JdVlYW8+bN4/zzz+fqq6+mR48e/OY3vwmu379/P5MnT+bVV19lxIgRzJgxg9mzZ3P99dcHy6xatYr/+7//44svvqBz585h1dfv97NmzZrjP3ERERERkdOUxxdgc0E1A9Oc2E/gYZHCtWp7BTu+cdO3q4OR/U7cnhgiIiej4cOHY7FY2rsaIhIl6rkg9fz5z3/miSeeaLLMG2+8QXZ2NldeeWVw2cCBA0lISOCnP/0pP//5z0lOTgbAZGp4UqW6y1tSpjYv1ti2TRk8eHBITwk5Pn6/n3Xr1pGdna0vDa1IcY0OxTU6FNfoUFyjR7GNDsU1Otojrn6Xi7Kvv8YSG4vp2O/NNguD+h4dYijgKiNQmIszYzCW+ISIj1VZWc2SbQaJfTJwxoVOvOxxVRC76yv69U3FGXd03oQqTxlr3Fvp0D0bh6NDvX16KsoJrNlE75RMHM766wOuMnx711PQbxxdHAEO2Qy6OwMM7uALu27hauwcWsJfUUb5+i34e6Sz3r6Hjn0H4YwJTYh4XWXYtufSq+NAHI6EkO1sXfvAoW1NXquWXI+QOhqQV2ElM96HxdT8tQpHQ+cUjhPt+h1PLIyAgW9XAGtvM77q8hbFo6Uai+OxsWku3uXuSnZ4csnq1YkOjtDhi2qvcZf4NDawN6IY1f19t5sd+F0uEsaMwRLb/PXScyt6PB4PGzdubO9qiEiUKbkg9VxyySWcd955TZbp2bNng8uHDx8OwO7du0lOTiYlJYXc3NyQMqWlpXi9Xjp16gRASkoKRUVFIWWKi4sBmixz6NAhrFYrSUlJYZ1XXRaLRV8cokBxjQ7FNToU1+hQXKNDcY0exTY6FNfoaNO4WiyYoeYnnJd5An4sJrBE/t4PZhPUvDdkBtOxPSHMYBj19m02AfiPbNLAQc2AEcAMWBqpvzlQM2THpP5OYq0mxqY76tW/6bqFq+FzaBFTTb0NDAwCDZ6/yQwmjrkeR7YzG0az16ol16MhtWWavVZhaPCcwnCiXb/WiYWpxfFoqcbjGBqbZuNtMuPHaPK+NZsMMCKMUZ3fdzM1I35F+u+lnlutT/EUOT0ouSD1dOzYkY4dO7Zo29qsdO0Ez8OHD+cvf/kLBw4cCA5dtGTJEux2O1lZWcEyjz32GB6PJ9ibYPHixXTu3DmYxBg+fDiffvppyLEWL15MVlZWxPMtiIiIiIiI1HLazEzOaNlb7SIiIiKnMyUXpMVWr15Nbm4uOTk5xMfHs27dOh566CGmTp1K9+7dgZqJmfv3788vf/lLfvnLX1JaWsrDDz/MRRddRHx8TffdWbNm8eSTT/KrX/2KH/7wh+zatYv58+dzww03BIc8uvjii3n55Zd56KGHuOiii1i9ejULFizg97//fUR1rh1KSRM6ty5NghUdimt0KK7RobhGh+IaPYptdCiu0dGeEzrj9dLcNLgBrxfDbMHv82J4qiM/ls+LyWTF6/OD23fMOl/NhLE+L746+/Z7vYAFn8+L2+yut0+v34fFZMbv9eJrYH3A6w1O6OzzVGM08oJ0U3UL//waPoeW7aum3v5AABNmvH4vZm/o+fkDXqxYas7dVH3Mdn5MzVyrllyPkDIGQHwwrs1dq7DOu4FzCmu7E+36HU8sAmDCgsfraXE8WqqxOB4bm+bi7fX7sWDC6/PiNof2bKg9p4DfB+bIYlT3991vNmtC5xNEbUw11avIqU0TOkuLbdiwgfvuu48dO3bg8Xjo3r073/rWt7jmmmuIiTn65s/evXu57777WLp0KU6nk/PPP5/bbrstZM6DvLw87r//ftauXUtiYiIXX3xxSHIBYPny5Tz00ENs3bqVzp07c+211/J///d/EdXZ4/Gwbt264z95ERERERERERFpUnZ2tua8FDmFKbkgp5VAIIDP58NsNrdoImgREREREREREWmaYRgEAgGsVitmc0vnPBGRE52SCyIiIiIiIiIiIiIiEhGlDkVEREREREREREREJCJKLoiIiIiIiIiIiIiISESUXBARERERERERERERkYgouSAiIiIiIiIiIiIiIhFRckFERERERERERERERCKi5IKIiIiIiIiIiIiIiEREyQUREREREREREREREYmIkgsiIiIiIiIiIiIiIhIRJRdERERERERERERERCQiSi7ISWH+/PlceOGFjBgxgnHjxvHjH/+YHTt2BNd7vV4eeeQRZs2axfDhw5k4cSK//OUv2b9/f4P7mzp1Kp9//jkAeXl5XHrppQwdOpRJkybxxBNPYBhGSHmPx8Njjz3GlClTyMrKYvr06bzxxhvRO+E2orhGh+IaHYprdCiu0aG4Ro9iGx2Ka3Q0F1eAP//5z8ycOZPhw4czZswYrrzySnJzcxvcn+JaQ3GNDsU1OhTX6FBco0exFZGIGCIngauvvtpYsGCBsWXLFmPTpk3GddddZ5x11llGZWWlYRiGUVZWZlx55ZXGu+++a2zfvt1YvXq1MXfuXGP27Nn19rVp0yZjxIgRhtvtNsrLy43x48cbN998s5GXl2d88MEHxogRI4znnnsuZJvrr7/emDt3rrFkyRKjoKDAyM3NNVauXNkm5x5Nimt0KK7RobhGh+IaHYpr9Ci20aG4RkdzcTUMw3j77beNJUuWGLt37za2bNli3HHHHcbIkSON4uLikH0prkcprtGhuEaH4hodimv0KLYiEgklF+SkVFxcbGRkZBjLly9vtExubq6RkZFh7NmzJ2T5E088Ydx4442GYRjGyy+/bIwaNcpwu93B9fPnzzcmTpxoBAIBwzAM47PPPjNGjRplHD58uPVP5ASjuEaH4hodimt0KK7RobhGj2IbHYprdIQT1/LyciMjI8P48ssvQ5Yrro1TXKNDcY0OxTU6FNfoUWxFpCkaFklOSuXl5QAkJiY2WqaiogKTyURCQkLI8kWLFjFt2jQA1qxZw5gxY7Db7cH1EydO5MCBAxQWFgbLZ2Vl8eyzzzJp0iRmzJjBww8/THV1dWufVrtTXKNDcY0OxTU6FNfoUFyjR7GNDsU1OpqLq8fj4bXXXqNDhw5kZmaGrFNcG6e4RofiGh2Ka3QortGj2IpIU6ztXQGRSBmGwUMPPcSoUaPIyMhosIzb7ebRRx/l/PPPJz4+Prh8//795OXlceaZZwJw8OBBevToEbJtp06dguvS0tIoKChg5cqVOBwOnnzySQ4fPsx9991HSUkJDz30UJTOsu0prtGhuEaH4hodimt0KK7Ro9hGh+IaHU3F9dNPP+WWW26hqqqK1NRUnn/+eTp27Bhcr7g2TnGNDsU1OhTX6FBco0exFZHmqOeCnHTuv/9+tmzZwh/+8IcG13u9Xm6++WYMw+Dee+8NWffJJ58wYsQIkpKSgstMJlOD+6ldbhgGJpOJRx99lKFDh3LmmWdy++238+abb55S2XPFNToU1+hQXKNDcY0OxTV6FNvoUFyjo6m45uTk8NZbb/Hqq68yadIkbrrpJoqLi4PrFdfGKa7RobhGh+IaHYpr9Ci2ItIcJRfkpPKb3/yGRYsW8eKLL9K1a9d6671eLzfddBOFhYU8//zzIW/SQWiXPICUlBSKiopCytQ+DGsz6KmpqXTp0oUOHToEy/Tr1w/DMPjmm29a7dzak+IaHYprdCiu0aG4RofiGj2KbXQortHRXFxjY2Pp3bs3w4cP58EHH8RqtfLGG28E1yuuDVNco0NxjQ7FNToU1+hRbEUkHEouyEnBMAzuv/9+PvzwQ1588UXS0tLqlan9Y3fXrl387W9/Izk5OWR9ZWUly5YtC3m4DR8+nBUrVuDxeILLFi9eTOfOnenZsycAI0eO5MCBA1RWVgbL5OfnYzabG3zAnkwU1+hQXKNDcY0OxTU6FNfoUWyjQ3GNjnDi2th2tTFTXOtTXKNDcY0OxTU6FNfoUWxFJCLHMxu0SFv59a9/bYwaNcpYtmyZceDAgeBPVVWVYRiG4fV6jeuvv96YPHmysWnTppAybrfbMAzD+O9//2ucf/75IfstKyszxo8fb9xyyy1GXl6e8eGHHxojR440nnvuuWCZiooKY/LkycaNN95obN261Vi+fLlxzjnnGHfeeWfbBSBKFNfoUFyjQ3GNDsU1OhTX6FFso0NxjY7m4lpZWWn8/ve/N1avXm0UFhYa69evN+644w4jKyvL2LJli2EYimtDFNfoUFyjQ3GNDsU1ehRbEYmEyTAMo70THCLNyczMbHD5Qw89xJw5cygsLAzJiNf197//nZycHH7xi1/QvXt3br755pD1eXl53H///axdu5bExEQuvvhibrjhhpCxALdv384DDzzAqlWrSEpK4txzz+Wmm27C6XS23km2A8U1OhTX6FBco0NxjQ7FNXoU2+hQXKOjubi63W5uvfVWcnNzOXz4MElJSWRnZ/OjH/2IoUOHAiiuDVBco0NxjQ7FNToU1+hRbEUkEkouyGnB7/czfvx4/vrXvwYfdnL8FNfoUFyjQ3GNDsU1OhTX6FFso0NxjQ7FNToU1+hQXKNDcY0OxTV6FFuR04vmXJDTQklJCVdccQXZ2dntXZVTiuIaHYprdCiu0aG4RofiGj2KbXQortGhuEaH4hodimt0KK7RobhGj2IrcnpRzwUREREREREREREREYmIei6IiIiIiIiIiIiIiEhElFwQEREREREREREREZGIKLkgIiIiIiIiIiIiIiIRUXJBThovv/wyU6dOJTs7mzlz5rBixYrgusrKSu6//34mT57M0KFDOffcc3nllVea3WdeXh6XXnopQ4cOZdKkSTzxxBMcOw3J8uXLmTNnDtnZ2UybNo1//vOfrX5u7eXrr7/m+uuvZ+LEiWRmZvLxxx+HrDcMgz//+c9MnDiRoUOHctlll7F169Zm96u4Nh5Xr9fLI488wqxZsxg+fDgTJ07kl7/8Jfv37292v6d7XKH5e7aue+65h8zMTP72t781u9/TPbbhxHX79u1cf/31jBo1ihEjRnDRRRexd+/eJveruDYdVz27Wmb+/PlceOGFjBgxgnHjxvHjH/+YHTt2hJTR8ytyzcVVz6/j09T3WN2vLddYXHW/Hp+m7te69F0rMs3FVd+1WkbtBK1P7QQiEhFD5CTw7rvvGkOGDDFef/11Y9u2bcYDDzxgDB8+3NizZ49hGIZx5513GtOnTzeWLl1qFBQUGK+++qoxaNAg46OPPmp0n+Xl5cb48eONm2++2cjLyzM++OADY8SIEcZzzz0XLLN7925j2LBhxgMPPGBs27bNeP31140hQ4YY77//ftTPuS3873//M/7whz8YH3zwgZGRkVEvXvPnzzdGjBhhfPDBB0ZeXp5x0003GRMmTDDKy8sb3afi2nRcy8rKjCuvvNJ49913je3btxurV6825s6da8yePbvJfSquNZq7Z2t99NFHxgUXXGBMnDjReOGFF5rcp2LbfFx37dpljB071nj44YeNDRs2GLt37zY+/fRT4+DBg43uU3FtPq56drXM1VdfbSxYsMDYsmWLsWnTJuO6664zzjrrLKOysjJYRs+vyDUXVz2/Wq6577G6X1umqbjqfm255u7XWvquFZnm4qrvWi2jdoLoUDuBiERCyQU5KXz3u9817rnnnpBlM2fONB599FHDMAzjW9/6lvHEE0+ErJ89e7bx2GOPNbrPl19+2Rg1apThdruDy+bPn29MnDjRCAQChmEYxu9+9ztj5syZIdvdfffdxkUXXXQ8p3NCOvZLQyAQMCZMmGDMnz8/uMztdhujRo0y/vnPfza6H8U1VFMN4LVyc3ONjIyMen+01aW41tdYbL/55htj0qRJxpYtW4wpU6Y0+wevYhuqobjedNNNxs9//vOI9qO4hmoornp2tY7i4mIjIyPDWL58uWEYen61lmPj2hA9v8LT1PdY3a8t19zfB8fS/RqecOKq71qRay6u+q7VMmoniD61E4hIczQskpzwPB4PGzZsYOLEiSHLJ0yYwOrVqwEYOXIkixYtYv/+/RiGwdKlS8nPzw/Z5vbbb+eyyy4Lfl6zZg1jxozBbrcHl02cOJEDBw5QWFgYLDNhwoSQ406aNIn169fj9Xpb/VxPJIWFhRQVFYXE0G63M2bMmGDcQXFtDRUVFZhMJhISEoLLFNeWCQQC/OIXv+AHP/gBAwYMaLCMYhuZQCDA//73P/r06cMPfvADxo0bx9y5c+t1j1ZcI6dnV+soLy8HIDExEdDzq7UcG9eG6PnVvOa+x+p+bZlw/j44lu7X5oUTV33XilxzcdV3rZZRO0H70HNLRI6l5IKc8A4fPozf76dTp04hy1NSUigqKgLgrrvuon///kyePJmsrCyuueYafv3rXzN69Ohg+dTUVLp16xb8fPDgQVJSUkL2WXuMgwcPNlnG5/Nx+PDh1jvJE1BtbBuKe218QHE9Xm63m0cffZTzzz+f+Pj44HLFtWX++te/YrVaufzyyxsto9hGpri4GJfLxV//+lcmTZrE888/z9lnn81PfvITli9fHiynuEZOz67jZxgGDz30EKNGjSIjIwPQ86s1NBTXY+n5FZ7mvsfqfm2ZcP4+qEv3a3jCiau+a0Wuubjqu1bLqJ2gfei5JSLHsrZ3BUTCZTKZQj4bhhFc9tJLL7FmzRqefvppunfvzooVK7jvvvvo3Lkz48ePB+DWW29tdp8NLW/ouE1te6pp7PxrKa4t5/V6ufnmmzEMg3vvvTdkneIaufXr1/P3v/+dhQsXNnm+im1kAoEAANOmTePKK68EYNCgQaxatYpXX32VsWPHAoprS+jZdfzuv/9+tmzZ0uDkjHp+tVxTcQU9v1qiqe+xja2vS3FtWHNxBd2vLdFYXPVd6/g0Fld91zo+aidoH3puiUgtJRfkhJecnIzFYgnJgkPN27QpKSlUV1fz2GOP8cQTT3DWWWcBMHDgQDZt2sRzzz0X/NJwrIbebCouLgaOZtAbKnPo0CGsVitJSUmtcHYnrtTUVKDm7YHOnTsHl9fGvTGKa3i8Xi833XQThYWFvPjiiyFv0TVEcW3eihUrKC4uZsqUKcFlfr+fhx9+mL///e8sWrSowe0U26YlJydjtVrp169fyPJ+/fqxcuXKRrdTXJumZ9fx+81vfsOiRYv4xz/+QdeuXYPL9fw6Po3FtZaeX5Fp7nus7teWaS6utXS/Rqa5uOq7Vss0F1d912oZtRO0Dz23RORYGhZJTnh2u50hQ4awZMmSkOVffvklI0aMwOfz4fV662WyLRZLvex5XcOHD2fFihV4PJ7gssWLF9O5c2d69uwZLPPll1+GbLd48WKysrKw2WzHe2ontJ49e5KamhoSd4/Hw9dff82IESMa3U5xbV7tH7q7du3ib3/7G8nJyc1uo7g279vf/jZvv/02b731VvCnc+fO/OAHP+DZZ59tdDvFtml2u53s7Gzy8/NDlu/cuZMePXo0up3i2jQ9u1rOMAzuv/9+PvzwQ1588UXS0tJC1uv51TLNxRX0/GqJ5r7H6n5tmebiCrpfW6K5uOq7Vss0F1d912oZtRO0Dz23RKSeqE4XLdJK3n33XWPIkCHGv/71L2Pbtm3Gb3/7W2P48OFGYWGhYRiGcemllxrf+ta3jKVLlxq7d+82FixYYGRnZxsvv/xycB+PPvqo8Ytf/CL4uayszBg/frxxyy23GHl5ecaHH35ojBw50njuueeCZXbv3m0MGzbMePDBB41t27YZ//rXv4whQ4YY77//ftudfBRVVFQYGzduNDZu3GhkZGQYL7zwgrFx40Zjz549hmEYxvz5841Ro0YZH374oZGXl2fccsstxoQJE4zy8vLgPhTX+pqKq9frNa6//npj8uTJxqZNm4wDBw4Ef9xud3AfimvDmrtnjzVlyhTjhRdeCFmm2NbXXFw//PBDY8iQIcZrr71m7Ny503jppZeMQYMGGV9//XVwH4prfc3FVc+ulvn1r39tjBo1yli2bFnIv6FVVVXBMnp+Ra65uOr51XLNfY/V/doyTcVV92vLNXe/HkvftcLTXFz1Xatl1E4QHWonEJFIKLkgJ41//OMfxpQpU4whQ4YYs2fPNpYvXx5cd+DAAeP22283Jk6caGRnZxszZswwnn/+eSMQCATL3Hbbbcall14ass/Nmzcb3//+942srCxjwoQJxp///OeQbQzDMJYtW2Z85zvfMYYMGWJMmTLFeOWVV6J7om1o6dKlRkZGRr2f2267zTAMwwgEAsbjjz9uTJgwwcjKyjIuueQSIy8vL2Qfimt9TcW1oKCgwXUZGRnG0qVLg/tQXBvW3D17rIb+4FVs6wsnrv/617+Ms88+28jOzjYuuOAC46OPPgrZh+JaX3Nx1bOrZRr7N3TBggXBMnp+Ra65uOr5dXya+h6r+7XlGour7tfj09T9eix91wpfc3HVd62WUTtB61M7gYhEwmQYTfQHExEREREREREREREROYbmXBARERERERERERERkYgouSAiIiIiIiIiIiIiIhFRckFERERERERERERERCKi5IKIiIiIiIiIiIiIiEREyQUREREREREREREREYmIkgsiIiIiIiIiIiIiIhIRJRdERERERERERERERCQiSi6IiIiIiIiIiIiIiEhElFwQEREREREREREREZGIKLkgIiIiIiIiIiIiIiIRUXJBREREREREREREREQiouSCiIiIiIiIiIiIiIhERMkFERERERERERERERGJiJILIiIiIiIiIiIiIiISESUXREREREREREREREQkIkouiIiIiIiIiIiIiIhIRJRcEBERERERERERERGRiCi5ICIiIiIiIiIiIiIiEVFyQUREREREREREREREIqLkgoiIiIiIiIiIiIiIRETJBRERERERERERERERiYiSCyIiIiIiIiIiIiIiEhElF0REREREREREREREJCJKLoiIiIiIiIiIiIiISESUXBARERERERERERERkYgouSAiIiIiIiIiIiIiIhFRckFERERERERERERERCKi5IKIiIiIiIiIiIiIiEREyQUREREREREREREREYmIkgsiIiIiIiIiIiIiIhIRJRdERERERERERERERCQiSi6IiIiIiIiIiIiIiEhElFwQEREREREREREREZGIKLkgIiIiIiIiIiIiIiIRUXJBREREREREREREREQiouSCiIiIiIiIiIiIiIhERMkFERERERERERERERGJiJILIiIiIiIiIiIiIiISESUXREREREREREREREQkIkouiIiIiIiIiIiIiIhIRKztXQGRthQIBPD5fJjNZkwmU3tXR0RERERERETklGMYBoFAAKvVitmsd5tFTlVKLshpxefzsW7duvauhoiIiIiIiIjIKS87Oxu73d7e1RCRKFFyQdrE119/zXPPPcf69espKiriySefZPr06cH1hmHwxBNP8Nprr1FWVsawYcO45557GDBgQLCMx+Ph4Ycf5j//+Q9ut5szzjiDe++9l65du4Zdj9ps+eDBg/Vwa0V+v59169aRnZ2NxWJp7+qcMhTX6FBco0NxjQ7FNXoU2+hQXKOjPeLqd7ko+/przDYbJputybKBqnKM/Rtx9huAOTYu4mNVVnn5Mt9KbM8B2GKcofWoriBxzzL69U7CEeMILq/yVpLr30lM14HY7PH19ul1VWLJ3UqvxL44HPXXB6rK8RflUdBvHBmOCiyNdGpuqm7hauwcWrQvVyUVm/LxdevFBuc3dEjvj8MRGnO/u5yY7RvpldAPuz0uZDtrak9MpTubvFYtuR4hZQzY4o4PxrW5axXWeTdwTuE40a7fccUiAKZCC0ZPP35vy+LRUo3F8djYNBdvl99FgW8tmT0TiLeHxrL2GneJ7coGc1FEMar7+243Owh4vSSMGYMlNrbZbfXcih6Px8PGjRtP614LgUAAj8fT3tWQNmaz2U6rf0+UXJA24XK5yMzMZM6cOdx444311v/1r3/lhRdeYN68efTp04enn36aq666ivfff5/4+JovFL/97W/59NNPeeyxx0hKSmLevHn88Ic/ZOHChWH/0tYOhWSxWE6rX/S2orhGh+IaHYprdCiu0aG4Ro9iGx2Ka3S0aVwtFsyAxWbD7Gi6QdXvqyYQ8GOx2rDYI2/AtXhrXjayWS04HaF/onp8VjAMLFYb1jr7tuABvx+r1YbD1kD9LG4CRgCLzYa1gfr7fdUYAT8AVruz0eRCU3ULV2Pn0BImjwdzwI/FbMYggM1S//y93mpM+GvO/cjxjm5ngWauVUuuR0gdDcB9NK7NXqswNHRO4TjRrt/xxMIIGHjxY7fZ8fltLYpHSzUWx2Nj01y8vW4Lfp+BrYHzr73GZosVjAhjVOf33WK2gdcb8b+Xem61vtp4nq5DUns8HvLz8wkEAu1dFWkHSUlJdO3a9bS4/5VckDZx5plncuaZZza4zjAM/v73v3P99ddzzjnnAPDwww8zfvx4/vOf/3DxxRdTXl7OggUL+N3vfsf48eMBeOSRRzjrrLP48ssvmTRpUpudi4iIiIiIiIiISEMMw2Dfvn1YLBbS0tJO694bpxvDMHC5XBw4cACAbt26tXONok/JBWl3hYWFFBUVMXHixOAyu93OmDFjWL16NRdffDHr16/H6/UyYcKEYJkuXbowYMAAVq9eHXFywe/34/f7W+0cTne1sVRMW5fiGh2Ka3QortGhuEaPYhsdimt0tEdc/X4/AcBEzR/KTQkAAbMFvwE0XbTh7Q2oebEvAMbRNzz//b8NrN9eTHZHE7/oVzPcTt1twHJkkwYOGgBMZj7Iq+C19SV8f0QC5w5OrFdnCN1vuHWL8AzZetjEfS+VYTaVccu0RMb2i2nRnvxGTb1X7fXxTG5nLjy/mhFDa3p6b9hcwWtvFnPheTEMO3I9as/Nb0CJ38bzX/vJO5zOz2KrOWNwQsO1bfKcA2Ayhey7oTrW/W/da5W3pYJXFhzk+xemkNE/jsI9VTz9t5oGmI5JcOb4jrjdft77pDRkn11S4Pqx1iaPG+m5VLg8fLpyB906dmBoRlfstobfWv98zU6WbbJzQWkZl06qP8xOtTfA22sq+Giji6kDY0mOs2CzmOgUa+bRD0sgAKGDovQEDgGHSOkIN/+oNx5PgA8XHeKrlZWNnovJBD84O4U+vWMxArB+Tyx3vO0CXA2WH94d1uyF0b1s/HR6Mpv3enj0oxJ+fnYSw3s33tvhja9LeX1VFReNjOG7Y2p+Z0qqAry5toxDy5Zx1qheTBjeB4AtBQd55ys7P7FVM3FQbL14e7x+8nYdJLN3Ci+8/TUHSzw4YuHTwH6qq0OP2783JPpiWbnHFBIjgH59TGT2S+C9T0qZOqkDFRUGgzKcvPjawTp76AKUMDXdxmc7vdwat5fxo9MbPc9aem5Fz+kcU5/Ph8vlonv37sSGMTyXnFpiYmqe8QcOHKBz586nfK8oJRek3RUVFQHQqVOnkOUpKSns3bsXgIMHD2Kz2UhMTKxX5uDBg0Rq48aNLaytNEWTZUeH4hodimt0KK7RobhGj2IbHYprdLR5XGu/ezeTXCCmAwyYWJNYKG/JgeLp2RdgH1QdXbp+ezEA6w452BFIOGbfHUkkB/aCl/oNWCZisfQYxWufFQLwyuoyMgbVaUyP6QD9xgGQV9HUn8UN1y0SNhO8vrVmeJeAAY99UsrdnTu0bGd0hCFn8Nd/FmIYZt78TyVZHZIBeHVhMQEDFrxbxeD/G892D3VatTvyjqc/Gw+7ADN/WhwgIa2x8278nG0moE8/dgRo9lofjevRa/XyG4X4/PDKGwe583tOXlpYFCx/qAS2bahi3a76gd5/ENYdHoYpKfbYlvpmNH4ui78+xIFiD4eLDxNnOszQ9IYbAJdtOgiYeXsjjBxeP2a5+ZW8u9aF1wfvrHXRNdlGcryVzYVVeBvMRx19g/ngIfDm+1mbX9lkYgFqfg1f++IQt6Y4gTheXdWlyfJrav6UZsVuL29t8vH28hJ8fnjkoxLu/F7PRrd7fVVV8L+DB9b8jf7OGh+HjsTvfyt3c1ZmzYm9s6SQAGae/MJDx55Wjo33xvxK3O4A27cWcbCk5sK5G86FsG0X1CQIoCatedT2nQbbd9YknBZ9UU5mDwevrK04Zg81cV2U7wXg9//aQKy1lHDpuSWtqTaxork+T1+1SSXvkWHaTmVKLsgJ49hxyJp7QyrcMg3RhM6tS5NgRYfiGh2Ka3QortGhuEaPYhsdimt0tOeEzpbYWEzNfG8OuMoIFObizBiMJb7ht+GbUllZzZJtBol9MnDGHX2jP6tf1ZGeC276mstwxh1t/K3ylLHGvZUO3bNxOOo31Hsqygms2cT3snrw2nof3x+RQL86f28EXGX49q6noN84MuN9jU/o3EjdIuFxVXDRgO28stmB2QQ3T0tkcAdfi/blryijfP0Wrh3Wk2dyA8w+vwO29Jp74uI5nYI9F2wVX9Kr40AcjoTgdvH2bVQldyfvcICfTbQ2WoemztnjqiB211f065sacj1C6mjUJBZq41r3Wl3y3ZRgzwVbuoXLLk492nMhGfpnxZDW395gz4Xs5Fz62TOD5xSOps5l4pie/G9lPl07daDfgC54G+m5kDOommWbDnDBYHODMes7yIbVE1vTcyEzluT4mp4LswY5+P2RngvukC0C1DaEp3QEW7qFoT3i+cbr4asVTfdc+N6kjlh7m/FVl3PxyP28srLxBEPdngvfGWRlYGISv/+ohFvPTmry/rtoZEyw50JtueThVnbuhWIXnDWqF96YPgDMmmDlP4t3cMMkJ4M7+OrFu/8AP1t2HaRf7xRSNh3tuWAOQNWxPRf6QKJ3Pyv3dKYmU3k0CVOv50Klwfcndjim50JNXIM9F+YOYfjw8Hou6LkVHbUTOp/OTofx9qVhp9O1V3JB2l1qaipQ0zuhc+fOweXFxcWkpKQANT0UvF4vpaWlIb0XiouLGTFiRMTH1GRN0aG4RofiGh2Ka3QortGhuEaPYhsdimt0tMeEzmbAHM4fyAF/zeS9Lfhb2myq7RxhBtPRBsVvT8nm3LEVxO5cXG/fZhOA/8gmDRzUDBgBZmTG8+3hDTdGm49M6NxUvRurW2TMDEg2ePmyhEYb5MNmqqn3yDQrP+pTSKf+qcHzzxrcgazBHfC6SjFtPeZ6mCDJ4uW2MRYo3k5M7+wWnrO5ZgLfMK51bZm61yozI577fhUfLJOWFsuDd/ept+3E8ckhn72uUmxb8yO+x5o6l/g4J+dPHtTsPiYP78PMpEIy+ndu8NhxdjMXj0ng4jH177NXrusa8tnlKWNV9WY69ByOs06SxOG0MOvcVGadm9poPYyAgTffj8lswmSGrB4uXhkaG3ayZVQfJ69c27XZct8bm8j3xoaOGJAUY+Y72YkkpQ/EGX80SZORlsJd4zaT0TspeK3rxttuN5M1oGa88R9+dzzl7kq2ulcxrE8KCY7QZE/tNb7hLIN1RmG9GEH9++LBu2vuJXdFGYGVG0hPHYTd7OCKwS4Ss7trQud2pniKnB40o4i0u549e5KamsqSJUuCyzweD19//XUwcZCVlYXNZgspc+DAAbZu3dqi5IKIiIiIiIiIiEhbcXsDVFb72+zH3fDYbKe8zMxMPv744/auxmlDPRekTVRWVrJ79+7g58LCQjZt2kRiYiLdu3fn8ssvZ/78+fTp04fevXszf/58nE4n559/PgAdOnTgwgsv5OGHHyY5OZnExEQefvhhMjIyGD9+fHudloiIiIiIiIiISJPc3gBLN5ZSUdV2E13Hx1g4Y3AiDlt475bffvvtvPnmmwBYrVYSExPJzMzkW9/6FnPmzMFsbv931IuLi/nTn/7E559/zsGDB0lMTGTgwIH85Cc/0cvH7UTJBWkT69ev5/LLLw9+fuihhwCYPXs28+bN49prr8XtdnPfffdRWlrKsGHDeP7554mPP9pl9o477sBqtXLTTTdRXV3NuHHjmDdvnrraiYiIiIiIiIjICcvnN6io8mOzmbBbo99I7/EFqKjy4/MbOGzhbzdp0iQeeughAoEABw8e5IsvvuC3v/0tH3zwAU8//TRWa/s2Jd944434fD7mzZtHWloaxcXFfPXVV5SWhj+Bu7QuJRekTeTk5JCXl9foepPJxI033siNN97YaBmHw8Hdd9/N3XffHY0qioiIiIiIiIiIRI3dasZpb5seAF5v5L0k7HZ7cG7ULl26MGTIEIYNG8aVV17Jm2++ydy5cwEoLy/nd7/7HR9//DFut5usrCzuuOMOBg4cGNzXokWLeOKJJ9i6dSudO3dm9uzZXH/99cEERWZmJr/+9a9ZtGgRy5cvJyUlhV/84hece+65DdatrKyMlStX8tJLLzF27FgAevTowdChQ5s8p/379/PQQw+xZMkSzGYzI0eO5M4776Rnz57BMgsWLODZZ5+lsLCQHj16cNlll3HJJZcANaOvTJs2jT/84Q+89NJLbNiwgV69enHPPfeQk5MTcYxPNe3fn0VERERERERERERETjjjxo1j4MCBfPjhhwAYhsF1111HUVERzzzzDAsXLmTIkCFcccUVlJSUAPDFF1/wi1/8gssuu4z33nuP++9vfsLFAABLEklEQVS/n4ULF/KXv/wlZN9/+tOfmDFjBv/+97+54IILuPXWW9m+fXuD9YiNjSU2NpaPP/4Yj8cTVt2rqqq4/PLLiY2N5R//+AevvPIKsbGxXHPNNcF9vP766zz22GPcfPPNvPfee9xyyy08/vjjwSGiav3ud7/jqquu4q233mLEiBH86Ec/4vDhw5GE8pSk5IKIiIiIiIiIiIiINKhv377s2bMHgKVLl7JlyxYef/xxsrOz6dOnD7fddhsJCQl88MEHAPzlL3/huuuuY/bs2aSlpTFhwgR+9rOf8eqrr4bsd+bMmcydO5f09HRuuukmsrKyeOmllxqsg9VqZd68ebz11luMHj2aiy++mD/84Q9s3ry50Xq/++67mEwmfvvb35KZmUm/fv146KGH2LdvH8uXLwfgqaee4vbbb+ecc84hLS2Nc845hyuuuILXXnstZF+XXHIJM2bMoF+/ftx777106NCBN954o8UxPVVoWCQRERERERERERERaZBhGJhMJgA2bNiAy+WqNyRQdXU1u3fvDpZZt25dSE8Fv9+P2+2mqqqKmJgYgHqTMA8fPpxNmzY1Wo8ZM2Zw1llnsWLFClavXs3ixYt59tlneeCBB5gzZ0698hs2bGD37t2MHDkyZLnb7Wb37t0cOnSIffv2ceedd4YMw+7z+ejQoUPINnXrarVaycrKYseOHY3W9XSh5IKIiIiIiIiE+CJ3L394t5xrRoHN4WN0rxicbTABZV2Pv/w/yqsA7PBVGVDG+UPsXDWpI1/+f3t3HhdVvf8P/DX7sIMCbiCiCCqioAIqoLmk5lVTTO3eTMvKry3e63Itr9lm/dr06k3NstJSy1tdNW0xNbVMK0FcyAVBDRfMBZF9YNbP7w9kdGRgZoADLq/n48FDOedzzvl8XufAGc57zpmTZXjv5yAAV+HpkY9J45uhia8aR4/rENnB3bqO13cU4OS1RzQAQDs/OZ4f3BIqALllCnyy4zI0ZgMyrwBN3YC3xwRAq5IhJVuP+FCNS/3NLyrDd7uP4y9JHeDn7YatvxxHWsbFa3OvjwEAerZRoXuIFu/uKkaAJ6DXA8VG4B/9vZEU7o6Pd1/Ft0cNGBapxqjuPnhzcy5OXKncUjBw2AQgEM0D8/D3/6u4+HEkoxhr1+UBAEZEuiOnwISE9hYU6ixYtrMM2lIt0g6bAYRCe0iHdx/ygK+7wqUxAkDGFeC1vUWYOVCGiBZqfJFWgnE9PK3r2nakBB/9UnLTUhX7quKrtkIA6K59AT4aYOG4AOt2KzOzKyWlDtsFbt5/dVMfWQA35+GIBoAeFY+vsNR2k3ZztJONg7y/x6Vq5oRc+7c2GTUDUHD92+9+wDf/vt+F5YmoJqdOnbJ+RoHFYkFAQIDdOwwqL8hbLBZMnToVgwYNqtJGo6n5/FpZxKiORqNBQkICEhIS8Mwzz+D555/HkiVL7BYXLBYLIiMjsWDBgirzmjRpAr1eDwB49dVX0bVrV5v5cjkf+OMMpkREREREREQ2Fq4/CgHgw/3FKNKbkXaurMH7UGxnk5UXj9//WVinlZQKfL7+Co4e10GnM+NY5vWLrScLbJc/lW+xjmXlGX+UlpmRee2ifV4Z8GVaCVKy9SgqtyA1W+9Sf7/bfRylZUZs3pMJADcUFqrae9qId3cVAwByS4AiIyAALN5ZZDPOb48a8EVayQ2FBVsXL1///xcb8qz///poAIrKBVKz9Vi2qxCF5QJpJQHW+eXmirHWxroTapgFsHB7Ib5IK0G+zmKzrqqFBWkU6m3HUG1hgQBUFBaAOhQWiOiu9dtvvyErK8taKIiMjMSVK1egUCgQEhJi89WkSRMAQKdOnZCdnV1lfkhIiM1F+0OHDtlsKz09HW3btnWpf2FhYdDp7BdaIyMjcebMGTRt2rRKP7y8vODv749mzZrh3LlzVeYHBwfbrOvGvppMJhw9etTlvt6JWFwgIiIiIiIiGzNGR0IG4InuXvDWKtAj2K3B++BlZ5PDItUAgCl9rr+r0dNDhgdH+yOygzs8PBToFHH9zoUwX9vlw5rIrWOZFHIFnm5KRPhXzGvqDozt4Yn4UA18tHLEuXjnwl+SOsDTXY2hiREAgB4dm1fbtmcbFZ7uW/HuzkAvwEcFyAD8vb+3zTiHRaoxrocnwv3tr6d54PX/j0tuav3/iMhceGtliAvV4Km+PvDVytDDM9c6X6uoGGttPNDeAIUMmDHQB+N6eKKJu9xmXY8n1G69rvLR2I6hMjOyr/Jodv1eFSK6mxgMBuTm5uLSpUs4evQo3n//fTz11FPo168fRo4cCQDo3bs3oqOj8fTTT2P37t3IycnBgQMHsGjRIhw+fBgA8PTTT2PTpk1YsmQJTpw4gVOnTmHz5s1YtGiRzfa2bNmCdevWITs7G4sXL8bvv/+O8ePH2+1bfn4+JkyYgE2bNuH48eM4d+4cvv/+e3z00UcYMGCA3WWGDx8OPz8/PPnkk0hLS8O5c+eQmpqK1157DRcvVrwJYOrUqfjggw+watUqZGdnIzMzE+vXr8fHH39ss661a9fihx9+wKlTpzBv3jwUFhZi9OjRdYn7jsDHIhEREREREZGNpK4t0aXsLBTu7pA7eHyBVP7+0D0wlJbA/fQehIcFQutxvWjQO8wN2qDj8AqKhlbjbZ0eHVVxsVl/7U3scwb4QuvmjZuZ9UCAmxkTBwSgk5cJipuewNAnvKIAUeLCm+H9vN3w0NBo6/eDEzpgcEKHascAAP07ethd16NJTfBo0vXv33igolBhLilCUXoGzMHtkK7OQdOwSGubzh298PoLXjDqCqE6kY02TZXQqOTQ+sjxwr1uKEovh6qFAsg7BbeOUVDU4pFIANDRH1jd0xtaj4qMJvfxsZk/qLMngkJ8rbnqDEU4UF51X7miYkwH0KZpJDTVrOPmzACgpLQcP2cJ+IZ2gNazdgWymvafq+qShbAIGLPNUIUqYCovcphHfaoux5uzcZR3sb4UJ/QH0LWNP7w1tvMr93FzrxAcFjkuZaQvKYJl/1GEBnSEWq6BWaeDT8+edRs0kUQMpoa5f6i229m9ezcSExOhVCrh7e2NDh06YO7cuRg1apT1jgOZTIYPPvgA//nPfzBnzhzk5+fD398fPXr0gL9/RTU8KSkJ77//Pt5991189NFHUCqVaNu2LcaMGWOzvalTp2Lz5s145ZVXEBAQgAULFiAsLMxu3zw8PNC1a1esWrUKZ8+ehclkQvPmzTFmzBhMmTLF7jJubm749NNPsWDBAjzzzDMoLS1Fs2bN0KtXL3h6VrxmGDNmDLRaLVasWIH58+fD3d0d4eHhmDhxos26Zs6ciQ8//BDHjh1D69atsWzZMuudGnczFheIiIiIiIiIiIiIJKJUyODppkBJmRlGo7lBtunppoDy5up5Dd588028+eabzq3b0xNz587F3Llzq22TlJSEpKSkaucDQLNmzbBy5UqntqlWqzFz5kzMnDmzxnaZmZk23wcEBOCtt96qcZnhw4dj+PDhNbZp164dvvzyS6f6ejdhcYGIiIiIiIiIiIhIIhqVHD07+cBkFo4b1xOlQgaNik/EJ2mxuEBEREREREREREQkIY1KDo2qsXtBVL9YXCAiIiIiIiIiIiKiBnPz44tuVUFBQbdNXxsD740hIiIiIiIiIiIiIiKXsLhAREREREREREREREQuYXGBiIiIiIiIiIiIiIhcws9cICIiIiIiIhuLvjiEXUeKARQ71T4A/sjdr0PPNkZMHeCHmV9exsUaFn26rxf6d/TAg+9fhLFyYkpKNa3VwG9FAIpumh4E4Oq1L3uaASi49mVPa2BfTvWdvFG1fXNWdWOojWDgsAlAIIC8a183CwGgu/Z143JmAKHA/op5oU2B7BsWlwEID6iYFnT2ONq3CUS74CbYc+g0fs+6VIexONpX1/n6AAWFgKc7UHJj9+2OyUl13n/yetl/PlogtosGP315FSaT/SxGDPFF9lk9zl8ow9X8imke7kBplWFfz0MlAzq2UMJgkcFXY8TeM3XqZvXs5mjneHCQ9/e4VM2cEADAkF4axAUBm3/IxZ69pTWuSyYD/HyAqwWVP+8VXmqSix7RITUuS0REdcc7F4iIiIiIiMjGriO5LrXPhRcAYO9pI1Kz9TUWFgBg2a6KBsaam5HEsm+qSwgAmbmAwQJkXyjEkVOX8N3uTFzKq/kCb30qKKz4t6QWNQTp1M/7MgvLge2pATCZqm/z9ZYCnMoutxYWAHuFBVtGAfz+pwnnrkpYWGhAW38LAACHhQUAEAK4WlB1+puf/17PvSIiIntYXCAiIiIiIiIbfTsHuNQ+4NodDj3bqBAXqkFzr5rbP9W3ooGqVr2j+hLa1PZ7GYAOAYBGDoS28EXnds3wl6QINPf3bLA++flW/Ovp3mCbdEIN1QAX+GiBgXG5UNVQqxgxxBdhbbVo4nd9moeDLFRyoEsrJVo3UaHnbfZmfZmdaYN7VRQ3E3t6OF5eBjT1rTp99oNd6tYxIiJyCh+LRERERERERDamj4vGpJC9ULi7Q67R1NjWXFoIy9lTcOvYAgpPbwDAuw81d2o7n09pjpLScvycJeAb2gFaTzeb+YbSErif3oPwsEBob7jCqjMU4UD5cXgFRUOr8a6yXn1JESz7jyI0oCO0blXnm0sLYcpJx5n2iejkZYLC3hVOoMa+Oau6MdSGuaQIRekZMAe3Q7o6B03DIuHmZlvJMeoKoTpxAG2aRkJzLZvK5VQt2gJ5p+DWMcq6r252fcwR1jEPS+qAYUkdnBqLWQDHipXWXB3tK2fYG5Mz6nf/edd5/1VkoUfve5rUmEXP2KrThEXAmG2GKlQBU3lRrfKorepyvPl4cJR3sb4UJ/QH0LWNP7w1tvMr93FzrxAcFnoAwNB7AzD0XseFzht/3tVyDcw6HXzCXSuQEjUEYdQD5vopVjpFoYRMVfM53BURERF49913MXDgQKfap6SkYMKECdi3bx+8vaX/XdW/f39MmDABjzzyiOTboutYXCAiIiIiIiIiIiKSiDDqYcjaC1Fe0mDblGk9oQ7v6XSBYfbs2SgqKsKyZcvszt+zZw98fHzqs4tYsmQJtm/fjk2bNtXYTqfT4d1338WWLVtw+fJleHh4oH379pg0aRL69etXr30i17C4QERERERERERERCQVs6misKBSQ6ZUS745YTJUbM9sAurp7oWAgMa7I+ill17C77//jhdffBHt2rVDQUEBDh48iIKCgkbrE1XgZy4QERERERERERERSUymVEOm0kr/JUEBIyIiAtu3b7d+f+DAAdx///2IiopCcnIytm/fjoiICGRkZNgsd/ToUSQnJ6Nr16548MEH8ccffwAANmzYgKVLl+L48eOIiIhAREQENmzYYHfbP/74I6ZMmYK+ffsiKCgInTt3xsMPP4xRo0ZV29/i4mK88MIL6NWrF7p164YJEybg+PHjNm127tyJ5ORkREVFYcCAAVi6dClMpuuProqIiMDatWvx+OOPo0uXLujfvz++//57l7O7k7G4QEREREREREREREROKSkpwZNPPonw8HB89dVX+Mc//oH58+fbbbto0SLMnj0b69evh0KhwJw5cwAAQ4cOxaRJk9C+fXvs2bMHe/bswdChQ+2uw9/fH7t27UJJiXOPlRJCYPLkycjNzcUHH3yADRs2IDIyEhMnTrTe7bB7927MmjULDz/8MDZv3ox58+Zhw4YNeP/9923W9c4772Dw4MHYtGkTRowYgZkzZ+LUqVNOJnXnY3GBiIiIiIiIiIiIiJzyzTffAABee+01hIWFoW/fvnj88cfttp0+fTri4uIQFhaGyZMn4+DBg9Dr9dBqtXB3d4dCoUBAQAACAgKg1WrtruPVV1/FwYMH0bNnT4wePRqvv/469u/fX23/9u7di6ysLCxevBhRUVFo06YNnnvuOXh7e2Pr1q0AgPfffx+TJ0/GqFGjEBwcjISEBPzjH//A559/brOuIUOGYMyYMQgNDcW0adPQuXNnrFmzpjax3ZH4mQtERERERERERERE5JTs7GxERERAo7n+eQ5RUVF220ZERFj/X/m5DXl5eWjZsqXT24uNjcX27duRnp6OAwcOYO/evVi9ejWmTp2Kp59+ukr7o0ePQqfTIT4+3mZ6eXk5zp49a21z+PBhmzsVzGYz9Ho9ysrK4ObmBgCIiYmxWUd0dHSVRz/dzVhcICIiIiIiIiIiIiKnCCEgk8mcaqtUXr/8XLmMxWJxeZsqlQo9evRAjx49MHnyZCxbtgzLli3DE088AbXa9jMmLBYLAgIC7N5h4OXlZW0zdepUDBo0qEqbG4sm9jg79rsBiwtERERERERkY3f6n/j3d8UAip1cIhTYrwOgq/1GU1LsTh4aAiw/WoSLRUU2093U/jCar8LL6yryC+wt2QxAAYACKAGYqsxvDezLqXXfBsS1hVatxHd7stClfQAOn8jFiL4d0Ll9c7urKCyzYNX+QljMRmzPtO3NyCgNTuZZMDTSHe/8UAg9gHB/IOvK9TYyAFMTZNh3tgmKL5hw5EpTAHnXvm4Wgop9ceP+CAYOm9EMnrjkzL6qZn8AauC3IgDX94efBsjX27Ya2kmNsOZuiGolAAAlpRZ89e0lFBWbMeZ+fzTxc/7DRrPPGfDJ18EAdOjXXo9f/jBjRJQW6w6VV2nbKRAI8nfDuB6e1V7wKNEZsCP1JGSQoX9cO3i6O+7L5WIzlm/NhUohcPqqBX5uwNkCIDYY2HcOGNJRhZQzJjw32A8l5Ra8uaUAHZor0dRLiQk9veDrrrBZ38XL5Vix+iJKyyq+j+vmhpF/aXa9jyUmbN9VgIF9fQEA67+5jNNnDOib4I0f9xThb900aNO0+v6WGy1IydbD30OO17/NR7kA1AogtrUMv2QLa7tAL0AuBy4WVnzvrgJmDPTFr9nlaOuvQr8IN5v1njx7Bet3HMXoAZFo3dT28SVFZRb8kl2Gfi0M0HraLldbRzKKsXZdHmQywNNDhpBgLUYMaQpPT17OImpMbdu2xTfffAODwWC9sH/48GGX16NSqWpVaACAsLAwmEwmmz5UioyMxJUrV6BQKBAUFGR3+U6dOiE7OxshISE1bufQoUMYOXKk9fv09HR07NixVn2+E/EzF4iIiIiIiMjGwvVHG7sLVpvPqHGxqOr0MoMWJjOqKSzYqlpYqLsdqX/guz1ZAIDfT+RCAPh61/Fq269P1yNfZ6lSWACAjYf1KCyz4N/bKwoLgG1hAQAEgKW/CGTpNDh2BQBsL1Y76xICarVcTW4uLADA5mMGFJVbsP+sGQCwa08ZTmWX49JlI7761l5BpHqfbypF5eWLH0+YYTTDbmEBAI5dBvJ1FnyZVv2Hfv58IBtnLxbizIUC7D542qk+fPhbOc4VmHH4ggXF+orCAlBRWACALRlG6AwCb2/Nx9vbCmASwJELJhz7U2+3L/9dd8VaWACA1ANlNvO37ypAcYkZO34uwPZdBcg6ZYDeCGz7qQhGE7A2rRlqkpKtR1G5BW9urSgsAIDBDJvCAgBcLr5eWAAAnRGYv60A2VdM2H2iDKnZtjt3/Y6jMJkF1u+o+jtiQ3o5dAYLfj1yvsa+ueKLDRXHihBAcYlA5sky7Pi5oN7WT0S2iouLkZGRYfP1559/Vmk3fPhwCCHwwgsv4NSpU9i9ezdWrlwJwLV39bdq1Qo5OTnIyMjA1atXYTAY7LZ7+OGH8fnnn+PIkSPIycnBrl27sHDhQsTHx8PT07NK+969eyM6OhpPP/00du/ejZycHBw4cACLFi2yFkGefvppbNq0CUuWLMGJEydw6tQpbN68GYsWLbJZ15YtW7Bu3TpkZ2dj8eLF+P333zF+/Hinx3inY3GBiIiIiIiIbMwYHdnYXbAaGmJAC++q093V5VAqAD9fx+uQ4j3OA+La4i+J4QCALu0DIAMwom+HatuP7qpBE3c5BkZU7c3IKA183eWYOdAHle8FD/e3bSMD8EyCDBEeekQGAIC5Vv1uhtxaLVcTPztPjxjaSQ0frRzdW1cUQfomuiGsrRbNA9UYNayGt9zb8eD9HgAq3tnar70CagXwQLT9D/3sFAg0cZdjbI+qF5sq9ekWitYtfBDSwhdJMW2c6sMTvbRo7adAl5ZyeGuA1n4V02ODK/4d0lEFD7UMzw72w7ODfKGSAZ1bKNG5pcZuX/76gD883a9/H9fN9p3+A/v6wttLgQF9fDGwry/C26mhUQGD7vGGSgn8rcelGvsbH6qBj1aO2YP94HbtOp9GASSE2l70a+YNtPC9/r27Gpg1yBdt/ZXo094NcaG2O3f0gEgoFTKMHlD1d0RyVy3c1XL07tyqxr65YlxyxbEikwHenjJ0aO+GAX18a16I6BYmTAYIY7n0Xyb7F+kdSU1NxciRI22+Fi9eXKWdp6cn3nvvPWRkZOD+++/HokWLrJ99cPNdBDUZPHgwkpKSMGHCBPTq1Qvffvut3XaJiYnYuHEjHnvsMQwdOhSvvvoqEhMT8Z///Mdue5lMhg8++ACxsbGYM2cOhgwZghkzZuD8+fPw9684wSYlJeH999/HL7/8ggceeABjx47Fxx9/jFatbH+HTZ06FZs3b8aIESOwceNGLFiwAGFhYU6P8U4nE0IIx82I7gxmsxmHDh1CVFSUS7/sqGaVuUZHR0OhqN07qKgq5ioN5ioN5ioN5iodZisN5iqNxsjVrNOhcO9eKNzdIXfw3GFzaSEsZw/ArWMUFJ52qgAOlJSW4+csAd/QDlUepWIoLYH76T0IDwuE1uP6lVidoQgHyo/DKygaWk3VbepLimDZfxShAR2hdas631xaCFNOOs60T0QnLxMU1bzJsqa+Oau6MdSGuaQIRekZMAe3Q7o6B03DIuHm5mXTxqgrhOrEAbRpGgnNtWwql1O1aAvkZdW4r2qzP2z6KIBjxUprro72lTPsjckZt9r+q0sWwiJgzDZDFaqAqbyoVnnUVnU53pyNo7yL9aU4oT+Arm384a2xnV+5j5t7heCwyHEpoxt/3tVyDcw6HXx69oTC3fH+4nlLOgaDAYcPH74rsy0vL0d2djZCQ0Oh1VYUQoVRD0PWXojy6u+qqm8yrSfU4T0hU9V8Hq8vX3/9NebMmYO0tDTruG93ERERePfddzFw4ECXlrN3DNyp+JC621heXh7eeecd/Pzzz7hy5Qp8fHzQoUMHPPPMM1U+ybwmP/74I1auXIkjR47AYrEgLCwMDz30EJKTk61tjh8/jg8++AD79+9Hfn4+WrVqhQcffBATJ06UYmhERERERERERER3BJlKA3V4T8AsxYP6qqFQSlpY2LhxI4KCgtCsWTNkZmZiwYIFGDJkyB1/MZ1ssbhwG5s6dSpMJhPefPNNBAcHIy8vD7/99hsKCwsdL3zNmjVr8Prrr+OJJ57ASy+9BJVKhR07duCll17CiRMn8NxzzwEAjhw5giZNmmD+/Plo0aIFDhw4gBdffBEKhYLPGSMiIiIiIiIiIqqBTKUBGugugoaQm5uLxYsXIzc3FwEBARgyZAimT5/e2N2iBsbiwm2qqKgI+/fvx5o1axAXFweg4kNQunTpYm0TERGBl156CTt37kRqair8/f0xa9Ys3HfffQCACxcu4K233sLEiRMxY8YM63KTJk2CSqXCa6+9hiFDhqBr16544IEHbLYfHByMQ4cOYdu2bSwuEBERERERERER3UWeeOIJPPHEE43dDUllZmY2dhduefxA59uUu7s73N3dsX379mo/SR0A3nnnHQwePBibNm3CiBEjMHPmTJw6dQoAsHXrVhiNRkyaNKnKcuPGjYO7u3u1H6QCVHyCvK+vb53HQkRERERERERERES3FxYXblNKpRJvvvkmNm7ciB49euDBBx/EwoULcfz4cZt2Q4YMwZgxYxAaGopp06ahc+fOWLNmDQAgOzsbXl5eCAwMrLJ+tVqN4OBgnD592u72Dx48iC1btmDcuHH1PjYiIiIiIiIiIiIiurWxuHAbGzx4MHbv3o333nsPiYmJSE1NRXJyMjZs2GBtc/MHO0dHR1vvXHBECAGZTFZl+okTJ/DUU0/hqaeeQkJCQt0GQURERERERERERES3HX7mwm1Oo9EgISEBCQkJeOaZZ/D8889jyZIlSE5OrnaZyoJBaGgoiouLcenSJTRr1symjcFgQE5ODnr27Gkz/eTJk5g4cSLGjh2Lp556qv4HREREREREt4zLJWZ89PMlTO7lh0BPNQrLTViXXoQHunrDR3v9z8m9V9zw3qc6ADrrNJUceLS3Jz75rQTPDvJFU08F/vW/PJTftA2NHPDzAErS0yBTKNAq0AeDe7WHp7u6Tn0vMcjxcVop2gUCfdp5Qm+yWPtuLrdgxYkmOLo/BzIZMKyLO5K7eUKrqvn9d5evlmDdD4fRzN+71n0sN1rwY2YZsq8YMTrGE8cvGREfqnG47ZoYDBZ88dVFZGQZcE8vBQYFVEw/eKYcb28rwD/7KKApV2L5HjOeDlGi/bV+rNiTj52ZRihkwL+G+CImRGtdp67cgJ2HzqJPt1B4uqtRojPgp9QzGOjrXJ8KdWb8b38JRnQRt/XbGg0mM07mytE6REDruHmDKzdakJKtr/MxBAAFOjO+SCvBuB6e8HVX1FMP60dJiQnbdxVgYF9feHryUhYR0a3iNj7Fkz1hYWHQ6a6/oD906JDN/PT0dLRt2xYAMGjQICiVSnz88cdV1vP5559Dp9Nh2LBh1mknTpzAhAkTMHLkSH76OxERERHRXeCjtEIUlZvw4W/5AIB16UUoKDNhfXqRTbv3zzSvsqzRAnywpwRGMzB/WwH+/UNBlcICAOgtwMVioKTcjOJSA06dzcPug6fr3Pddpz1xpsCEX7J1SDtXZtP3DRnlOFzgCYMF0JuBr3/XITVb73CdG3YcRbGubn1MydZj94ly/JFrxHu7ClFUbnFq2zU5elyHjKyKz+L76Tezdfrb2wpgNAP//tmM988EoMQILPujubUfOzONAACzqNhHN/rl8HmU6AzWcf58IBul5QbsynHuwu6XaSXI11mw4ZCxTmNrbCfOFUBnlGH/OVNjd8WulGx9vRxDAPDFtX32ZVpJPfSsfm3fVYDiEjN2/FzQ2F0hIqIbsLhwm8rPz8eECROwadMmHD9+HOfOncP333+Pjz76CAMGDLC227JlC9atW4fs7GwsXrwYv//+O8aPHw8AaNmyJWbNmoVVq1Zh0aJFOHXqFM6ePYuPP/4Y8+fPx6RJk9C1a1cA1wsLvXv3xqOPPorc3Fzk5ubi6tWrjTJ+IiIiIiKS3uM9fOCjVeKJXn4AgAe6esPPTYnRXb1t2k0JuVhlWZUcmJzoCbUCmDXIFzPv9bX7zm+NHGjhDXhpFfD2UCOsdVMkxbSpc9/7tilBGz8lEtu6o0ewm03fkztq0cW3BGo5oFUAI7q4Iy5U43CdyQMi4e2hqVMf40M16NNei3YBajzZ1wc+WrlT265JZAd3dAyvuIvinl7X33H+7CBfqBXAzD4KTAnJhZcaeKrtRWs/BkSoAAAKWcU+ulFCVCt4eWis4+zTLRSebmr0DXLuIvvYHp5o4i5HcrSqTmNrbO2DfeGuEugefGu+Wz4+VFMvxxAAjLu2z8b28KyHntWvgX194e2lwIA+vo3dFSIiusGteXYkhzw8PNC1a1esWrUKZ8+ehclkQvPmzTFmzBhMmTLF2m7q1KnYvHkzXnnlFQQEBGDBggUICwuzzn/kkUcQHByMlStXYvXq1TCbzQgLC8PLL7+M0aNHW9tt2bIFV69exTfffINvvvnGOr1Vq1bYuXNnwwyaiIiIiIgaVKCnAs/fe/0Rqj5aJSbFN6nSrqd/GfoluUPh6V1l3uDO1y9Ufjal6h0OJaXl+DlLwDe0A7SebvXUc8BTbcEj3T2gdavok1Ypt/bdbJZjavurONO+Ezp5maCo+lFzdgU28cSTY3s6blgDrUqOIZ09rN8386n7n+VqtRwPj2sJADDqCoETFdNjQrRY+0RzmEuKUHTFhNcTFECeydqPp/o1xVP97K/TXavGfQnh1u893dW4NzYE7qfPOdUnH3cFJvfxgc5QBLu3rNwm1EoFugRYoFU5eZA0MK1Kjj7h9fNz43ttn92KPD2VuH+of2N3g6hODBYDzKLh7oJSyJRQy+v2iEEiR1hcuE2p1WrMnDkTM2fOrLFds2bNsHLlyhrbDBgwwOZuB3umTp2KqVOnutxPIiIiIiIiIiKiu5nBYsDvBYegM+scN64n7gp3dPGNdrrAMHv2bHz11VcAAIVCgcDAQPTt2xczZsyAj09F4bF///44f/58lWVnzpyJyZMnIycnBwMGDIBCocCPP/5o8xmvly9fxj333AOz2YwdO3YgKCioHkZJjY3FBSIiIiIiIiIiIiKJmIUJOrMOKpkKKpn0j4szCiN0Zt21OyWcv3shKSkJb7zxBsxmM06ePIk5c+aguLgYCxcutLb5+9//jrFjx9os5+HhYfN9YGAgNm7ciP/7v/+zTtu4cSOaNWuGP//8s3aDolsSiwtEREREREREREREElPJVNAo6v4ZKQ6ZKwoMrlKr1QgICAAANG/eHEOHDrXezVDJw8PD2qY6I0eOxIYNG2yKCxs2bMDIkSOxbNkyl/tFty5+oPMdLDMzEwMHDmzsbhAREREREREREdFt5Ny5c9i9ezeUStffm96/f38UFhYiLS0NAJCWlobCwkL061fNB/3QbYt3LtAto6SkBO+88w62b9+OvLw8dOrUCXPmzEGXLl0A2D77rVLXrl3x5ZdfNkZ3iYiIiIiIiIiI7hg//fQTYmJiYDabodfrAQD/+te/bNosWLAA77zzjs20999/H/Hx8dbvVSoVRowYgfXr16NHjx5Yv349RowYAZVK+kdCUcNicYFuGXPnzsWJEyfw9ttvIzAwEF9//TUeffRRbN682foBMJXPfqvEX0pERERERERERER1Fx8fj5dffhllZWVYt24dsrOzMX78eJs2jz32GJKTk22m3fjBzZUeeOABjBs3DjNmzMCWLVvwxRdfwGw2S9p/anh8LBLdEsrLy7Ft2zbMmjULsbGxCAkJwdSpUxEUFIS1a9da21U++63yy9fXt/E6TUREREREREREdIdwc3NDSEgIOnTogLlz58JgMGDp0qU2bfz8/BASEmLzpdVqq6wrPDwcbdu2xYwZM9CuXTuEh4c31DCoAfHOBbolmEwmmM1maDS2H2qj1Wpx4MAB6/epqano1asXvL29ERsbi+nTp6Np06Yub89sNrNaWo8qs2Sm9Yu5SoO5SoO5SoO5SofZSoO5SqMxcjWbzbAAMJgE9p8vQfdgN2iV9t+bZgFgkStgFgAEsPFAEdbu0+Fvse4Y2c272m1cLjTh/Z8LMSFOC5lMXrEmYam6dpkMZoGK9VdOFQCguLaIQBUWADI5LADMQqCw3IQNvxchuYs3fLRKa58B2/VWWY0AZDJU0zdn2R9DbZhFRb8tkEEGuc34DQYLjmXq0L61gBIKm+1Zl5PJgBv2ld3e1jhmx2O5cZuV66txXzlBWABx05iccavtv8osLl8yYf23OfhrclM0C6x6Qc6eyuyERTiVR7nRgtRsPeJCNdCq6va+0upztM3GYd7CAgVkdo+FyjFZhAwuHy83/LxXfpnNZsCJ35k8b0mHmd4ZnnnmGTzxxBP461//avfuBEdGjx6NV155BS+//HL9d45uCTIhRB1Pj0T148EHH4RKpcKCBQvg7++Pb7/9Fs899xxCQkKwdetWbN68Ge7u7mjZsiVycnLwzjvvwGw2Y8OGDVCr1U5tw2w249ChQ9IOhIiIiIjoDpGeXQqd3gIPjQJdQt2dWubltTnX//+3oGrbfbLjMkrLzPB0U2LigIA697Um36ReRUmZGV5uSgyL85N0W42lNvuKGsfSby+gTG+Bu0aBp4c1l2QbPB7oVhEdHQ2FQtHY3WhQ5eXlyM7ORmhoqPUd/WVmHfZdTYVKpoJKJv0jvo3CCKMwIrZJHNwUzv0OmD17NoqKirBs2TKb6cnJyYiOjsaLL76I/v37Y/To0Rg7dqxNGzc3N3h6eiInJwcDBgzAxo0b0bFjR5hMJhQVFcHb2xtKpRIZGRkYOXIkduzYgaCg6l8j3O7sHQN3Kt65QLeMt99+G3PmzEGfPn2gUCjQqVMnDBs2DMeOHQMADB061No2PDwcnTt3Rv/+/fHTTz9h0KBBLm2rU6dOThckyDGz2YzDhw8jKirqrnvRICXmKg3mKg3mKg3mKh1mKw3mKo3GyNWs06Fo3z60au6G/ZdMFXcuVLwluQqLrgiWnHRowztB4emNv8W6W+9c6ORlqnYb/+znjeW7C/FwrBpZfxTDp004tB5uNm0MuhK4n/kN7doGQOtx/eJImaEIh/Qn4NUyChqNV5V1G0qKYTmUgRD/CGi0Xni0q8/1OxdkMlh0RTD9eQTn2vVChKcJCvtDQ2lpOX45Kez2zVnVjaE2zCVFKD6SBXOrUBxRn0eTth2hdfMEAHRp5YljWTq0DzZDdfZXtG7SARqNt81yquZtgKsnrfvKnprG7MxYzALILFFac3W0r5xh1BVBdSrdZkzOuNX2X2UWD4zqiPXf6fDXUU2hCnTuZ1pYBExnLFCGyGEqL3aYR9uOKuw7rUdsGyW0qup/Dp1RXY43Z+Mo72J9Kf4wpKNz66bw0thebKvcx808g3EUf7p0vNz4866Wa2DW6eAdGwuFu+P9xfOWdAwGg/V6DgEKmRLuCnfozDoYhbFBtumucIdCVvdLv48++ij+9a9/4YknngAALF68GIsXL7ZpM27cOMybN6/KskqlEk2aNKlzH+jWxeIC3TJat26NTz/9FDqdDiUlJQgMDMS0adOqrWQGBgaiZcuWOH36tMvbUigUfOEgAeYqDeYqDeYqDeYqDeYqHWYrDeYqjQbNVaGAHICbUoY+bT0dt7eYoZABChkwurs3Rnd3fAG4ha8SLw9vipLScmReEADkgOzmx7fIASGs67ZOlQGA+doidioDcgDCAjkAhUyGJm4qPB5v+zhVuaXikR03r9umjQyouNffXt+cZX8MtSKr6LeAgIDFZvwarQIxXbxg1BVCBrPt9q4tJxfCZl/Z7W2NY3Z+LJVtHO4rZ4YtR9UxOeFW23+VWQQ2U2L6k7V7x65MLnMqDw+1HPeE166gcrPqc7TNxmHeMjnMEHaPhcoxyWUCEC4eLzf8vMtR8cQvV39f8rxV/5inLbVcjS6+0TCLuhX7XKGQKaGWO//G2jfffNPu9OHDh2P48OEAgJ07d9a4jqCgIGRmZlY7v2PHjjXOp9sPiwt0y3F3d4e7uzsKCwuxZ88ezJo1y267/Px8XLhwAYGBgQ3cQyIiIiIiIiIiIudVXOjnUzTozsLiAt0ydu/eDSEEQkNDcfbsWbz99tsIDQ1FcnIySktLsXTpUgwaNAgBAQE4f/48Fi1aBD8/PwwcOLCxu05ERERERERERER0V2FxgW4ZxcXFWLhwIS5evAhfX18MGjQI06dPh0qlgtlsRlZWFjZu3Iji4mIEBAQgPj4eixYtgqenE7dpExEREREREREREVG9YXGBbhlDhw61+dDmG2m1WqxYsaKBe0RERERERERERERE9tT2E42IiIiIiIiIiIiIiOguxeICERERERERERERERG5hMUFIiIiIiIiIiIiIiJyCYsLREREREREdEcrN1mw549SlJssjd2VOtNbZNh73gKjSdbYXaEGUFJiwsbvrqCkxGR3frnRgl1ZZSg31v3Yrs91ERHR3YHFBSIiIiIiIrqjpZ0tQ5HejLRzZY3dlTo7UOiOEr1A9gVNY3eFGsD2XQUoLjFjx+5Cu/NTsvUoKrcgNVtf523V57qIiOjuwOICERERERER3dF6tHaDt1aBHsFujd2VOuvmo4OXRobQFrwAfDcY2NcX3l4KDEjysTs/PlQDH60ccaF1LzbV57qIqCqLwQCzTtdgXxaDobGHjJSUFERERKCoqKixu0ISUTZ2B4iIiIiIiIikpFXKkRjq0djdqBcauUB8KznSlaKxu0INwNNTifuH+kNYBIy55irztSo5+oTXT9GsPtdFRLYsBgOKDx6EubS0wbap8PCAV0wM5Gq1U+3/+9//4u2338a+ffugVFZcMi4tLUVcXBy6du2KtWvXWtumpaXhoYcewpYtWxAaGipJ/+n2wOICERERERERERERkUSEyQRzaSnkKhVkKpX02zMaYS4thTCZACeLC/Hx8dDpdDhy5Aiio6MBVBQR/P39cfjwYZSVlcHNraIAmZKSgsDAQBYWiI9FIiIiIiIiIiIiIpKaTKWCXKOR/Ks2BYy2bdsiMDAQqamp1mmpqakYMGAAWrdujYMHD9pMj4+Px6ZNm5CcnIyYmBgkJCRg5syZyMvLq3Yb5eXlmDx5MsaOHYuCggIAwPr163HfffchKioKQ4YMwWeffeZy36nxsLhAREREREREREREdJeLi4tDSkqK9fuUlBTExcUhNjbWOt1gMODQoUOIj4+H0WjEP/7xD3z99dd49913kZOTg9mzZ9tdd3FxMSZNmgSj0YhPPvkEvr6++PLLL7Fo0SJMnz4dmzdvxowZM7B48WJ89dVXDTJeqjs+FomIiIiIiIiIiIjoLhcfH4833ngDJpMJ5eXlyMjIQGxsLCwWC1avXg0ASE9PR3l5OXr27Ing4GDrssHBwXj++ecxZswYlJaWwsPj+mcdXblyBdOnT0fr1q3x73//G+prj2patmwZZs+ejUGDBlnXcfLkSXzxxRcYNWpUA46caovFBSIiIiIiIiIiIqK7XOXnLhw+fBhFRUVo06YNmjZtitjYWDz77LPQ6XRISUlBy5YtERwcjGPHjmHJkiU4fvw4CgoKIIQAAFy4cAFhYWHW9T766KOIiorCf/7zHygUCgDA1atXceHCBTz//PN44YUXrG1NJhO8vLwaduBUaywuEBEREREREREREd3lQkJC0Lx5c6SkpKCwsBCxsbEAgICAALRq1QoHDhxASkoKevbsCZ1Oh0mTJiEhIQHz58+Hn58fLly4gMceewxGo9FmvX379sW2bdtw8uRJREREAAAsFgsA4NVXX0XXrl1t2svlfJL/7YLFBSIiIiIiIiIiIiJCfHw8UlNTUVhYiMcee8w6PS4uDnv27EF6ejpGjx6NP/74A/n5+fjnP/+JFi1aAACOHDlid53//Oc/4eHhgUceeQRr1qxBWFgY/P390axZM5w7dw4jRoxokLFR/WNxgYiIiIiIiO5oheUmrEsvwgNdveGj5Z/BRPaUGy1IydYjPlQDrYrvGiaSgjAaYWmg7dRWfHw85s2bB5PJhLi4OOv02NhYvPzyy9Dr9YiPj4dGo4FKpcKaNWvw17/+FVlZWVi2bFm1633uuedgNpsxceJErF69Gu3atcPUqVPx2muvwdPTE3369IHBYMCRI0dQVFSERx99tNZjoIbDV1VERERERER0R1uXXoSCMhPWpxdhUnyTxu4O0S0pJVuPonILUrP16BPu1tjdIbqjyJRKKDw8YC4tBepw4d8VCg8PyJSuX/qNj49HeXk52rZtC39/f+v0uLg4lJaWonXr1tY7Fd58800sXLgQa9asQWRkJJ577jk8+eST1a57zpw5sFgsmDhxItasWYMxY8ZAq9VixYoVmD9/Ptzd3REeHo6JEye6PmBqFCwuEBERERER0R3tga7eWJ9ehNFdvRu7K0S3rPhQDVKz9YgL1TR2V4juOHK1Gl4xMRAmU4NtU6ZUQq5Wu7xcUFAQMjMzq0xv3rx5lenDhg3DsGHDbKbd2CY+Pr7KMnPnzsXcuXOt3w8fPhzDhw93uZ90a2BxgYiIiIiIiO5oPlol71ggckCrkvOOBSIJydVqoBYX+4luZXyIHhERERERERERERERuYTFBSIiIiIiIiIiIiIicgmLC0RERERERERERERE5BIWF4iIiIiIiIiIiIjqkRCisbtAjeRu2vcsLhARERERERERERHVA4VCAQAwGAyN3BNqLDqdDgCgUqkauSfSUzZ2B4iIiIiIiIiIiIjuBEqlEu7u7sjNzYVKpYJczvd23y2EENDpdLh8+TJ8fX2thaY7GYsLRERERERERETUoEpKTNi+qwAD+/pCw2uvdAeRyWRo0aIFsrOzcebMmcbuDjUCX19fNG/evLG70SBYXCAiIiIiIiIioga1fVcBikvM2PFzAYbec+c/OoTuLmq1Gu3bt+ejke5CKpXqrrhjoRKLC0RERERERERE1KAG9vXFjp8LMKCPL4DSxu4OUb2Ty+XQarWN3Q0iSbG4QEREREREREREDcrTU4n7h/oDAIy6Ru4MERHVCp9qR0RERERERERERERELmFxgYiIiIiIiIiIiIiIXMLiAhERERERERERERERuYTFBSIiIiIiIiIiIiIicgmLC0RERERERERERERE5BIWF4iIiIiIiIiIiIiIyCUsLhARERERERERERERkUtYXCAiIiIiIiK6TegtMuw9b4HRJGvsrhAREdFdjsUFIiIiIiIiotvEgUJ3lOgFsi9oGrsrREREdJdjcYGIiIiIiIjoNtHNRwcvjQyhLfSN3RUiIiK6y7G4QERERERERHSb0MgF4lvJoVKKxu4KERER3eVYXCAiIiIiIiIiIiIiIpcoG7sDRA1JiIp395jNZpjN5kbuzZ2jMktmWr+YqzSYqzSYqzSYq3SYrTSYqzQaI1ez2QwLABiNFf/WwGI0QsgVMJuMEIZy17dlMkImU8JoMgN6003zTIBMBrPJCNMN6zYbjQAUMJmM0MurPh7IaDZBIZPDbDTCZGe+xWiERa4AAJgM5RDVfDZyTX1zfnz2x1C7dVX022yxQAY5jGYj5Ebb8ZktRiihqBi7rPym5cyQOdhXtdkfNm0EAHhac3W0r5wat50xObXcrbb/6pKFBZBBAYPRUOs8aqu6HG/OxlHeRrMZCshgNBmhl9u+17VyTBazCZC7ltGNP+9muRwWXPt96cTvTJ63pFOZaeV1GCK6M8kEf8rpLmIwGHD48OHG7gYRERERERER0R0vKioKarW6sbtBRBJhcYHuKhaLBSaTCXK5HDJZNW9PIiIiIiIiIiKiWhNCwGKxQKlUQi7nU9mJ7lQsLhARERERERERERERkUtYOiQiIiIiIiIiIiIiIpewuEBERERERERERERERC5hcYGIiIiIiIiIiIiIiFzC4gIREREREREREREREbmExQUiIiIiIiIiIiIiInIJiwtEREREREREREREROQSFheIiIiIiIiIiIiIiMglLC4QEREREREREREREZFLWFwgIiIiIiIiIiIiIiKXsLhAt4Xly5dj9OjRiImJQa9evfDUU0/hjz/+sM43Go2YP38+hg8fjujoaCQmJuLZZ5/FpUuX7K6vf//++PnnnwEAmZmZGD9+PLp06YKkpCQsXboUQgib9gaDAYsWLUK/fv3QuXNnDBw4EOvWrZNuwA2EuUqDuUqDuUqDuUqDuUqH2UqDuUrDUa4AsGTJEgwZMgTR0dGIjY3FI488gvT0dLvrY64VmKs0mKs0mKs0mKt0mC0RuUQQ3QYmTZok1q9fL7KyskRGRoaYPHmyuOeee0RpaakQQoiioiLxyCOPiO+++06cOnVKHDx4UIwZM0aMGjWqyroyMjJETEyM0Ov1ori4WPTu3VtMnz5dZGZmiq1bt4qYmBixYsUKm2WmTJkixowZI3755Rdx7tw5kZ6eLvbv398gY5cSc5UGc5UGc5UGc5UGc5UOs5UGc5WGo1yFEOLrr78Wv/zyizh79qzIysoSc+bMEd26dRN5eXk262Ku1zFXaTBXaTBXaTBX6TBbInIFiwt0W8rLyxPh4eEiNTW12jbp6ekiPDxcnD9/3mb60qVLxdSpU4UQQnz22Weie/fuQq/XW+cvX75cJCYmCovFIoQQYteuXaJ79+4iPz+//gdyi2Gu0mCu0mCu0mCu0mCu0mG20mCu0nAm1+LiYhEeHi5+/fVXm+nMtXrMVRrMVRrMVRrMVTrMlohqwsci0W2puLgYAODj41Ntm5KSEshkMnh7e9tM37lzJwYMGAAAOHToEGJjY6FWq63zExMTcfnyZeTk5Fjbd+7cGR999BGSkpIwePBgvPXWWygvL6/vYTU65ioN5ioN5ioN5ioN5iodZisN5ioNR7kaDAZ88cUX8PLyQkREhM085lo95ioN5ioN5ioN5iodZktENVE2dgeIXCWEwBtvvIHu3bsjPDzcbhu9Xo8FCxZg2LBh8PT0tE6/dOkSMjMz0bdvXwDAlStX0KpVK5tlmzZtap0XHByMc+fOYf/+/dBoNHj33XeRn5+PV155BQUFBXjjjTckGmXDY67SYK7SYK7SYK7SYK7SYbbSYK7SqCnXH3/8ETNmzEBZWRkCAgKwcuVKNGnSxDqfuVaPuUqDuUqDuUqDuUqH2RKRI7xzgW478+bNQ1ZWFhYuXGh3vtFoxPTp0yGEwMsvv2wzb8eOHYiJiYGvr691mkwms7ueyulCCMhkMixYsABdunRB3759MXv2bHz11Vd3VPWcuUqDuUqDuUqDuUqDuUqH2UqDuUqjplzj4+OxceNGfP7550hKSsK0adOQl5dnnc9cq8dcpcFcpcFcpcFcpcNsicgRFhfotvLqq69i586dWLVqFZo3b15lvtFoxLRp05CTk4OVK1favJMOsL0lDwD8/f2Rm5tr06byZFhZQQ8ICECzZs3g5eVlbdOuXTsIIXDx4sV6G1tjYq7SYK7SYK7SYK7SYK7SYbbSYK7ScJSru7s7QkJCEB0djddffx1KpRLr1q2zzmeu9jFXaTBXaTBXaTBX6TBbInIGiwt0WxBCYN68edi2bRtWrVqF4ODgKm0q/9g9c+YMPvnkE/j5+dnMLy0tRUpKis3JLTo6GmlpaTAYDNZpe/bsQWBgIIKCggAA3bp1w+XLl1FaWmptk52dDblcbvcEezthrtJgrtJgrtJgrtJgrtJhttJgrtJwJtfqlqvMjLlWxVylwVylwVylwVylw2yJyCV1+TRoooby0ksvie7du4uUlBRx+fJl61dZWZkQQgij0SimTJki+vTpIzIyMmza6PV6IYQQ33//vRg2bJjNeouKikTv3r3FjBkzRGZmpti2bZvo1q2bWLFihbVNSUmJ6NOnj5g6dao4ceKESE1NFYMGDRLPP/98wwUgEeYqDeYqDeYqDeYqDeYqHWYrDeYqDUe5lpaWin//+9/i4MGDIicnRxw5ckTMmTNHdO7cWWRlZQkhmKs9zFUazFUazFUazFU6zJaIXCETQojGLnAQORIREWF3+htvvIHk5GTk5OTYVMRvtHr1asTHx2PWrFlo2bIlpk+fbjM/MzMT8+bNw++//w4fHx88+OCDePrpp22eBXjq1Cm89tprOHDgAHx9fXHfffdh2rRp0Gq19TfIRsBcpcFcpcFcpcFcpcFcpcNspcFcpeEoV71ej5kzZyI9PR35+fnw9fVFVFQUnnzySXTp0gUAmKsdzFUazFUazFUazFU6zJaIXMHiAt0VzGYzevfujQ8//NB6sqO6Y67SYK7SYK7SYK7SYK7SYbbSYK7SYK7SYK7SYK7SYK7SYK7SYbZEdxd+5gLdFQoKCjBx4kRERUU1dlfuKMxVGsxVGsxVGsxVGsxVOsxWGsxVGsxVGsxVGsxVGsxVGsxVOsyW6O7COxeIiIiIiIiIiIiIiMglvHOBiIiIiIiIiIiIiIhcwuICERERERERERERERG5hMUFIiIiIiIiIiIiIiJyCYsLdNv47LPP0L9/f0RFRSE5ORlpaWnWeaWlpZg3bx769OmDLl264L777sPatWsdrjMzMxPjx49Hly5dkJSUhKVLl+LmjyFJTU1FcnIyoqKiMGDAAPz3v/+t97E1ln379mHKlClITExEREQEtm/fbjNfCIElS5YgMTERXbp0wcMPP4wTJ044XC9zrT5Xo9GI+fPnY/jw4YiOjkZiYiKeffZZXLp0yeF67/ZcAcfH7I1efPFFRERE4JNPPnG43rs9W2dyPXXqFKZMmYLu3bsjJiYGY8eOxZ9//lnjeplrzbny3FU7y5cvx+jRoxETE4NevXrhqaeewh9//GHThucv1znKleevuqnpdSyP19qrLlcer3VT0/F6I77Wco2jXPlaq3Z4naD+8ToBEblEEN0GvvvuOxEZGSm+/PJLcfLkSfHaa6+J6Ohocf78eSGEEM8//7wYOHCg2Lt3rzh37pz4/PPPRceOHcUPP/xQ7TqLi4tF7969xfTp00VmZqbYunWriImJEStWrLC2OXv2rOjatat47bXXxMmTJ8WXX34pIiMjxZYtWyQfc0P46aefxMKFC8XWrVtFeHh4lbyWL18uYmJixNatW0VmZqaYNm2aSEhIEMXFxdWuk7nWnGtRUZF45JFHxHfffSdOnTolDh48KMaMGSNGjRpV4zqZawVHx2ylH374QYwYMUIkJiaKjz/+uMZ1MlvHuZ45c0bExcWJt956Sxw9elScPXtW/Pjjj+LKlSvVrpO5Os6V567amTRpkli/fr3IysoSGRkZYvLkyeKee+4RpaWl1jY8f7nOUa48f9Weo9exPF5rp6ZcebzWnqPjtRJfa7nGUa58rVU7vE4gDV4nICJXsLhAt4UHHnhAvPjiizbThgwZIhYsWCCEEOIvf/mLWLp0qc38UaNGiUWLFlW7zs8++0x0795d6PV667Tly5eLxMREYbFYhBBCvP3222LIkCE2y73wwgti7NixdRnOLenmFw0Wi0UkJCSI5cuXW6fp9XrRvXt38d///rfa9TBXWzVdAK+Unp4uwsPDq/zRdiPmWlV12V68eFEkJSWJrKws0a9fP4d/8DJbW/ZynTZtmvjnP//p0nqYqy17ufLcVT/y8vJEeHi4SE1NFULw/FVfbs7VHp6/nFPT61ger7Xn6O+Dm/F4dY4zufK1lusc5crXWrXD6wTS43UCInKEj0WiW57BYMDRo0eRmJhoMz0hIQEHDx4EAHTr1g07d+7EpUuXIITA3r17kZ2dbbPM7Nmz8fDDD1u/P3ToEGJjY6FWq63TEhMTcfnyZeTk5FjbJCQk2Gw3KSkJR44cgdForPex3kpycnKQm5trk6FarUZsbKw1d4C51oeSkhLIZDJ4e3tbpzHX2rFYLJg1axYee+wxtG/f3m4bZusai8WCn376CW3atMFjjz2GXr16YcyYMVVuj2auruO5q34UFxcDAHx8fADw/FVfbs7VHp6/HHP0OpbHa+048/fBzXi8OuZMrnyt5TpHufK1Vu3wOkHj4HmLiG7G4gLd8vLz82E2m9G0aVOb6f7+/sjNzQUAzJ07F2FhYejTpw86d+6Mxx9/HC+99BJ69OhhbR8QEIAWLVpYv79y5Qr8/f1t1lm5jStXrtTYxmQyIT8/v/4GeQuqzNZe7pX5AMy1rvR6PRYsWIBhw4bB09PTOp251s6HH34IpVKJCRMmVNuG2bomLy8POp0OH374IZKSkrBy5Urce++9eOaZZ5Cammptx1xdx3NX3Qkh8MYbb6B79+4IDw8HwPNXfbCX6814/nKOo9exPF5rx5m/D27E49U5zuTK11quc5QrX2vVDq8TNA6et4joZsrG7gCRs2Qymc33QgjrtDVr1uDQoUN477330LJlS6SlpeGVV15BYGAgevfuDQCYOXOmw3Xam25vuzUte6epbvyVmGvtGY1GTJ8+HUIIvPzyyzbzmKvrjhw5gtWrV2PDhg01jpfZusZisQAABgwYgEceeQQA0LFjRxw4cACff/454uLiADDX2uC5q+7mzZuHrKwsux/OyPNX7dWUK8DzV23U9Dq2uvk3Yq72OcoV4PFaG9XlytdadVNdrnytVTe8TtA4eN4iokosLtAtz8/PDwqFwqYKDlS8m9bf3x/l5eVYtGgRli5dinvuuQcA0KFDB2RkZGDFihXWFw03s/fOpry8PADXK+j22ly9ehVKpRK+vr71MLpbV0BAAICKdw8EBgZap1fmXh3m6hyj0Yhp06YhJycHq1atsnkXnT3M1bG0tDTk5eWhX79+1mlmsxlvvfUWVq9ejZ07d9pdjtnWzM/PD0qlEu3atbOZ3q5dO+zfv7/a5ZhrzXjuqrtXX30VO3fuxKefformzZtbp/P8VTfV5VqJ5y/XOHody+O1dhzlWonHq2sc5crXWrXjKFe+1qodXidoHDxvEdHN+FgkuuWp1WpERkbil19+sZn+66+/IiYmBiaTCUajsUolW6FQVKme3yg6OhppaWkwGAzWaXv27EFgYCCCgoKsbX799Veb5fbs2YPOnTtDpVLVdWi3tKCgIAQEBNjkbjAYsG/fPsTExFS7HHN1rPIP3TNnzuCTTz6Bn5+fw2WYq2P3338/vv76a2zcuNH6FRgYiMceewwfffRRtcsx25qp1WpERUUhOzvbZvrp06fRqlWrapdjrjXjuav2hBCYN28etm3bhlWrViE4ONhmPs9fteMoV4Dnr9pw9DqWx2vtOMoV4PFaG45y5Wut2nGUK19r1Q6vEzQOnreIqApJPy6aqJ589913IjIyUvzvf/8TJ0+eFP/v//0/ER0dLXJycoQQQowfP1785S9/EXv37hVnz54V69evF1FRUeKzzz6zrmPBggVi1qxZ1u+LiopE7969xYwZM0RmZqbYtm2b6Natm1ixYoW1zdmzZ0XXrl3F66+/Lk6ePCn+97//icjISLFly5aGG7yESkpKxLFjx8SxY8dEeHi4+Pjjj8WxY8fE+fPnhRBCLF++XHTv3l1s27ZNZGZmihkzZoiEhARRXFxsXQdzraqmXI1Go5gyZYro06ePyMjIEJcvX7Z+6fV66zqYq32Ojtmb9evXT3z88cc205htVY5y3bZtm4iMjBRffPGFOH36tFizZo3o2LGj2Ldvn3UdzLUqR7ny3FU7L730kujevbtISUmx+R1aVlZmbcPzl+sc5crzV+05eh3L47V2asqVx2vtOTpeb8bXWs5xlCtfa9UOrxNIg9cJiMgVLC7QbePTTz8V/fr1E5GRkWLUqFEiNTXVOu/y5cti9uzZIjExUURFRYnBgweLlStXCovFYm3z3HPPifHjx9us8/jx4+Jvf/ub6Ny5s0hISBBLliyxWUYIIVJSUsTIkSNFZGSk6Nevn1i7dq20A21Ae/fuFeHh4VW+nnvuOSGEEBaLRSxevFgkJCSIzp07i4ceekhkZmbarIO5VlVTrufOnbM7Lzw8XOzdu9e6DuZqn6Nj9mb2/uBltlU5k+v//vc/ce+994qoqCgxYsQI8cMPP9isg7lW5ShXnrtqp7rfoevXr7e24fnLdY5y5fmrbmp6Hcvjtfaqy5XHa93UdLzejK+1nOcoV77Wqh1eJ6h/vE5ARK6QCVHD/WBEREREREREREREREQ34WcuEBERERERERERERGRS1hcICIiIiIiIiIiIiIil7C4QERERERERERERERELmFxgYiIiIiIiIiIiIiIXMLiAhERERERERERERERuYTFBSIiIiIiIiIiIiIicgmLC0RERERERERERERE5BIWF4iIiIiIiIiIiIiIyCUsLhARERERERERERERkUtYXCAiIiIiIiIiIiIiIpewuEBERERERERERERERC75/3vRWQEF9rveAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "#| eval: false\n",
+ "import seaborn as sns\n",
+ "sns.set_style('whitegrid')\n",
+ "\n",
+ "plot_diet_cgm_sleep(diet_df, cgm_df, events_df, channels_df,\n",
+ " channel_filter=['heart_rate', 'respiratory_movement', 'spo2'],\n",
+ " time_range=('2020-06-22 08:00', '2020-06-23 10:00'))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Each of the types of diet plots can be plotted independently as well. We will use `TimeSeriesFigure`, `plot_nutrient_lollipop`, `plot_meals_hbars` and `plot_nutrient_bars` to plot them together."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABgMAAAO2CAYAAADFcuenAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXwNZ///8dfJRkhiS8RaQlFKiRyxBbG1JHZafDVKSyUUtd6qtVZqp+imqtzaxt3ahWpLW2oNaVO7WmuJkMQWSUS28/vDz7SHhCCEeD8fjzwkc11zzWfOHHPmzGeu6zJZLBYLIiIiIiIiIiIiIiKSa9nkdAAiIiIiIiIiIiIiIvJwKRkgIiIiIiIiIiIiIpLLKRkgIiIiIiIiIiIiIpLLKRkgIiIiIiIiIiIiIpLLKRkgIiIiIiIiIiIiIpLLKRkgIiIiIiIiIiIiIpLLKRkgIiIiIiIiIiIiIpLLKRkgIiIiIiIiIiIiIpLLKRkgIiIiIiIiIiIiIpLLKRkgIiIiIiIiIiIiIpLL2eV0ACIiIiLy9AoICCAiIgJ7e3tjmYODA2FhYTkYlYiIiIiISO6jZICIiIiI5KihQ4fSo0ePnA5DREREREQkV1MyQEREREQeS0eOHOHdd9/lyJEjVK1alWrVqrF3716++uqrLJWLiIiIiIjIPzRngIiIiIg8dlJSUggKCqJhw4aEhYUxdOhQli1bluVyERERERERsaZkgIiIiIjkqBkzZmA2m42fnj17snv3bi5fvkxgYCAODg5Ur14dPz8/Y527lYuIiIiIiIg1DRMkIiIiIjlq8ODBt80Z8P333+Pm5oad3T+Xq8WLF+fo0aMAREdH37FcRERERERErKlngIiIiIg8dooWLUpsbCypqanGsqioqCyXi4iIiIiIiDUlA0RERETksVO9enVcXFyYO3cuKSkp7Nmzh3Xr1mW5XERERERERKyZLBaLJaeDEBEREZGnU0BAABEREdjb21st/+WXXzh//jyjRo3i6NGjVK1alcqVK3Ps2DHmz58PwKFDh+5YLiIiIiIiIv9QMkBEREREngijRo0iPT2d4ODg+yoXERERERF5mmmYIBERERF5LIWHhxMVFUV6ejrbt29nzZo1tGjRIsvlIiIiIiIi8g+7nA5ARERERCQjp0+fZtCgQcTFxeHu7s6gQYNo0KBBlstFRERERETkHxomSEREREREREREREQkl9MwQSIiIiIiIiIiIiIiuZySASIiIiIiIiIiIiIiuZySASIiIiJCQEAACxcuvG15pUqVOHjw4KMPSERERERERLKVkgEiIiIikmulpqbmdAgiIiIiIiKPBSUDRERERCTL1q5dS+vWrTGbzXTs2JE//vjDKFu9ejWtWrXC09MTX19fPvzwQywWCwATJkzgnXfesWrr888/54033uDQoUN4enqSkJBglJ0/f56qVaty/vz5DOPYt28f3bt3x9vbmzp16vD+++8DEBYWhtlsJiQkBF9fXzp37gzAtm3b6NSpE2azGX9/f37++WejrS1bttChQwe8vLzw8fFh7NixJCUlGeVNmjRh7ty5dOzYkRo1atCrVy8uX77M2LFjMZvNvPjii1avg4iIiIiIyONIyQARERERyZJNmzYxefJkJk2axM6dO+nTpw9BQUFcunQJgAIFCjBnzhz++OMPPv30U7777jtCQ0MBaNu2LT/++KPVTfbVq1fTtm1bnnvuOTw8PPjxxx+NspUrV1KvXj3c3d1vi+P8+fO89tprvPTSS2zevJlff/2Vli1bGuUJCQkcOnSIdevW8fXXX3Po0CEGDhzIkCFD2LlzJ+PGjWP48OEcP34cgLx58zJhwgR27tzJ4sWLCQsLY8GCBVbbXLNmDXPmzOG3334jKiqKl19+mTp16hAWFoafnx9jxozJvhdaRERERETkIVAyQEREREQAmDFjBmaz2ern37755hveeOMNnn/+eWxsbHjxxRfx8PBg06ZNADRq1AgPDw9MJhOVK1fG39+fnTt3AlCtWjWKFy9uPJF/4MABzp49S/PmzQHo1KkTK1asMLa1YsUKOnTokGGcq1at4vnnn6dbt27kyZMHR0dHq1jT09MZOnQojo6OODo68u2339K+fXvq1q2LjY0NZrMZX19f1q1bB4DZbKZKlSrY2tpSunRpOnfubMR90//93/9RokQJXFxcaNSoEYUKFaJFixbY2trSqlUrjhw5QnJy8oO8/CIiIiIiIg+VXU4HICIiIiKPh8GDB9OjRw+rZZUqVTJ+j4yMZObMmcyZM8dYlpqaSnR0NACbN2/m448/5sSJE6SmppKcnEzDhg2Num3btmXlypX4+/uzcuVKXnrpJRwdHQFo3bo1U6ZM4fTp08TGxnLp0iWaNGmSYZxnz56lbNmyme5H/vz5cXFxsYp7x44dLF++3FiWlpaGk5MTAHv27GHGjBkcPnyYpKQk0tLS8PDwsGrTzc3N+N3R0RFXV1fj77x582KxWEhKSsLBwSHTuERERERERHKSkgEiIiIikiXFihXj1VdfpWvXrreVJScn079/f8aMGYO/vz8ODg4EBwcTGRlp1GnTpg2zZ8/m/PnzrF27lmnTphllzs7ONGvWjJUrVxITE0Pr1q0zvbFeokQJtm7dmmmcNjbWnV+LFStG9+7dGTp0aIb1hwwZQocOHfjkk0/Ily8fCxcutOqlICIiIiIikhtomCARERERyZJXX32V+fPns2/fPiwWC9euXWPbtm2cO3eO5ORkrl+/TsGCBXFwcGD37t2sWbPGav1ixYrh5eXFyJEjsbe3p3bt2lblN4cKWrduHR07dsw0jjZt2rBnzx4WL15McnIy165dIzw8PNP6Xbp0Yfny5ezYsYO0tDSSk5OJiIjg2LFjAMTHx+Pi4kK+fPk4duwYixcvfoBXSURERERE5PGkZICIiIiIZEnjxo0ZMmQIo0aNolatWjRt2pRFixaRnp6Ok5MTo0ePZtSoUdSsWZNPP/0UPz+/29po164dW7ZsoU2bNrc9wV+7dm1sbGwoWbIklStXzjSOYsWKsXDhQtasWUO9evVo0qQJP/zwQ6b1q1SpwvTp0/nwww+pW7cuDRo0YNasWcYY/+PHj2f+/Pl4enoaPRtERERERERyG5PFYrHkdBAiIiIiIgDdu3enWbNmdO/ePadDERERERERyVXUM0BEREREHgsRERHs27ePdu3a5XQoIiIiIiIiuY4mEBYRERGRHPfGG2+we/du3n33XVxcXHI6HBERERERkVxHwwSJiIiIiIiIiIiIiORyGiZIRERERERERERERCSXUzJARERERHKlsLAwzGZzTochIiIiIiLyWFAyQEREROQpEh4eTq9evahVqxZms5k2bdowb948kpOT77runDlz6Nu3r9WyESNGEBwc/LDCFRERERERkWyiZICIiIjIU+LXX3+ld+/e+Pj48OOPPxIeHs7MmTM5duwYMTExOR2eiIiIiIiIPERKBoiIiIg8BSwWCxMmTKB379706NGDwoULA1C+fHkmTZpEyZIlAdi7dy9dunTBbDbj5+fHmjVrANiwYQNz585l48aNeHp64unpyaJFiwgNDWXx4sV4enri7+8PwOrVq2nVqhWenp74+vry4YcfYrFYjFiOHDnCK6+8gqenJwEBAUyZMoWAgACj/MKFCwwZMgQfHx98fHwIDg6+Y8+Fffv20b17d7y9valTpw7vv/++VfmSJUto1KgRtWvXZsqUKVZl27Zto1OnTpjNZvz9/fn555+tXrNFixbRokULzGYzAQEBHDt2zChfsGABvr6+eHp60qRJE5YsWZKldkVERERERHKCXU4HICIiIiIP399//82ZM2do1apVpnXi4uLo1asXb731Fl26dCEiIoI+ffpQvHhxmjVrRp8+fTh48CCffPKJsc6BAwdwdnbm3XffNZYVKFCAOXPmULZsWQ4dOsQbb7xBuXLlaNOmDSkpKQQFBdGuXTu+/vprDh48yJtvvknFihWBGzfgg4KCqFmzJuvXrycpKYkBAwbwySef8Pbbb98W8/nz53nttdcYPHgw8+bNIz09nf379xvlCQkJ/PXXX/z000+cOXOGjh07GomBQ4cOMXDgQGbPnk3t2rX5448/6NOnD0uWLKFcuXKEhISwdOlSPvvsM0qVKkVISAiBgYGsXbuWyMhIPvzwQ5YvX0758uWJjY0lNjYW4K7tioiIiIiI5AT1DBARERF5Cly8eBEAd3f3TOts3LiRwoULExAQgL29Pd7e3rRq1YqVK1fe07YaNWqEh4cHJpOJypUr4+/vz86dOwHYvXs3ly9fJjAwEAcHB6pXr46fn5+x7t69ezl58iTDhw/H0dGRQoUKERgYaPRQuNWqVat4/vnn6datG3ny5MHR0dFq0mCLxcKQIUPIkycP5cuXx9PT00gWfPvtt7Rv3566detiY2OD2WzG19eXdevWARASEsKAAQMoW7YsdnZ2dO/enaSkJPbs2YOtrS0Wi4WjR4+SlJSEq6srzz33XJbaFRERERERyQnqGSAiIiLyFChUqBBw40n6Z555JsM6586dM4YLuql06dLs2rXrnra1efNmPv74Y06cOEFqairJyck0bNgQgOjoaNzc3LCz++cytHjx4hw9ehSAyMhI4uLi8Pb2NsotFgvp6ekZbuvs2bOULVs201icnJxwdHQ0/nZ0dCQhIcHY1o4dO1i+fLlRnpaWhpOTk1E+bNgwbG1tjfKUlBTOnTuH2Wxm0qRJfP3117zzzjvUqFGDYcOGUbly5bu2KyIiIiIikhOUDBARERF5Cnh4eFCyZEnWrl1LUFBQhnWKFStGZGSk1bIzZ85QrFgxAEwm023r3LosOTmZ/v37M2bMGPz9/XFwcCA4ONhot2jRosTGxpKammokBKKiooz1ixcvTpEiRdiyZUuW9qtEiRJs3bo1S3VvVaxYMbp3787QoUMzLR85cqSRyLiVn58ffn5+JCUlMWvWLIYPH05oaOhd2xUREREREckJGiZIRERE5ClgMpkYNWoUn3/+OV999RWXLl0C4MSJE4wcOZLIyEgaNWrExYsX+eabb0hNTSU8PJzQ0FDatm0LgKurK2fPniUtLc1o19XVldOnTxt/Jycnc/36dQoWLIiDgwO7d++2GuKnevXquLi4MHfuXFJSUtizZ4/V8DnVqlWjePHizJw5k/j4eCwWC5GRkWzatCnD/WrTpg179uxh8eLFJCcnc+3aNcLDw7P0mnTp0oXly5ezY8cO0tLSSE5OJiIiwpgkuFu3bsyePZvjx48DEB8fz4YNG4iPj+f48eNs3bqVpKQk7O3tyZ8/v9GD4G7tioiIiIiI5ASTxWKx5HQQIiIiIvJohIeH8+mnn7J7927gxpP4bdu2pXv37jg4OLBnzx4++OADjhw5QtGiRQkMDDSSAZcvX+att97ir7/+wmKxEB4ezqlTp3j77bc5ffo0xYoVIzQ0lMWLF/Pxxx+TmJiIt7c3JUuWJCoqyph4+NChQ4waNYqjR49StWpVKleuzLFjx5g/fz4AFy5cYNq0aWzdupX4+HhKlChB586dCQgIyHCfdu/ezZQpU/jrr7+wt7fH39+f9957j7CwMPr162eVHOjbty+VK1emf//+AGzfvp1Zs2Zx/PhxY46D//znP1SuXBmLxUJISAghISFERUWRP39+vLy8mDBhApGRkcY+2NjY8Nxzz/Hee+8Z8wbcqV0REREREZGcoGSAiIiIiOSoUaNGkZ6eTnBwcE6HIiIiIiIikmtpmCAREREReaTCw8OJiooiPT2d7du3s2bNGlq0aJHTYYmIiIiIiORqmkBYRERERB6p06dPM2jQIOLi4nB3d2fQoEE0aNAgp8MSERERERHJ1TRMkIiIiIiIiIiIiIhILqdhgkREREREREREREREcjklA0QkVxs9ejRTp07NtnoiIvLwnTlzhkqVKhEXFwfAiBEjHurkwg+7fRERERERkceB5gwQkcdeQEAAERER2NvbY29vT8WKFfnPf/5DtWrV7rru+PHjs7SNrNYTEXlcBQQEsHPnThYsWEC9evWM5V988QVTp06le/fuvPvuuzkYYc5JSkri008/Zd26dURHR+Pi4kKNGjV48803qVq1ak6HJyIiIiIi8kioZ4CIPBGGDh1KREQEW7Zs4YUXXqB///45HZKIyGPHw8ODZcuWWS1bsWIF5cqVy6GIMpaamvrItpWSksLrr7/Ozp07mTlzJrt27eKHH36gefPmrF+//pHFISIiIiIiktOUDBCRJ4qDgwPt27cnKiqKixcvcvbsWXr27EmdOnWoVasWb775JmfOnDHq/3voh+TkZN555x1q166Nl5cXrVq1Ys+ePbfVuzk8xcqVK2nevDlms5kRI0aQkpICwOXLl+nXrx/e3t6YzWY6dOhAZGTkI34lRERu5+/vz+bNm7l69SoAu3fvxmKxUL16dat6e/fupUuXLpjNZvz8/FizZo1RVrt2bTw9PY2f5557juXLl7NgwQKr5dWqVaNJkyYAHDhwgK5du+Lt7U2dOnUYPHgwly5dMtoMCAhgypQpvP7669SoUYPffvuNhIQExo8fj6+vL3Xr1mX48OFG3HczdOhQfHx8qFmzJh06dGDHjh2Z1l2zZg3Hjh1j7ty5PP/889jb25MvXz5at27NoEGDjHrXrl1j0KBBeHp68tJLLxEWFmaUpaSkMGvWLJo1a0bt2rUJDAzk/PnzRvmFCxcYMmQIPj4++Pj4EBwcTHJyMnDnz4y7tSsiIiIiIpKdlAwQkSdKUlISS5cupVChQri4uJCenk6PHj3YtGkTv/76K3nz5mXUqFEZrrtixQr++usv1q9fT3h4OHPmzMHNzS3TbW3atIkVK1awdu1atm3bRmhoKABffvklaWlpbNq0ibCwMIKDg8mfP/9D2V8RkXvh7OxMgwYNjJv7y5Yto0OHDlZ14uLi6NWrF/7+/mzfvp2xY8cyatQofv/9dwDCwsKIiIggIiKCsWPH4ubmRr169ejZs6exfOvWrZQvX562bdsCYGNjw5AhQ9i6dStr1qzh/PnzTJ8+3Wq7K1as4O233yYiIoJ69eoxcuRIrly5wurVq/n5559JTU3N8pBtdevWZd26dYSFheHn58fAgQOJj4/PsO6WLVto2LAhLi4ud2xz7dq1vPLKK4SHh9O2bVveeecdo2zmzJn88ccfhISEsHnzZjw8PBg8eDAAFouFoKAg3NzcWL9+PaGhoRw6dIhPPvkEuPNnxp3aFRERERERyW5KBojIE2HGjBmYzWZq1KjB2rVr+eijj7Czs6NUqVI0atSIPHny4OTkRFBQELt27SI9Pf22Nuzs7EhISODYsWNYLBY8PDwoXrx4ptt86623cHJywt3dnYYNG7J//36jncuXL3Py5ElsbW2pXLkyBQsWfFi7LiJyTzp06MDy5ctJSkrixx9/NG7Y37Rx40YKFy5MQEAA9vb2eHt706pVK1auXGlVLzw8nODgYD755BOKFStmLE9PT2fw4MF4eHgwYMAAAJ577jnMZjP29va4urrSs2dPdu7cadVeq1ateOGFFzCZTCQmJvLTTz8xatQoXFxcyJcvHwMGDGDdunWkpaXddR87duyIs7Mz9vb29OrVi/T0dP76668M6168eBF3d/e7tnmzh4KtrS0dO3YkMjKSS5cuYbFYWLx4Me+88w5FixbFwcGBt99+mz/++IOoqCj27t3LyZMnGT58OI6OjhQqVIjAwEAjIZPZZ8bd2hUREREREclumkBYRJ4IgwcPpkePHpw/f56goCD++usvzGYzFy9eJDg4mPDwcGN4iZSUFBISEnB2drZqo23btsTExDBmzBjOnTtHkyZNGD58OIULF85wm//uNeDo6Gi0/8Ybb3D9+nXjSdSWLVsydOhQ8ubN+5D2XkQk6+rWrct7773HJ598gqen5209oM6dO0fJkiWtlpUuXZpdu3YZf586dYr+/fsTHBx822TtEydO5NKlS8yaNQuTyQTAyZMnmTRpEnv37iUxMRGLxYKdnfVlZokSJYzfz5w5Q3p6Os2aNbOqYzKZiI2NveP+paenM2vWLNatW0dsbCw2NjbEx8dbDUv0b4UKFcrS0Duurq7G746OjgAkJCRgsVhITEykW7duxv4C2NvbExUVxfnz54mLi8Pb29sos1gsRlI6s8+MxMTEO7Z7p2S1iIiIiIjI/VAyQESeKO7u7rz//vu8+uqrNGvWjNmzZ3Pt2jVWrFhB4cKFOXjwIO3atcNisdy2rp2dHYGBgQQGBhIbG8vgwYP5+OOPMx1WKDP58+dn2LBhDBs2jNOnTxMUFERISAivv/56du2miMh9s7GxoW3btnz22WfMnj37tvJixYrdNs/JmTNnjKf/r1y5wptvvskbb7xB8+bNreqFhITw888/s2TJEvLkyWMsHzNmDGXLlmXy5Mm4uLiwYcMGRowYYbXuv294Fy9eHBsbGzZv3mzceL81nsyEhoYSGhrK/PnzKVu2LCaTiVq1amVa38fHhylTpnD16tXbksRZUbBgQRwdHfnuu+8oX778beV//vknRYoUYcuWLRmun9lnRo8ePe7YroiIiIiISHbTMEEi8sR5/vnn8fb2Zu7cucTHx+Po6IizszOXLl3io48+ynS97du3c/DgQVJTU3F0dCRPnjzY2tre8/Z//fVXTpw4QXp6Ok5OTtjZ2d1XOyIiD0uPHj348ssvady48W1ljRo14uLFi3zzzTekpqYSHh5OaGgobdu2JTU1lf79+2M2m+nVq5fVelu2bGHWrFl8/vnnFClSxKosPj6e/Pnz4+TkRFRUFF988cUd43Nzc6NZs2aMHz+eixcvAhATE8P69evvum/x8fHY29tTqFAhUlJS+OijjzKdLwCgdevWlCtXjsDAQA4cOEBqaipJSUl8//33fPjhh3fdno2NDV26dGHy5MnG8D2XLl3i+++/B6BatWoUL16cmTNnEh8fj8ViITIykk2bNgGZf2bcrV0REREREZHspmSAiDyRAgMDWbJkCQEBAZw8eRJvb2+6du1Kw4YNM13nwoULDB48mFq1atG0aVOcnZ1566237nnbJ0+epFevXtSsWRN/f39q1KhB165dH2R3RESyVcGCBalXrx729va3lRUoUIB58+YRGhpK7dq1GTVqFGPHjsVsNnPu3DnCwsJYs2YNnp6exs/q1atZs2YN8fHxvPzyy8Zyf39/AEaMGMHGjRvx8vKib9++vPTSS3eNceLEibi4uNCpUydq1qxJt27d2Ldv313Xa9++PRUqVKBx48Y0bdqUvHnz3nFIHXt7e+bPn4/ZbGbgwIF4eXnx4osv8sMPP9zW8yEzgwcPpkaNGrz22mt4enrSsWNHoyeAra0tn332GdHR0fj5+eHl5UWfPn04deoUcOfPjDu1KyIiIiIikt1MlozG0hARERERERERERERkVxDPQNERERERERERERERHI5JQNERERERERERERERHI5JQNERERERERERERERHI5JQNERERERERERERERHI5JQNE5ImxfPly2rZtm9NhGPr27cucOXNyOgwRkQdy5swZKlWqRFxcXE6HIiIiIiIiIg+RkgEi8lh65513qFSpEseOHcvpUEREnnjh4eH06tWLWrVqYTabadOmDfPmzSM5OTmnQ8vQ45CgCAgIYOHChTm2fRERyR0CAgKoWrUqnp6exk/t2rVzOiwREXlKKRkgIo+dhIQEfvjhBwoWLMjSpUtzOhwRkSfar7/+Su/evfHx8eHHH38kPDycmTNncuzYMWJiYrJ9e6mpqVlaJiIi8rQYOnQoERERxk9YWFhOhyQiIk8pJQNE5LHz/fff4+joyNChQ1m5ciUpKSkZ1mvSpAlz586lY8eO1KhRg169enH58mXGjh2L2WzmxRdf5I8//jDqx8fHM2rUKHx8fPDx8WH06NEkJiYC/zyFunLlSpo3b47ZbGbEiBFW2/7xxx9p3rw5Xl5evPfee6SlpRllly9fpl+/fnh7e2M2m+nQoQORkZEP6RUSEckai8XChAkT6N27Nz169KBw4cIAlC9fnkmTJlGyZEmj7i+//JLp+W///v0EBATg7e1N8+bN+e6774yyOXPm0KdPH8aMGYO3tzfTpk1jxIgRjBw5koEDB1KzZk3mzp1LtWrVOH36tLHe9evXqVWrFnv27Lkt7pdffhmARo0a4enpyerVqwHYsmUL7dq1w8vLi/bt27Nt2zZjnREjRvDuu+8yYMAAPD098ff35/DhwyxevJiGDRtSp04dvvnmG6P+gQMH6Nq1K97e3tSpU4fBgwdz6dIlACZNmkR4eDjTpk3D09OTXr16ARAbG8vAgQOpU6cOvr6+zJw50yrRcafXaf/+/bzyyivUrFmT2rVrExgYeC+HUkREcqEjR47wyiuv4OnpSUBAAFOmTCEgICDL5SIiIvdKyQAReewsXbqU1q1b4+fnR1JSEr/++mumddesWcOcOXP47bffiIqK4uWXX6ZOnTqEhYXh5+fHmDFjjLrBwcGcPHmS0NBQVq9ezYkTJ5g4caJVe5s2bWLFihWsXbuWbdu2ERoaCsDff//NkCFDeOeddwgLC+P5559n8+bNxnpffvklaWlpbNq0ibCwMIKDg8mfP382vzIiIvfm77//5syZM7Rq1equdTM7/8XExPD666/TtWtXtm/fzscff8zs2bPZvn27se7mzZupXr0627ZtY+DAgQCsXbuWTp06ER4ezuuvv07jxo1ZuXKlsc769espWrQoL7zwwm2xLFmyxIgpIiKCNm3acOrUKfr27Uvfvn0JCwujT58+BAUFWSUY1q1bR/fu3dm1axdVq1YlKCiIkydPsmHDBqZPn87EiROJjY0FwMbGhiFDhrB161bWrFnD+fPnmT59OnAjsWA2m40nOb/44gsAhgwZgp2dHT///DPffPMNGzZsMMru9jq9//77NG7cmPDwcDZv3swbb7yRtYMoIiK5UkpKCkFBQTRs2JCwsDCGDh3KsmXLslwuIiJyP5QMEJHHytGjR/nzzz9p3749+fPnp1mzZnccKuj//u//KFGiBC4uLjRq1IhChQrRokULbG1tadWqFUeOHCE5OZn09HTWrFnDkCFDKFSoEIULF2bQoEGsXLmS9PR0o7233noLJycn3N3dadiwIfv37wdu3NSqW7cuTZo0wc7Ojq5du1KmTBljPTs7Oy5fvszJkyextbWlcuXKFCxY8KG9TiIiWXHx4kUA3N3d71o3s/PfqlWrMJvN+Pn5YWtrS8WKFenYsaORLACoUKECHTp0wM7ODkdHRwDq169PgwYNsLGxwdHRkY4dO7Jy5UosFgsAK1asoEOHDlnel7Vr1+Lt7c2LL76InZ0dLVq0wMvLi7Vr1xp1GjVqhNlsxs7ODj8/P86ePcvAgQNxcHCgfv36ODs7c/jwYQCee+45zGYz9vb2uLq60rNnT3bu3Jnp9s+fP8+OHTsYMWIE+fPnp2TJkgQGBrJixYosvU52dnacPXuW6OhoHBwcqFWrVpb3XUREnmwzZszAbDYbPz179mT37t1cvnyZwMBAHBwcqF69On5+fsY6dysXERG5H3Y5HYCIyL8tXbqU5557jueeew6A9u3b06tXL86fP59hfTc3N+N3R0dHXF1djb/z5s2LxWIhKSmJ5ORkkpOTrYbEKF26NMnJycawEBm1d/XqVQCio6MpUaKE1bb//fcbb7zB9evXGThwIPHx8bRs2ZKhQ4eSN2/e+3kZRESyRaFChYAbN7KfeeaZO9bN7PwXGRnJpk2bMJvNRnlaWprV38WLF7+tvVvPmQ0aNCA1NZWdO3dStmxZdu7cyeTJk7O8L+fOnbM6hwOUKlWKc+fOGX/f+hmQP39+Izlxc79uDg938uRJJk2axN69e0lMTMRisWBnl/ml8blz58iTJ4/V61S6dGlj+3d7nT744AM++ugjOnTogIuLC6+++iqvvvpqlvdfRESeXIMHD6ZHjx5Wy77//nvc3NysPnuKFy/O0aNHgRvfP+5ULiIicj+UDBCRx0ZKSgqrVq0iMTGR+vXrAzfGu05LS2P58uVZerI1M4ULF8be3p7IyEjjZtGZM2dwcHCgUKFCXLt27Y7rFy1alD///NNqWVRUFDVq1AAgf/78DBs2jGHDhnH69GmCgoIICQnh9ddfv++YRUQelIeHByVLlmTt2rUEBQXdVxvFixenefPmzJw5M9M6Nja3dzY1mUy31WnXrh0rVqzAw8MDHx8fq5v3d2uvWLFi/P7771bLIiMj7/sJ+zFjxlC2bFkmT56Mi4sLGzZsYMSIEZnGX6xYMa5fv05sbKzV50ixYsWAu79OzzzzDFOmTMFisfD777/Ts2dPatSoQdWqVe8rfhERebIVLVqU2NhYUlNTjRv+UVFRWS4XERG5HxomSEQeG7/88gvx8fEsX76clStXsnLlSlatWkXfvn1ZtmyZMbTE/bCxsaF169bMnDmTy5cvc+nSJWbOnEnbtm0zvOl0q5YtW7J9+3Y2btxIamoq3333HX///bdR/uuvv3LixAnS09NxcnLCzs4OW1vb+45XRCQ7mEwmRo0axeeff85XX31l9IQ6ceIEI0eOzNJE523btmXHjh38+OOPpKSkkJKSwsGDBzOc+PduOnXqxE8//cTSpUvp2LFjpvUKFy6MjY0Np06dMpb5+fmxc+dONmzYQFpaGj/99BPh4eH4+/vfcxxwY1L5/Pnz4+TkRFRUlDH2/02urq5W8xG4u7tTu3ZtJk+eTGJiImfPnmXu3Lm0a9cOuPvrtHLlSmJjYzGZTBQoUAAbG5s79kQQEZHcrXr16ri4uDB37lxSUlLYs2cP69aty3K5iIjI/VAyQEQeG0uXLqVVq1aUL18eNzc34ycgIIDo6OgHSgYAvPvuu5QsWRJ/f39atWpFmTJlrJ4CvZNy5coxZcoUJkyYQO3atdm9ezcNGjQwyk+ePEmvXr2oWbMm/v7+1KhRg65duz5QvCIi2aFx48bMmzePjRs30rx5c8xmMwMGDKBcuXJWQ95kxt3dnfnz5/Ptt9/i4+ND/fr1GTduHAkJCfccS+nSpalatSrx8fE0atQo03p58+alX79+9O7dG7PZTGhoKGXKlGHOnDnMmTOHWrVq8fHHH/PRRx9RunTpe44DbkwSvHHjRry8vOjbty8vvfSSVflrr73Gtm3bMJvN9OnTB4Dp06dz/fp1GjduTNeuXWnUqBG9evUC7v46bdu2jbZt2+Lp6UlQUBDDhw83hsQTEZHcbdq0aXh6elr9xMfH8/HHH7Nx40a8vb2ZOnUqbdq0wcHBAQB7e/s7louIiNwPk+VB766JiIiIiGTRO++8g4uLC++8805OhyIiIvJYGTVqFOnp6QQHB99XuYiIyN2oZ4CIiIiIPBKnTp3ihx9+oEuXLjkdioiISI4LDw8nKiqK9PR0tm/fzpo1a2jRokWWy0VERO6VBioVERERkYdu9OjRhIaG0rt3bzw8PHI6HBERkRx3+vRpBg0aRFxcHO7u7gwaNMhqKNK7lYuIiNwrDRMkIiIiIiIiIiIiIpLLaZggEREREREREREREZFcTskAEZGHICAggIULF+Z0GCIiIiIikstt2LCBJk2a5HQYIiLyBFAyQEQeS9u2beP//u//8PT0xMvLi169erF///4srRsWFobZbH7IEYqISFYFBARQtWpVPD098fT0xN/fn3Xr1mVp3eXLl9O2bVurZXPmzKFv374PI1QREZF79iCfcyIiIo+SkgEi8tj5+eef6devH+3bt2fLli388ssveHt78+qrr7J3796cDk9ERO7D0KFDiYiI4I8//mDYsGEMGzaMyMjIHInFYrGQlpaWI9sWEZHcKaufc6mpqTkQnYiIyA1KBojIY8VisRAcHMybb77Jyy+/TP78+SlQoABvvvkmfn5+TJkyBYApU6bQuHFjPD098fPzM568uXTpEr179+bq1avGkznh4eHGk6WzZ8+mdu3a1K9fn++//57ff/+dVq1a4eXlxciRI0lPTzdi2b9/PwEBAXh7e9O8eXO+++47o+zAgQN07doVb29v6tSpw+DBg7l06dKjfbFERJ5AJpMJX19fnJ2dOXHiRIZP/rdt25bly5dz4MABxowZw+HDh41z+sqVK5k7dy4bN240lsGNz49FixbRokULzGYzAQEBHDt2zGizSZMmzJ07l1deeYXq1atz9OjRR7rfIiLydLj1c+5mr+WQkBB8fX3p3LkzcKMndKdOnTCbzfj7+/Pzzz8bbWzZsoUOHTrg5eWFj48PY8eOJSkpySg/d+4cr7/+OjVr1qRDhw76TBMRkSxTMkBEHisnTpwgMjKSVq1a3VbWqlUrfv/9d5KSknjuuedYunQp4eHh9OvXj+HDh3P69GkKFSrEvHnzcHZ2JiIigoiICGPIoKNHj+Li4sLWrVsZOHAgo0aNYuHChXz11Vd8//33bNy4kQ0bNgAQExPD66+/TteuXdm+fTsff/wxs2fPZvv27QDY2NgwZMgQtm7dypo1azh//jzTp09/dC+UiMgTKj09nQ0bNnD9+nWqVKlyx7pVqlRh3LhxVKxY0Tint2vXjj59+uDr62ssAwgJCWHp0qV89tln7Nixg+bNmxMYGEhycrLR3vLly5k0aRIRERF4eHg81P0UEZGnU0afcwkJCRw6dIh169bx9ddfc+jQIQYOHMiQIUPYuXMn48aNY/jw4Rw/fhyAvHnzMmHCBHbu3MnixYsJCwtjwYIFxjaGDBmCm5sbW7duZerUqVYPLYmIiNyJkgEi8li5+XR90aJFbysrWrQoaWlpXLlyhTZt2lCkSBFsbW3x9/enXLlyxg2hzBQqVIgePXpgZ2dH69atiY+P5+WXX6ZQoUK4u7tTq1YtY16CVatWYTab8fPzw9bWlooVK9KxY0dCQ0MBeO655zCbzdjb2+Pq6krPnj3ZuXNnNr8aIiK5x4wZMzCbzdSoUYP+/fsTFBRE4cKFs639kJAQBgwYQNmyZbGzs6N79+4kJSWxZ88eo07Xrl0pV64ctra2ODg4ZNu2RURE7vQ5l56eztChQ3F0dMTR0ZFvv/2W9u3bU7duXWxsbDCbzfj6+hq9nc1mM1WqVMHW1pbSpUvTuXNn47tGVFQU4eHhDB8+HEdHR8qXL0+XLl1ybL9FROTJYpfTAYiI/FuhQoUAiI6OpnTp0lZl0dHR2NraUqBAARYuXMiSJUs4d+4cJpOJxMTEuw7TU6RIEeN3R0dHANzc3KyWJSYmAhAZGcmmTZusJiJOS0sz/j558iSTJk1i7969JCYmYrFYsLPTKVVEJDODBw+mR48ewI1zaGBgIM7Oztl2Uz4yMpJhw4Zha2trLEtJSeHcuXPG3yVKlMiWbYmIiNwqs885Dw8P8ufPj4uLi1E3MjKSHTt2sHz5cmNZWloaTk5OAOzZs4cZM2Zw+PBhkpKSSEtLM3q0RUdHkydPHqvvNiVLlnwEeygiIrmB7lyJyGPFw8ODkiVLsmbNGoKCgqzK1qxZQ82aNdm3bx9z5szhv//9L1WqVMHGxoa2bdtisViAG0P4PKjixYvTvHlzZs6cmWH5mDFjKFu2LJMnT8bFxYUNGzYwYsSIB96uiMjToEyZMvj6+rJx40batWtnNQ4yQGxsrPF7Rud0k8l027JixYoxcuRIGjZsmOl2s+PzQURE5G7+/Tnn4eFx2+dPsWLF6N69O0OHDs1w/SFDhtChQwc++eQT8uXLx8KFC1mxYgVwo7f09evXuXDhgpEQOHv27MPdIRERyTX0jUhEHismk4l33nmHzz//nCVLlpCQkEBcXByff/4533//PcOGDSMhIQE7OzsKFy5Meno6S5cu5ciRI0YbRYoUISEhgYsXL953HG3btmXHjh38+OOPpKSkkJKSwsGDB43hJuLj48mfPz9OTk5ERUXxxRdfPPC+i4g8LW72vqpYsSKVK1fm9OnThIeHk5qayrx587h8+bJRt0iRIsTExFglDFxdXTl79ixpaWnGsm7dujF79mxjvOX4+Hg2bNhAfHz8I9svERERsP6cy0iXLl1Yvnw5O3bsIC0tjeTkZCIiIoyJ7+Pj43FxcSFfvnwcO3aMxYsXG+sWL16cmjVrMm3aNJKSkjh+/DjffvvtI9kvERF58ikZICKPnebNmzN79myWL1+Oj48Pvr6+hIWF8d///pfq1avToEEDXnzxRVq3bk2DBg04evQoNWvWNNYvV64cnTp1omXLlpjNZsLDw+85Bnd3d+bPn8+3336Lj48P9evXZ9y4cSQkJAAwYsQINm7ciJeXF3379uWll17Ktv0XEcmNpk2bhqenJ56ennTt2pV69erRr18/ypQpw7BhwxgwYAA+Pj4kJyfz7LPPGuvVqVOH6tWr07BhQ8xmM2fPnqVFixY4OTlRp04dY/i2V199lfbt29O/f39q1qxJy5YtWbNmTU7troiIPGUy+5zLSJUqVZg+fToffvghdevWpUGDBsyaNcuY9H78+PHMnz8fT09PxowZg7+/v9X606dP59y5c9StW5ehQ4fSsWPHh75/IiKSO5gsN8fVEBERERERERERERGRXEk9A0REREREREREREREcjklA0REREREREREREREcjklA0REREREREREREREcjklA0REREREREREREREcjklA0TkqXLmzBkqVapEXFxcToci92nDhg00adIkp8O4L+Hh4TRs2PCu9cLCwjCbzY8gIpGnx5N87hAREREREckOSgaISLYICAigcuXKHDp0yFgWFxdHpUqVOHPmTJbbWLhw4UOK8O6WLVuGr68v8fHxxjKLxUJAQADBwcGPPJ5KlSpx8ODBR7Kt8PBwevXqRa1atTCbzbRp04Z58+aRnJz8SLafXTw9PY2fypUrU7VqVePvXr16PbI4li9fTuXKla3i6dKlC2azmd9+++2RxSHyOAkICLD6P+nv78+6detyOiwREZEH8iCfb8uXL6dt27ZWy+bMmUPfvn0fRqgiIiLY5XQAIpJ7uLi4MGPGDD7//PMc2X5aWho2NjaYTKb7Wr9jx46sX7+eDz74gA8++ACAr776ipiYGObNm5edod5RamoqdnaP7vT866+/MnjwYAYOHMiUKVMoXLgwx44dY968ecTExFCyZMlHFsuDioiIMH4PCAigadOm9OjRI0diqVixIqtWrcqRbYs8roYOHUqPHj2wWCxs2rSJt956ixdeeOG288yjPg+KiIg8iKx+vj0KFouF9PR0bG1tH/m2RUTk8aeeASKSbf7v//6PiIgIdu3alWH5gQMH6Nq1K97e3tSpU4fBgwdz6dIlACZNmkR4eDjTpk2zeor71qfjFy5cSEBAgPF3pUqV+Prrr2nVqhXVq1cnISGBBQsW8OKLL+Lp6UmzZs34+uuvs7wPEyZM4JdffmHTpk2cPHmSWbNmMWXKFGxtbZk+fTq+vr7UqVOHt99+m4sXLxrrHTlyhFdeeQVPT08CAgKYMmWKEWdGQxMFBwczYsQIq/Jly5bRvHlzGjZsSKdOnQDo0qULnp6efPbZZ1neh3thsViYMGECvXv3pkePHhQuXBiA8uXLM2nSJOMLzNChQ/Hx8aFmzZp06NCBHTt2GG3cfKLp448/pm7dutSrV8+qh8ecOXMIDAxk/PjxmM1mfH19+f77761iWLRoES1atMBsNhMQEMCxY8eM8nPnzvH6668b2z569Og972dWj8HKlStp3rw5ZrOZESNGkJKSAkBCQgJBQUHUrVsXLy8vunXrZtULJqtuHf5n9erVxnu1QYMGfPzxx1b1lyxZQqNGjahduzZTpky55+2JPK5MJhO+vr44Oztz4sQJ4/9GSEgIvr6+dO7cGYBt27bRqVMnzGYz/v7+/Pzzz0YbW7ZsoUOHDnh5eeHj48PYsWNJSkoyyrPj3CEiInIvbv18y+jJ/7Zt27J8+XIOHDjAmDFjOHz4sNGrYOXKlcydO5eNGzcay+Du18tNmjRh7ty5vPLKK1SvXl2feSIikiklA0Qk2xQoUIBevXoxffr0DMttbGwYMmQIW7duZc2aNZw/f96oO2LECMxmM0OHDiUiIoIvvvgiy9tds2YN8+fP548//iBfvnyUKFGC//73v/zxxx9MmDCBKVOm8Pvvv2epLVdXV8aMGcOoUaP4z3/+w6uvvsoLL7xgXJSHhITw888/YzKZGDp0KAApKSkEBQXRsGFDwsLCGDp0KMuWLcty/Df98ssvLFu2jJ9//pmlS5cC8L///Y+IiAgCAwPvub2s+Pvvvzlz5gytWrW6Y726deuybt06wsLC8PPzY+DAgVbDKR09epQ8efLw22+/MXPmTKZMmcKpU6eM8i1btlCzZk3CwsJ4++23effdd431Q0JCWLp0KZ999hk7duygefPmBAYGGkMUDRkyBDc3N7Zu3crUqVP57rvvHsIrccOmTZtYsWIFa9euZdu2bYSGhgI3voC1bt2an3/+mW3btlG5cmUGDhyIxWK5720lJibyzjvvEBwcTEREBGvXrqVBgwZGeUJCAn/99Rc//fQTISEhhISEEBYW9sD7KPI4SE9PZ8OGDVy/fp0qVaoAN97zhw4dYt26dXz99dccOnSIgQMHMmTIEHbu3Mm4ceMYPnw4x48fByBv3rxMmDCBnTt3snjxYsLCwliwYIGxjUd57hAREYGMP98yU6VKFcaNG0fFihWJiIggIiKCdu3a0adPH3x9fY1lcPfrZbjxgM6kSZOIiIjAw8Pjoe6niIg8uZQMEJFs9dprrxEZGcmGDRtuK3vuuecwm83Y29vj6upKz5492blz5wNvs1evXri7u+Pg4ICNjQ0vvfQSxYsXx2QyUadOHXx8fO5pOy1btqR69epcuXKFt956C7jxBHdQUBAlSpQgf/78jBgxgq1bt3L+/Hl2797N5cuXCQwMxMHBgerVq+Pn53fP+/HWW2/h4uKCo6PjPa97v272bnB3d79jvY4dO+Ls7Iy9vT29evUiPT2dv/76yygvWLAgvXr1wt7entq1a1OqVCmrHh1VqlShVatW2Nra0rZtW1JSUvj777+BG19uBgwYQNmyZbGzs6N79+4kJSWxZ88eoqKiCA8PZ/jw4Tg6OlK+fHm6dOmS/S/E//fWW2/h5OSEu7s7DRs2ZP/+/QA4OTnh5+dHvnz5yJMnDwMGDODvv/8mOjo607YOHz6M2Ww2fjK6EWlnZ8exY8eIj4/HxcWFF154wSizWCwMGTKEPHnyUL58eTw9PY14RJ5UM2bMwGw2U6NGDfr3709QUJDRIyk9PZ2hQ4fi6OiIo6Mj3377Le3bt6du3brY2NgYPYtujsNsNpupUqUKtra2lC5dms6dOxvn+kd97hARkafbnT7fssOdrpdv6tq1K+XKlcPW1hYHB4ds27aIiOQuGoxVRLJV3rx5eeutt5gxYwbffPONVdnJkyeZNGkSe/fuJTExEYvFki1jQhcvXtzq79WrV7NgwQLOnDmDxWIhKSmJUqVK3VObFStWJC0tDXt7e+DGcBP/HvPzZvLh/PnzREdH4+bmZrUvxYsXv+fuubfux6NQqFAhAM6fP88zzzyTYZ309HRmzZrFunXriI2NxcbGhvj4eGOIJ7jRo+LfHB0dSUhIyLDcZDKRN29eozwyMpJhw4ZZjWuakpLCuXPnsLe3J0+ePBQpUsQoe5hjr7q5uVntw9WrVwFISkpi0qRJ/Pbbb1y+fBkbmxu59EuXLmWaSMlozoB/P9mfL18+PvvsM7788kumTp1KxYoVGThwIHXq1AFuJCD+nRi69TUVeRINHjzYmMfj5MmTBAYG4uzsjIeHB/nz58fFxcWoGxkZyY4dO1i+fLmxLC0tDScnJwD27NnDjBkzOHz4MElJSaSlpRlPQkZHRz/Sc4eIiDzdMvt8y66b8ne6Xr6pRIkS2bItERHJ3ZQMEJFs16lTJxYsWMDKlSutlo8ZM4ayZcsyefJkXFxc2LBhgzFmO5DhxL/58uXj2rVrxt8xMTG31bl5Yxbg7NmzjBgxgi+++AJvb2/s7Ozo27fvAw3nAlCsWDEiIyOpXr26EUdycjLu7u4kJycTGxtrNeFlVFSU1T4AXLt2zbjRFRMTQ968eTPdD8j49chuHh4elCxZkrVr1xIUFJRhndDQUEJDQ5k/fz5ly5bFZDJRq1atbIuhWLFijBw5koYNG95WFhUVxfXr17lw4YJxU+/s2bP3vI2sHoPMfPnll+zfv5+QkBCKFStGXFwctWrVeuD3Vd26dalbty4pKSmEhITw1ltvZUtvGZEnQZkyZfD19WXjxo14eHjcdg4sVqwY3bt3N4Zku9WQIUPo0KEDn3zyCfny5WPhwoWsWLECgKJFi2bLuUNERORe/fvzrV27dlbz2QDExsYav9/62QcZfwe40/XyndoSERG5lT4tRCTb2draMmjQoNsmvY2Pjyd//vw4OTkRFRV127wArq6unD592mpZlSpVWLVqFampqRw8ePC2J61vdbPHQeHChbGxsWHTpk1s3br1gfepTZs2fPbZZ0RFRZGQkMCkSZOoV68e7u7uVK9eHRcXF+bOnUtKSgp79uwxhrEAKFy4MCVKlGDlypWkp6ezY8cONm3adNdturq6Wo27/zCYTCZGjRrF559/zldffWU87X/ixAlGjhxJZGQk8fHx2NvbU6hQIVJSUvjoo4+s5gt4UN26dWP27NnGOODx8fFs2LCB+Ph4ihcvTs2aNZk2bRpJSUkcP36cb7/99p63cb/H4Kb4+Hjy5MmDi4sLCQkJzJgx455juFVsbCzr168nPj4eOzs7nJycrJ72EsntIiMj2bRpExUrVsywvEuXLixfvpwdO3aQlpZGcnIyERERxoSJN4fXypcvH8eOHWPx4sXGutl17hAREblX//58q1y5MqdPnyY8PJzU1FTmzZvH5cuXjbpFihQhJibGKmHg6urK2bNnSUtLM5bd6XpZRETkXigZICIPxUsvvUSZMmWslo0YMYKNGzfi5eVF3759eemll6zKX3vtNbZt24bZbKZPnz4AjBo1ij///JNatWoxbdo02rdvf8ftPvvsswQGBvLaa69Ru3Ztvv/+e5o0afLA+/Pmm2/i4+ND586dadKkCSkpKUydOhUAe3t7Pv74YzZu3Ii3tzdTp06lTZs2Vt2CP/jgA5YvX46Xlxfffvst/v7+d93mwIEDmTBhArVq1eLzzz9/4H3ITOPGjZk3bx4bN26kefPmmM1mBgwYQLly5XBzc6N9+/ZUqFCBxo0b07RpU/LmzZutQxq9+uqrtG/fnv79+1OzZk1atmzJmjVrjPLp06dz7tw56taty9ChQ+nYseN9bed+jsFNPXv2xMbGhvr169O6dWtq1KhxXzH8W3p6OosWLcLX1xcvLy+++eYbZs2apae6JFebNm0anp6eeHp60rVrV+rVq0e/fv0yrFulShWmT5/Ohx9+SN26dWnQoAGzZs0yJkscP3488+fPx9PTkzFjxtz2fzq7zh0iIiJ3k9nnW5kyZRg2bBgDBgzAx8eH5ORknn32WWO9OnXqUL16dRo2bIjZbObs2bO0aNECJycn6tSpg9lsBu5+vSwiIpJVJsuDjnEgIiK3GTVqFOnp6QQHB+d0KCIiIiIiIiIiIuoZICKSHcLDw4mKiiI9PZ3t27ezZs0aWrRokdNhiYiIiIiIiIiIAJpAWEQkW5w+fZpBgwYRFxeHu7s7gwYNokGDBjkdloiIiIiIiIiICKBhgkREREREREREREREcj0NEyQiIiIiIiIiIiIiksspGSAiudqcOXPo27dvTochT4CwsDDMZnNOhyEij5kHPTcsXLiQgICAbIxIRETk4dP3KBGR3EnJABF57MyfP5/OnTtbLRsyZAgvvPAC169fN5Z99dVXtG7d+pHF9TTeLA4PD6dXr17UqlULs9lMmzZtmDdvHsnJyXddN6MvECNGjCA4OPhhhSsiWRQQEMDChQtvW16pUiUOHjz46AN6yHbv3k1AQIBxLmvdujXLly/P6bBERCQX+c9//kNQUJDVsgsXLlCnTh02bNiQ7dtr0qTJbe3qe5SIiNyNkgEi8tipXbs2+/btIz4+3li2a9cuSpUqxZ9//mks27lzJ7Vr186BCJ8Ov/76K71798bHx4cff/yR8PBwZs6cybFjx4iJicnp8EREsiQ+Pp5evXrh5+fHtm3b2L59O8HBwRQpUiSnQxMRkVzkvffe4+DBg6xcudJYNnbsWBo1akSzZs0eSQz6HiUiInejZICIPHaqVKlCvnz5+P333wH4+++/yZMnD/7+/oSFhQFgsVjYtWsX1apVIygoiLp16+Ll5UW3bt04dOhQpm1XqlSJxYsX06pVK2rWrElgYCBXr14FMn5ipW/fvsyZM4dLly7Ru3dvrl69iqenJ56enoSHh3P69Gl69OiBl5cX3t7edOnShWvXrj2kV+bRsVgsTJgwgd69e9OjRw8KFy4MQPny5Zk0aRIlS5YEYO/evXTp0gWz2Yyfnx9r1qwBYMOGDcydO5eNGzcar9eiRYsIDQ1l8eLFeHp64u/vD8Dq1atp1aoVnp6e+Pr68uGHH/Lvue2PHDnCK6+8gqenJwEBAUyZMsVqyI0LFy4wZMgQfHx88PHxITg4+I49F/bt20f37t3x9vamTp06vP/++1blS5YsoVGjRtSuXZspU6ZYlW3bto1OnTphNpvx9/fn559/tnrNFi1aRIsWLTCbzQQEBHDs2DGjfMGCBfj6+uLp6UmTJk1YsmRJltoVySm39uSJi4ujUqVKnDlzxih/9913GTBggPF/+vDhwyxevJiGDRtSp04dvvnmG2P9OXPmEBgYyOjRo/Hy8qJJkybs2LGD9evX07x5c2rVqsXMmTOt6t/au8hsNhufA/v37+eVV16hZs2a1K5dm8DAwAz348SJE1y7do3OnTtjb2+Pvb09L7zwAo0aNTLqTJkyhcaNG+Pp6Ymfnx/r1q3L9HW513NWdHR0Vl5uERF5wjk7O/PBBx8wceJEzp8/T2hoKHv27OG9995j/Pjx+Pr6UrduXYYPH258/wAYOnQoPj4+1KxZkw4dOrBjxw6jLLPvGgMGDODs2bMMHjwYT09PRo8eDeh7lIiI3J2SASLy2LGxscFsNrNz507gxpMr3t7eeHt7G8sOHz7MlStXjOEefv75Z7Zt20blypUZOHCg1Y2ZW33//fcsXLiQjRs3cv78+QyHyrhVoUKFmDdvHs7OzkRERBAREYHZbObDDz/kmWeeYceOHWzdupXhw4dja2ubLa9DTvr77785c+YMrVq1yrROXFwcvXr1wt/fn+3btzN27FhGjRrF77//TrNmzejTpw++vr7G69W9e3dat25N165diYiIYO3atQAUKFCAOXPm8Mcff/Dpp5/y3XffERoaCkBKSgpBQUE0bNiQsLAwhg4dyrJly4wYLBYLQUFBuLm5sX79ekJDQzl06BCffPJJhjGfP3+e1157jZdeeonNmzfz66+/0rJlS6M8ISGBv/76i59++omQkBBCQkKML06HDh1i4MCBDBkyhJ07dzJu3DiGDx/O8ePHAQgJCWHp0qV89tln7Nixg+bNmxMYGEhycjInTpzgww8/ZP78+URERPDdd99RrVq1LLUr8jhbt24d3bt3Z9euXVStWpWgoCBOnjzJhg0bmD59OhMnTiQ2Ntaov2XLFurVq8fOnTtp3bo1w4YNY8OGDaxatYqQkBDmz5/P/v37s7Tt999/n8aNGxMeHs7mzZt54403Mqzn4eGBs7MzgwYNYsOGDRn2bHruuedYunQp4eHh9OvXj+HDh3P69OkM27vTOSs1NdW4sRIWFsbgwYNZunRplvZHRESefPXq1cPPz4/hw4czYcIEPvjgA9577z2uXLnC6tWr+fnnn0lNTWX8+PHGOnXr1mXdunWEhYXh5+fHwIEDjSf7M/uuMXv2bEqUKMGMGTOIiIgw2tP3KBERuRslA0TksVS7dm3jJmxYWBi1atWievXqHDx4kKSkJHbu3EnlypUpWbIkfn5+5MuXjzx58jBgwAD+/vvvOz6J2bt3b1xdXXFxceHFF1/M8o2njNjZ2RETE0NkZCT29vbUrFkTBweH+27vcXHx4kUA3N3dM62zceNGChcuTEBAAPb29nh7e9OqVSurrtFZ0ahRIzw8PDCZTFSuXBl/f3/jy8ru3bu5fPkygYGBODg4UL16dfz8/Ix19+7dy8mTJxk+fDiOjo4UKlSIwMBAo4fCrVatWsXzzz9Pt27dyJMnD46OjlZPMVksFoYMGUKePHkoX748np6exvvj22+/pX379tStW9f4ouXr62s8QRwSEsKAAQMoW7YsdnZ2dO/enaSkJPbs2YOtrS0Wi4WjR4+SlJSEq6srzz33XJbaFXlYZsyYgdlstvq5V40aNcJsNmNnZ4efnx9nz55l4MCBODg4UL9+fZydnTl8+LBRv0qVKrRo0QJbW1tat25NdHQ0b775Jvny5aNChQo899xzHDhwIEvbtrOz4+zZs0RHR+Pg4ECtWrUyrOfk5MT//vc/ChQowKRJk2jQoAEvv/yy1bm/TZs2FClSBFtbW/z9/SlXrhwRERGZ7nNm56w///yTS5cu8dZbb+Hg4ICnp6dVwlFERHK/YcOGcfLkSZo1a0blypX56aefGDVqFC4uLuTLl48BAwawbt060tLSAOjYsSPOzs7Y29vTq1cv0tPT+euvv4D7+66h71EiInIndjkdgIhIRurUqcOUKVOIj49n165dDB06FAcHB6pUqUJERIQxzmVSUhKTJk3it99+4/Lly9jY3MhxXrp0KdMb2W5ubsbvjo6OJCQk3Hecw4cPZ86cOfTs2ROTyUT79u3p16+fEceTqlChQsCNJ+mfeeaZDOucO3fOGC7optKlS7Nr16572tbmzZv5+OOPOXHiBKmpqSQnJ9OwYUMAoqOjcXNzw87un4+r4sWLc/ToUQAiIyOJi4vD29vbKLdYLKSnp2e4rbNnz1K2bNlMY3FycsLR0dH4+9/vj8jISHbs2GE16WhaWhpOTk5G+bBhw6yeaEpJSeHcuXOYzWYmTZrE119/zTvvvEONGjUYNmwYlStXvmu7Ig/L4MGD6dGjh9WySpUq3VMbrq6uxu958+Ylf/78t/0fSkxMzLQ+3P85+YMPPuCjjz6iQ4cOuLi48Oqrr/Lqq69mWLdMmTLGU5Pnz59nypQpBAUFsWnTJkwmEwsXLmTJkiWcO3cOk8lEYmIily5dyrCtu52zihYtir29vVG/ZMmS6ukjIvIUyZcvH6VLl6ZChQqcOXOG9PT02+YMMJlMxMbG4ubmxqxZs1i3bh2xsbHY2NgQHx9vfAbdz3cNfY8SEZE7UTJARB5LlSpVwtnZmaVLl2Jvb0/x4sUBqFWrFjt27GDXrl106tSJL7/8kv379xMSEkKxYsWIi4ujVq1ad+zempl8+fKRlJSExWLBZDIBEBMTQ+XKlQEyvDAtUqQIY8eOBW50ue3ZsycVK1bkpZdeus89fzx4eHhQsmRJ1q5dS1BQUIZ1ihUrRmRkpNWyM2fOUKxYMQDjNfy3W5clJyfTv39/xowZg7+/Pw4ODgQHBxvtFi1alNjYWFJTU42EQFRUlLF+8eLFKVKkCFu2bMnSfpUoUYKtW7dmqe6tihUrRvfu3Rk6dGim5SNHjjRuCt7Kz88PPz8/kpKSmDVrFsOHDyc0NPSu7YrklJvnxJse9cTht27/2rVrVhMiPvPMM0yZMgWLxcLvv/9Oz549qVGjBlWrVr1ju+7u7rz55pusWbOGy5cvc+zYMebMmcN///tfqlSpgo2NDW3bts3wcyQr56zo6GhSUlKMhMDZs2ez4+UQEZEnUPHixbGxsWHz5s1WyfKbVq1aRWhoKPPnz6ds2bKYTCarnm53+q6R0bU26HuUiIjcmVKuIvJYMplMeHt788UXX1g99V2rVi2WLVtGXFwcXl5exMfHkydPHlxcXEhISGDGjBn3vU0PDw/s7e0JDQ0lLS2NtWvXcvDgQaO8SJEiJCQkGEPowI1xM8+ePYvFYsHZ2RkbG5tcMdalyWRi1KhRfP7553z11VfG00knTpxg5MiRREZG0qhRIy5evMg333xDamoq4eHhhIaG0rZtW+DGE8Bnz541ukDfXPbvcbiTk5O5fv06BQsWxMHBgd27d1sN8VO9enVcXFyYO3cuKSkp7Nmzx2r4nGrVqlG8eHFmzpxJfHw8FouFyMhINm3alOF+tWnThj179rB48WKSk5O5du0a4eHhWXpNunTpwvLly9mxYwdpaWkkJycTERFhTBLcrVs3Zs+ebTwBHB8fz4YNG4iPj+f48eNs3bqVpKQk7O3tyZ8/v/E+uVu7IjmlSpUqbNmyhejoaOLj4/noo48e6fYrV67C7gPH+Xn7Ybbvu8C7kxZRpnAekiL/5trx46z95htizp/HZDJRoEABbGxsrHoR3XTs2DE+//xz4+nMuLg4vvnmG8qWLUuhQoVISEjAzs6OwoULk56eztKlSzly5EiGMWXlnFWwYEE++eQTkpOT2b17t4b8EhF5irm5udGsWTPGjx9vfIeIiYlh/fr1wI3rRXt7ewoVKkRKSgofffSRVeL7Tt81XF1dOXXq1G3b1PcoERG5EyUDROSxVbt2bWJiYqwuYj09Pbl8+TJVq1bFycmJnj17YmNjQ/369WndujU1atS47+05OTnx/vvvM336dGrXrs3vv/+Oj4+PUV6uXDk6depEy5YtMZvNhIeHs3//frp06YKnpyedO3emU6dONG3a9EF2+7HRuHFj5s2bx8aNG2nevDlms5kBAwZQrlw53NzcKFCgAPPmzSM0NJTatWszatQoxo4da4w73qJFC5ycnKhTp46x7OWXXyY6OppatWrRunVrnJycGD16NKNGjaJmzZp8+umnVnMC2Nvb8/HHH7Nx40a8vb2ZOnUqbdq0McYTtbW15bPPPiM6Oho/Pz+8vLzo06dPhl+M4MbT+wsXLmTNmjXUq1ePJk2a8MMPP2Tp9ahSpQrTp0/nww8/pG7dujRo0IBZs2aRnJwMwKuvvkr79u3p378/NWvWpGXLlsZNwpSUFGbNmkW9evWoXbs2O3bsYNKkSVlqVySntGnThlq1atGyZUvatWtHo0aNHvo20+wKcvxKYT4LjeSX48Wp3PxdPpi/g9Fz1pGQtzLPl8hP0vGDxK5ahd2mTfzUrx/T/f1ZOGQIY4KCMhzmyMnJiYMHD9KtWze8vLxo0aIFFy9e5LPPPgOgQYMGvPjii7Ru3ZoGDRpw9OhRatasmWF8WTlnffLJJ2zZsoXatWszbdo0OnTo8HBeLBEReSJMnDgRFxcXOnXqRM2aNenWrRv79u0DoH379lSoUIHGjRvTtGlT8ubNazzJD9zxu0afPn34+uuvqVWrlvGE/U36HiUiIpkxWe6nD5iIiEgOGTVqFOnp6QQHB+d0KCKSDRKS0thx4Ap7TyRwKT4103q2pFHt8jwqFPKgwIVrGddxceFac09KlHwOR9t8DytkERERERGRJ5LmDBARkcdaeHg4JUuWxN3dnbCwMNasWcPs2bNzOiwReUDXU9LZuu8KOw5e4XpK1p9Nsc14fnAAUpOT+DVpO5a/w6he0BPPQl7Y29hnvoKIiIiIiMhTRMkAERF5rJ0+fZpBgwYRFxeHu7s7gwYNokGDBjkdlog8gIijV/kp/CKJ1+9wZz8TNumZJw4ulStAis0lsKTz+6VdHLp6gHquDXjWqcKDhCsiIiIiIpIraJggEREREXkkklPSWb09lr0nEu553ZvDBFXNV4a88ddvr2AysbVZPi7lvb2siktVfNwaYGvSczAiIiIiIvL00jciEREREXnoLl1NYfEv5zl/OeWB2rFNzbg3QVKpglzKezXDsgNx+4i5fh6/4q3JZ5f/gbYvIiIiIiLypLLJ6QBEREREJHe7kpDKwp/OPXAiADJPBpwoY7rjejHXY1gVuZyE1HvvlSAiIiIiIpIbKBkgIiIiIg9NQlIai346x+X41Gxpz5SadtuydJd8HC8Yd9d1L6dcZlXkMhKVEBARERERkaeQkgEi8tRJTk5mzpw5JCcn53Qo8pDoGIs8HpJT0ln00zli4x68R0C6JZ2//z5FRtNdnS+XD8udOwYYrqRcYV3UWtIs2ZOcEBEReVBPyrXrkxKniIhkTskAEXnqJCcn89FHH+kiNhfTMRZ5PPwYfpFzl7Ln/2F6ejpHjxwjPd16mCCLvR0HisffU1vR18+zJWZztsQlIiLyoJ6Ua9cnJU4REcmckgEiIiIiku2ORiYSfjjjCX3vVwadArhatiDX7O79Kf8Dcfs4nXgqG6ISERERERF5MigZICIiIiLZKik5jdXbY7O9XVMGyYDDpe//6cTNMZs0XJCIiIiIiDw17HI6AJHMpKWlkZycjI2NDSZTFgcCFsmClJQUChUqREpKirq45lI6xiI567c9V7h89cHnCfi39HQLeRzyYklPJ93mxvMsyUWdOesYD+l3WTkTl65f5PfYcGoUqJmNkYqIiNybJ+Xa9UmJU+6dxWIhPT0dBwcHbG1tczocEXmITJaMZmETeQxcu3aNAwcO5HQYIiIicg9S02B5uA3Xs/mBexvSaJSyivJX//mCeqimM0dLXnugdh1wwAdfbNEXXxEREXm6ValSBUdHx5wOI8ekpaWRkpK9D7SIZMbe3j5Hkm/qGSCPLTu7G2/PKlWqKDMt2SotLY0DBw7ovZWL6RiL5Jydf10lj+Nl8mRzuyZSsbtog5OzMyaTiXRHB2IrWXA2PfjlbN4iDjznXCUbohQREbl3T8q165MSp9y7m8f25n2Yp43FYuHcuXNcvnw5p0ORp0zBggUpVqzYIx0R5en8Xy5PBJv/PwSAuqlJdktLSwP03srNdIxFck744URMNtk/LZWNxQZbkw02JhtMwMVnC2CxvYxNNkyBdSjhIC8UqfHA7YiIiNyPJ+Xa9UmJU+7dzWNr8xCu4Z4ENxMBRYsWJV++fBqqWh46i8VCYmIi0dHRABQvXvyRbVvJABERERHJFmcvXOdS/MObkNeWG1/MLLY2HCiZmG3tXkiOJS4lDhd7l2xrU0REREQef2lpaUYioEiRIjkdjjxFbg7JFR0dTdGiRR9ZkvXpTPmJiIiISLaziTlC/cKRFLB/OJMK2lpuJAOulS5InEP2buNkwolsbU9EREREHn835wjIly9fDkciT6Ob77tHOVeFegaIiIiISLYocO536l37m7p2cM25GGdtS3L4enEOxhUkPRueQbFNB2zg2DPpDx7sLU4lnqRawerZ3q6IiIiIPP40NJDkhJx436lnwFNo165dBAYG4uPjQ6VKldiwYYNV+U8//cQbb7xB7dq1qVSpEgcPHrytjeTkZN5//31q165NjRo1CAwM5Ny5c1Z1rly5wrBhw/Dy8sLLy4thw4YRFxf3UPdNREREck7ahUgATEC+a+d4Nv53/FLWMMhpCa+7bqVpkb8pmuf+h/exs0BawfycLBCfTRH/I/Z6TLa3KSIiIiIi8jhRMuAplJiYSKVKlRg9enSm5Z6engwdOjTTNoKDg1m/fj0zZ84kJCSExMRE+vTpY0w6AzBkyBAOHTrEF198wRdffMGhQ4cYPnx4tu+PiIiI5DzL9URIy7h7q03adYokHKNm4m+8ZrOUAQVD6eIWgbnAefLYZn2OAVuLibPl8mZXyFYS0xJJSkt6KG2LiIiIiDwpAgICCA4OfqA2li9fjtlszqaIHn67TxMNE/QUatSoEY0aNcq0vF27dgCcOXMmw/KrV6+ybNkypkyZQr169QCYOnUqvr6+bNu2jQYNGnDs2DE2b97Md999R/XqN7rcv//++3Tu3Jnjx49Trly57N0pERERyVHpiVeyXDfP9UuUvn6J0uzFN68tV/OWINJUkgPX3DmeUCDT9UwmOOh+NTvCzdDV1Djy2j6cZIOIiIiIPFnG/PfRzik17jWPR7q9p9mZM2do2rQpK1eupHLlyjkdziOlZIDcs3379pGSkkL9+vWNZe7u7lSoUIGIiAgaNGhAREQEzs7ORiIAoEaNGjg7OxMREXFPyYB/9zYQyQ4331N6b+VeOsYij15awhUsFst9rJiKc8IpnuMUzwGpzvmJzVOaE6nF2RtflCspeQCwYOFy8Xxct0nFZHk4Y2smpSSRZqfzhoiIPFpPyrXrkxKn3DsdU4Ebk9ja29vndBgPJDfsw8OmZIDcs9jYWOzt7SlQwPrJPVdXV2JjY406RYoUuW3dIkWKGHWyau/evfcfrMgd6L2V++kYizw6eS+eoEBc1nsHZO4KjpylClAFE1ftChNpKsHRlOIcfSaJq1ezf/Lgmw7EHSAazR0gIiI540m5dn1S4hR5GqSnp/PFF1+wZMkSoqKicHV1pXPnzgQFBTF16lQ2bNjAuXPncHV1pXXr1vTr18+4WT5nzhw2bNhAQEAAn376KZGRkca8oWlpaYwfP57Vq1dja2tLly5dePvtt40Jb69cuUJwcDC//vorycnJ1KpVi/fee4+yZctaxbd582Y++OADzp07R82aNZk4cSJFixZl165d9OjRg40bN+Lm5mbUnzRpEnv37uWbb74BbgwLNHv2bC5duoSPjw9eXl5W7We2D5s3b+bTTz/lyJEj2NraUqNGDd59912eeeYZAJo2bQr8MzqKt7c3X331FQDLli3jiy++4MyZM5QsWZKAgAC6deuWpePxxx9/MG7cOI4fP06FChXo27cv/fr1e6x6ICgZINkmK08DWiyWe54pu1q1atja2t5vWCK3SUtLY+/evXpv5WI6xiKPXupZR5Iv7sv2dguQSilO4Wl7lMVHL5O3fjkcHByyfTsAFdyfpUx+dc8WEZFH60m5dn1S4pR7d/PYypNn+vTpLFmyhHfeeQcvLy+io6M5ceLG8Eb58+c3br4fPnyYUaNGkT9/fnr37m2sf+rUKdatW8ecOXOwsflnatkVK1bQqVMnvvvuO/bt28fo0aMpWbIkr7zyCgAjRozg5MmTfPrppzg5OTF16lTefPNN1q5dayQbkpKS+PLLL5kyZQo2NjYMGzaMyZMnM336dGrVqkWpUqVYtWoVvXr1AiA1NZXVq1czZMgQAHbv3s3IkSMZPHgwzZs3Z/PmzcyZM+e21yCjfbh27Ro9e/akYsWKXLt2jVmzZtGvXz9WrVqFjY0NS5Ys4eWXX2bhwoU8++yzRszfffcds2fPZvTo0VSuXJmDBw8yatQo8uXLR/v27e94LOLj4wkKCqJhw4ZMnz6dyMhIPvjgg/s6rg+TkgFyz1xdXUlJSeHKlStWvQMuXLiAp6enUefChQu3rXvx4sUMewzcia2trS405KHQeyv30zEWeXQseRzvOeF/L9It6dSLvkJUvCOnijyc3gH57PPrnCEiIjnmSbl2fVLiFMnt4uPjWbRoEaNHjzZuVD/zzDPGBLt9+/Y16pYqVYrjx4/z/fffWyUDUlJSmDp1KoULF7Zqu3jx4owcORKTyUS5cuU4fPgwCxcu5JVXXuHvv//ml19+YfHixdSsWROAadOm4evry4YNG2jZsqXR9rhx44yn8bt168Ynn3xibKNTp04sX77cSAZs3LiRa9euGesvWrQIHx8f3nzzTQA8PDyIiIhg8+bNVrFmtA8vvfSSVZ0PPviAunXrcvToUSpWrGjULViwoFXPhE8++YQRI0bw4osvAlC6dGmOHj3Kt99+e9dkQGhoKAATJkwgT548PPvss0RHR/Pee+/dcb1HzebuVUSsVa1aFXt7e7Zu3Wosi46O5siRI0YywNPTk6tXr7Jnzx6jzu7du7l69apRR0RERHIPk93DeVr/VrX+Oo1HqvNDaTuvreNDaVdEREREJLsdP36c5ORk6tSpk2H5Dz/8QNeuXalfvz6enp7MmjWLqKgoqzolSpS4LREAUL16dasHfWrUqMHJkydJS0vj2LFj2NnZWc0TWqhQITw8PDh27JixzNHR0UgEABQtWtTqweEOHTpw6tQp/vzzT+DG8DwtW7YkX758ABw7dowaNWpYxXXr35ntw6lTpxgyZAhNmzalZs2axrBAt+7/v128eJGoqCjeffddPD09jZ9PP/2UU6dOZbreTSdOnKBSpUrkyZPHWFatWrW7rveoqWfAUyghIcHqTXzmzBkOHjxIgQIFKFGiBJcvXyYqKoro6GgAo3uRq6srbm5uODs707FjRyZPnkyhQoUoUKAAkydPpmLFitSrVw+A8uXL06BBA9577z3Gjx8PwKhRo2jcuPE9TR4sIiIiTwabfAUfyXZMQN19p0l6oRRRNvHZ2K6J/Hb5s609EREREZGH6d83nW/1559/MnjwYPr374+Pjw/Ozs6sXbuWBQsWWNVzdLz3h2EyGyb81qHB7eysbzubTCardYsUKULjxo1Zvnw5pUuX5rfffmPRokV33c6tMtqHwMBAihcvzoQJEyhatCjp6em0atWKlJSUTNtJT7/R+/j999+3SnQAVkMoZeZ+hkbPCUoGPIX27dtH9+7djb8nTpwIQPv27Zk0aRK//PIL77zzjlE+aNAgAN566y369+8PwMiRI7Gzs+Ptt98mKSmJunXrMmnSJKuugtOmTWPChAm8/vrrADRp0oTRo0c/9P0TERGRR8+UNz+m/AWxJFx+6NuyTU+n4YEoNjzvzgVTYra0WcC+IPY29tnSloiIiIjIw1a2bFny5s3Ljh07KF26tFXZH3/8QYkSJQgKCjKWnT17Nstt7969+7a/y5Qpg62tLc8++yypqans3r3bGCbo0qVL/P3335QvX/6e9qFTp04MHjwYd3d3SpcubTVB8LPPPpthHHdz6dIljh07xvjx440hk8LDw63q3JwjIC0tzVjm6uqKu7s7p0+fpk2bNve0HwDlypUjNDSU5ORkY46zx3EuDiUDnkI2NjY0btyYffv2ERMTw8cff0yzZs2M8vbt2xMZGcm3335LXFwc1atXZ/To0VSoUMGo8+9M183fb81+mUwm4yejchEREcldbIuUIvURJAMAHJJTaHzoAj9WLshVrj9we+553bMhKhERERGRRyNPnjz07t2bqVOnYm9vT82aNbl48SJHjhzhmWeeISoqirVr11KtWjU2btzIhg0bstx2VFQUEydOpHPnzhw4cICvv/6a//znP8CNJETTpk0ZNWoU48aNw8nJiWnTpuHu7m4Mx5NVDRo0wNnZmU8//ZQBAwZYlQUEBNClSxfmzZtHs2bN2Lp1623zBWSkQIECFCxYkG+//RY3NzfOnj3L9OnTreoUKVKEvHnzsnnzZooVK0aePHlwdnamf//+TJgwAScnJxo2bEhycjL79u0jLi6Onj173nG7rVu35sMPP2TUqFG8+eabnD17li+//BJ4vO6Jas6Ap1BiYiKVKlXK9Cn9efPmsWDBAkaPHs3SpUtxdXWlZ8+exMf/0xU/ODiY9evXM3PmTEJCQkhMTKRPnz5WGbUhQ4Zw6NAhvvjiC7744gsOHTrE8OHDH/r+iYiISM6wKVzikW7P8do1mhyNx5EHf6LfPW/xbIhIREREROTR6du3Lz179mT27Nn4+fkxaNAgLl68SLNmzXjttdcYP348bdu2JSIiwqqXwN20a9eOpKQkXn75ZcaPH8+rr75K586djfKJEyfy/PPPExgYSOfOnbFYLHz++efGE/dZZWNjQ/v27UlPT6ddu3ZWZTVq1GDChAl8/fXXtGvXji1btmRpH2xsbJg5cyb79++nVatWTJw48bb7kXZ2drz33nt8++23NGjQwJhs+eWXX2bChAmsWLGC1q1bExAQwIoVKyhVqtRdt+vk5MSnn37KwYMHadu2LTNnzqRfv34ARk+Bx4HJktUBmCRXqlSpklXPAIvFQoMGDejevbsxW3dycjL16tVj6NChdOnShatXr1K3bl2mTJmCn58fAOfPn8fX15fPP/+cBg0acOzYMfz8/Pjuu++Mcbb+/PNPOnfuzLp167I0b0BaWhp//vknNWrUsBp+SORB6b2V++kYi+SM9PiLJH4/56G0fS3pGqdPnab0M6VxzGs9LugF18Ksf8aWFNIyWfvOTJjoXrYn+TRngIiI5IAn5dr1SYlT7t3TfGyTkpI4ceIEHh4e5M2bN6fDeSq99957xMbG8tlnn+V0KNlu9erVjBw5kvDw8AzfXznx/tMwQWLlzJkzxMTE4OPjYyxzcHCgVq1aRERE0KVLF/bt20dKSgr169c36ri7u1OhQgUiIiJo0KABERERODs7W024UaNGDZydnYmIiLinSYT/3dtAJDvcfE/pvZV76RiL5BDHApgKlyT9wpnsb9vyz7+3PstSOOYCDeyK8mtxE+mk33PTJR1LkceUV+cMERHJEU/KteuTEqfcOx1TyQlXr15l7969hIaG8sknn+R0ONli5cqVlCpVCnd3d/766y+mTZtGixYtHqtEk5IBYiUmJga4MXbWv7m6uhoTjcTGxmJvb0+BAgVuqxMbG2vUubWNm+3erJNVj+NkG5I76L2V++kYizx6edNdKBB3JdvbTU1JBSAhIYHrybfPEZA/7gqVrroR5p4O9zgkp22cPX+e/zMbohQREbl/T8q165MSp4g83vr27cuePXvo3Lmz1QPHj6vPPvuMuXPnZljm5eXFF198QUxMDLNnzyYmJgY3NzdatGjBoEGDHnGkd6ZkgGTo1oktsjKaVFbr3OukGdWqVXvquqnJw5WWlsbevXv13srFdIxFco4lrSpJ605hSYq/e+V7kJSUxMWLF8mfP3+mT9aY45PJX7w04c4JWW63kH0hXirV4rGa1EtERJ4uT8q165MSp9y7m8dW5FH66quvcjqEe9KlSxdatmyZYdnN7ye9e/emd+/ejzKse6ZkgFhxc3MDbjzZX7RoUWP5hQsXcHV1BW70AEhJSeHKlStWvQMuXLiAp6enUefChQu3tX/x4sUMewzcia2trS405KHQeyv30zEWyQG2tuR5oRnXd63K3nZN//x7pxv3VY6eIalKGfbnvZqlZs1FamNnp0tiERHJeU/KteuTEqeISHYqWLAgBQsWzOkwHphNTgcgj5dSpUrh5ubG1q1bjWXJycns2rXLuNFftWpV7O3trepER0dz5MgRo46npydXr15lz549Rp3du3dz9epVo46IiIjkTnZlq2NTpFSObd/z4N+US3G5a71ieYvzrFOFRxCRiIiIiIhIztNjUE+hhIQETp06Zfx95swZDh48SIECBShRogTdu3dn7ty5lC1bljJlyjB37lzy5s1Lq1atAHB2dqZjx45MnjyZQoUKUaBAASZPnkzFihWpV68eAOXLl6dBgwa89957jB8/HoBRo0bRuHHje5o8WERERJ48JpOJPDX9uLbh838m/n2U27eYqLP/FEkvlOKsTcbDFdmZ7GhctKmGBxIRERERkaeGkgFPoX379tG9e3fj74kTJwLQvn17Jk2aRO/evbl+/Trjxo3jypUrVK9enS+//BInJydjnZEjR2JnZ8fbb79NUlISdevWZdKkSVZdBadNm8aECRN4/fXXAWjSpAmjR49+RHspIiIiOcm2UHEcqjUjec+GnNl+ejoN90WyoVpxYk2Jt5V7F6lLQYdCORCZiIiIiIhIzlAy4ClUu3Zt/vrrr0zLTSYTPXv2JC4ujg0bNrBnzx5Gjx7NyJEjeeGFFwBwcHCgYMGC2Nvbc+3aNRISEoiPt37yLl++fBQoUAB7e3uuX79OfHw8iYmJuLjcvdu+iIiIPPkcnqtPelwMqX/vzpHt26em0fhgDD9WKUIcScbyyi5VqF6wRo7EJCIiIiIiklM0Z4Bk6L333mPbtm1MmTKF0NBQ6tevT8+ePTl//jwA8+bNY8GCBYwePZqlS5fi6upKz549rRICwcHBrF+/npkzZxISEkJiYiJ9+vQhLS0tp3ZLREREHrE85tbYuJbOse3nTbpO06NxOGIPQCnH0jR0a5xj8YiIiIiIiOQUJQPkNklJSfz0008MGzaMWrVqUaZMGfr370+pUqUICQnBYrGwaNEiAgMDefHFF6lYsSKTJ08mKSmJNWvWAHD16lWWLVvGiBEjqFevHlWqVGHq1KkcPnyYbdu25fAeioiIyKNisrHFscH/Yeuec3MGOcXF0/TvZDwcy9CiuD82Jl0Ci4iIiMiTLSAggODgYODG0NwLFy7M8rpnzpyhUqVKHDx4MNM6YWFhVKpUibi4uAcNVR4jGiZIbpOamkpaWhp58uSxWp43b17++OMPzpw5Q0xMDD4+PkaZg4MDtWrVIiIigi5durBv3z5SUlKoX7++Ucfd3Z0KFSoQERFBgwYNshyPehJIdrv5ntJ7K/fSMRZ5zNjYY1+vM5Y/vift7z/vrw3LP/9aLPc+K3ERp1I0K9oCk8VG5wYREXmsPCnXrk9KnHLvdEwzFv/duEe6PadXxtz3ukuXLsXR0THL9YsXL86WLVsoVEhzaD1tlAyQ2zg5OeHp6cknn3xCuXLlcHV1Zc2aNezevZsyZcoQExMDQJEiRazWc3V15ezZswDExsZib29PgQIFbqsTGxt7T/Hs3bv3AfZGJHN6b+V+OsYijxm70uRzvorz2d1gubcvnakpqQAkJCRwPfl6ltez2NhztaQn1+zLwB6dE0RE5PH1pFy7PilxijxNChcufE/1bW1tcXNze0jRyONMyQDJ0JQpUxg5ciQNGzbE1taWKlWq0KpVKw4cOGDUMZlMVutk5Sm9+3mSr1q1atja2t7zeiKZSUtLY+/evXpv5WI6xiKPsxqkxzUn+fc1pF84k+W1kpKSuHjxIvnz5ydv3rxZWse22LPY1/SnRD6X+w1WRETkoXtSrl2flDjl3t08tvLkatKkCd27d6dHjx4AVKpUiTFjxvDLL7+wc+dOXF1dGTZsGC1btgRuDBPUtGlTVq5cSeXKlQHYtGkTH3zwAVFRUVSvXp327dvfUwzfffcdH3/8MZcvX8bHxwez2czHH39MeHh4tu6rPBglAyRDzzzzDF9//TWJiYnEx8dTtGhR3n77bUqVKmVkDmNjYylatKixzoULF3B1dQVu9ABISUnhypUrVr0DLly4gKen5z3FYmtrqwsNeSj03sr9dIxFHk+2hYph1/QNUk/tJeXgZtLjstBr0PTPv7c+kHArm8IlcKhUD7vSzz94sCIiIo/Ik3Lt+qTEKfK0mzVrFkOHDuXdd99l1apVDBkyhIoVK1K+fPnb6kZFRfHWW2/RpUsXunbtyr59+5g8eXKWt/X7778zZswYhg4dSpMmTdi2bRuzZ8/Ozt2RbKLZ0+SO8uXLR9GiRbly5QpbtmyhadOmRkJg69atRr3k5GR27dpl3OivWrUq9vb2VnWio6M5cuTIPScDREREJPcxmUzYl3mBfC364ej7Gnalq4DNA9xYsLHBrlRlHJv0JF+z3koEiIiIiMhTrUWLFrz88st4eHjw9ttvU7VqVb766qsM6y5evJjSpUszcuRIypUrR5s2be6pZ8DXX39Nw4YNeeONN/Dw8KBbt273NF+oPDrqGSAZ2rx5MxaLBQ8PD06dOsWUKVPw8PCgQ4cOmEwmunfvzty5cylbtixlypRh7ty55M2bl1atWgHg7OxMx44dmTx5MoUKFaJAgQJMnjyZihUrUq9evRzeOxEREXmc2BYti23RsliuJ5IWe4q0mJOkxZ4m/fI5SM9kbgFbO2xc3P7/uh7YupXBZOfwaAMXEREREXlM3fowbo0aNTh48GCGdY8dO0b16tWteuDWqFEjy9s6ceIEzZo1s1r2wgsvsHHjxiy3IY+GkgGSoatXrzJjxgzOnTtHwYIFefHFFxk0aBD29vYA9O7dm+vXrzNu3DiuXLlC9erV+fLLL3FycjLaGDlyJHZ2drz99tskJSVRt25dJk2apO6EIiIikiFTnnzYlXwOu5LPAf9/rqGU61iSr3Hl1HG2nFhCR++uFClbHlOe/HcdLkhERERERP6R2fXz/czxeev69zO3qDx6GiZIbpOamspff/1Feno6NjY25MmTh8KFC5M/f/4M65tMJuPn1uW3/q4v7SIiIpJVJpMJk0NebJwKYXFx5xKOWJyKYJPXSdcUIiIiIiJ38Oeff1r9vXv3bsqVK5dh3WeffZbdu3ffVj+rypUrd9sk1Pv27cvy+vLoKBkgt5k3bx7/+9//GD16NN9//z3Dhg1j/vz5VuOKzZs3jwULFjB69GiWLl2Kq6srPXv2JD4+3qgTHBzM+vXrmTlzJiEhISQmJtKnTx/S0jLp7i8iIiIiIiIiIiIP7IcffmDp0qWcOHGC2bNns2fPHl599dUM63bp0oVTp04xceJEjh8/TmhoKCtWrMjytl599VU2bdrEggUL+Pvvv/nf//7Hb7/9pgd4HkMaJkhu8+eff9K0aVN8fX0BKFWqFGvXrjUyehaLhUWLFhEYGMiLL74IwOTJk6lXrx5r1qyhS5cuXL16lWXLljFlyhRjjoCpU6fi6+vLtm3b7mkSESUPJLvdfE/pvZV76RiL5D7p6enGv/q/LSIiucmTcu36pMQp907HNHfq378/33//PePGjcPNzY1p06bx7LPPZli3RIkSzJkzh4kTJxISEsILL7zAoEGDGDlyZJa25eXlxbhx4/joo4/48MMP8fHxoUePHnzzzTfZuUuSDZQMkNt4eXnxv//9jxMnTuDh4cGhQ4f4/fffjRPAmTNniImJwcfHx1jHwcGBWrVqERERQZcuXdi3bx8pKSnUr1/fqOPu7k6FChWIiIi4p2TArd2MRLKL3lu5n46xSO5x5coVAI4ePUpMTEwORyMiIpL9npRr1yclTpEH5fTKmJwO4Y7+PYLHL7/8clu5u7s7X375ZYbrlipVir/++stqWePGjWncuLHVso4dO2Y5nldeeYVXXnnF+Pu9997jmWeeyfL68mgoGSC36d27N1evXqVly5bY2tqSlpbGoEGDaNWqFYDxBbxIkSJW67m6unL27FkAYmNjsbe3p0CBArfViY2Nvad4qlWrpkmHJVulpaWxd+9evbdyMR1jkdwnMjKSzZs38+yzz1KyZMmcDkdERCTbPCnXrk9KnHLvbh5bkQcxf/586tevj6OjI7/99hsrV65kzJjHO6HyNFIyQG7z/fffs3r1aqZPn86zzz7LwYMHmThxIkWLFqV9+/ZGvfuZJfx+ZhK3tbXVhYY8FHpv5X46xiK5h42NjfGv/l+LiEhu9KRcuz4pcYpI9unVqxe///57hmV9+vQhMDCQPXv28MUXX5CQkEDp0qV59913efnllx9xpHI3SgbIbaZMmcKbb76Jv78/AJUqVeLs2bPMnTuX9u3b4+bmBtx4+r9o0aLGehcuXMDV1RW40QMgJSWFK1euWPUOuHDhAp6eno9wb0RERERERERERJ4etw4B9KCCg4NJSkrKsOzmfb9Zs2Zl6zbl4bDJ6QDk8ZOUlHTbU/+2trbGU/2lSpXCzc2NrVu3GuXJycns2rXLuNFftWpV7O3trepER0dz5MgRJQNERERERERERESeEO7u7pQpUybDn4IFC+Z0eHIP1DNAbtO4cWM+++wzSpQoYQwTtGDBAmPSEJPJRPfu3Zk7dy5ly5alTJkyzJ07l7x58xrzCjg7O9OxY0cmT55MoUKFKFCgAJMnT6ZixYrUq1cvJ3dPnlIWi4VLV1O5FJ9KakoSpnPnuH7mDHmKFMHWySmnwxMREREREREREXmolAyQ27z33nvMmjWLcePGceHCBYoWLUrnzp3p16+fUad3795cv36dcePGceXKFapXr86XX36J079uqo4cORI7OzvefvttkpKSqFu3LpMmTdLYgvLIxF5JYc/xeI5GJhJzJYXk1Bu9WwrYXaXZkV3EHj6MCTDlyYODuzuOHh44VqiAnbNzzgYuIiIiIiIiIiKSzZ7oYYKWL1+O2Wx+4HbCwsKoVKkScXFx2RBVzqlUqRIbNmx44HbatGnDokWLOHv2LNevX+f06dN89tlnTJw4EbjxhPVHH33Et99+S1xcHDVq1GDMmDFUrFjRaCM5OZkpU6awZs0arl+/Tt26dRk7dizFixd/4PhE7ubAyQQ+XxPJnJVn2LTnMpEXko1EwE2mf01mbbl+neunTnF50yai5s8ndu1akqOjH3XYIiIiIiIiIiIiD02OJQNiYmJ4//33adq0KVWrVqVRo0YEBgayffv2Rx6Lp6cnW7ZswfkhPQ2cUbLh/PnztGrViq5duz52SYilS5eyZcsW42fBggUAtGjRAoB58+axYMECRo8ezdKlS3F1daVnz57Ex8cbbQQHB7N+/XpmzpxJSEgIiYmJ9OnTh7S0tBzZJ3k6nL1wnQU/RPHtxmgiLyRnXtHCbfNi/FNm4drhw5z/5hsufP89168nPpxgRUREREREREREHqEcGSbozJkzdO3aFRcXF4YNG0alSpVITU1ly5YtjBs3jh9++OGRxZKSkoKDgwNubm6PbJunTp2iZ8+elCtXjtmzZ+Po6PjItp0VhQsXtvr7888/55lnnsHb2xuLxcKiRYsIDAzkxRdfBGDy5MnUq1ePNWvW0KVLF65evcqyZcuYMmWKMT/A1KlT8fX1Zdu2bTRo0OCe4lECQe7GYrGwdX8cv/55mXRLVuqnG+uRWVIAuHQ5itVnvqFx0WaUzvdMdoUrj8DN84bOHyK5R3p6uvGv/m+LiEhu8qRcuz4pccq90zEVeXrkSDJg3LhxmEwmlixZQr58+YzlFSpUMCapBViwYAHLly/n9OnTFChQgMaNGzNs2DDy58+fadshISF8+eWXnDt3jpIlSxIUFES7du2M8kqVKjF27Fh+++03tm/fzuuvv07t2rXp3r07u3btwsXFBYA//viD6dOns3fvXgoVKkTz5s0ZPHiwEe8333zDf//7X6KionB2dsZsNjN79uy77vuhQ4fo1asX3t7eTJ48GXt7e6PsyJEjTJ06lfDwcCwWC5UrV2bSpEk888wz7Nmzh5kzZ3LgwAFSU1OpXLky77zzDs8//3yWX/f7kZyczOrVq+nZsycmk4nTp08TExODj4+PUcfBwYFatWoRERFBly5d2LdvHykpKdSvX9+o4+7uToUKFYiIiLjnZMDevXuzbX8k90lLh+1HTJyIzfym/m1MN3rjXL1Dr5x0Oxu2lr7OlcupfHs5hCpUpQSlHjRcecR0/hDJPa5cuQLA0aNHiYmJyeFoREREst+Tcu36pMQpIiK3e+TJgMuXL7N582YGDRpklQi46ebNeLgxjMe7775LyZIlOXPmDOPGjWPq1KmMHTs2w7bXr1/PBx98wDvvvEO9evXYuHEjI0eOpFixYtSpU8eoN2fOHAYPHszIkSOxsbHhzJkzVu389ddfvPHGGwwcOJDg4GAuXrzI+++/z/vvv8/EiRPZu3cvwcHBTJkyBU9PT65cuUJ4ePhd9z0iIoKhQ4fSqlUrRo0ahY3NP6M0nT9/nldffRVvb2/++9//4uTkxB9//EFqaioACQkJtGvXjvfeew+AL7/8kjfffJMff/zRatLe7LZhwwauXr1K+/btAYwv30WKFLGq5+rqytmzZwGIjY3F3t6eAgUK3FYnNjb2nmOoVq2aJh2WDFksFpb8FsuF5ET+deq4qwK2JrgAzi4umQ4XdLaGK5Zil7jZ7GlOUrrIM1Qr8MKDBy4PXVpaGnv37tX5QyQXiYyMZPPmzTz77LOULFkyp8MRERHJNk/KteuTEqfcu5vHVqx9enTOI91e0LP9H+n2sluTJk3o3r07PXr0yOlQ5A4eeTLg1KlTWCwWypUrd9e6/37zlC5dmoEDBzJ27NhMkwHz58+nffv2dOvWDQAPDw/+/PNPvvzyS6tkQKtWrejUqZPx963JgPnz59O6dWtj+2XLluXdd98lICCAsWPHEhUVhaOjI76+vjg5OVGyZEmqVKly1/3p168ffn5+jBkz5rayb775BicnJ2bMmGH0FvDw8DDK69ata1V//Pjx1KpVi127dtG4ceO7bvt+LVu2jIYNG+Lu7m61/NYbqBbL3cdmyUqdjNja2upCQzL0U/hFDp2+lvn4/5mwMd14P5lMJjJaM6VYAf4sdfm2dndc3EqhPIUok7/sfUYsj5rOHyK5x82HKGxsbPT/WkREcqUn5dr1SYlTRO7P/d7UX7p06WM3FLrc7pEnA27eEM7KzbsdO3Ywd+5cjh49Snx8PGlpaVy/fp3ExMQMexUcP36czp07Wy2rWbMmixYtslpWtWrVO253//79nDx5ktDQUKu409PTOXPmDPXq1aNEiRI0a9aMBg0a0KBBA5o3b37XN3zTpk1Zv3494eHhmM1mq7KDBw9iNputhg36twsXLjBr1izCwsKIjY0lPT2da9euGU/jPwyRkZFs27aNOXP+yYTenFshNjaWokWLWsXn6uoK3OgBkJKSwpUrV6x6B1y4cAFPT8+HFq88XXYfi2fr/iv3te6dzj4WO1vCq6VhyaCSBQsbzv9Ix1KdKehQ8L62LSIiIiIiIiLyqCUnJ+Pg4PDQ2r91DlJ5PNncvUr2KlOmDCaTiWPHjt2xXmRkJG+++SYVKlRgzpw5LF++nNGjRwMYQ+dkJKMn1m9dllEi4d/S09Pp0qULK1euNH5WrVrFTz/9ROnSpXFycmLFihXMmDEDNzc3Zs+eTdu2bYm7w/jjcONp/latWtG7d2927txpVZY3b947rjtixAj279/PyJEj+d///sfKlSspWLAgKSkpd1zvQSxfvpwiRYrg6+trLCtVqhRubm5s3brVWJacnMyuXbuMG/1Vq1bF3t7eqk50dDRHjhxRMkCyxbXrafyw68L9N3CHbMC5aoW5kDcp0/Lk9GQ2x2y8/22LiIiIiIiIiDyggIAAxo8fz/jx4zGbzdSuXZuZM2caD2I3adKETz75hBEjRuDl5cWoUaMA+PHHH/H396dq1ao0adKEL7/80qrNyMhIJk6cSKVKlahUqZJR9scff9CtWzdeeOEFGjVqxIQJE0hMTDTKmzRpwsKFC42/K1WqxJIlS+jXrx/Vq1fnxRdf5Oeff87y/v3888+8+OKLvPDCCwQEBLBixQoqVap01/uvcmePPBlQsGBBfHx8+Oabb6zeMDfdPKD79u0jLS2NESNGUKNGDTw8PIiOjr5j2+XKleP333+3WhYREUH58uXvKcYqVapw5MgRyvw/9u47Popq///4a3ez6SGUhB5IaKEFCEUkgEhXLl6VGgtIkQvS5aIgIFLEEBBRQJFLiYBY+CEglq8KNkQEqRIUadICQUKAQBLSNvv7g8teliSQhNTN+/l45JHszJkzn8nMzuzOZ8451atn+LmZQXNyciIkJIQXX3yRTZs2cfbsWXbs2HHHeg0GAzNmzOCf//wn//rXv9i5c6dtXmBgILt3787y5v7u3bvp168f7dq1o3bt2jg7O3P58uUcbVdOpKens379eh577DGcnP7XgMRgMNC/f3+WLFnC5s2bOXLkCC+99BKurq50794dAC8vL3r27El4eDi//PILf/zxBy+88AJ16tQhJCQk32KWkuPbfZdJTE7P9fKGLHqsSi3vzd4qd39fRV0/w/H4Y7lev4iIiIiIiIjIvdqwYQMmk4m1a9cyefJkVq5cyf/7f//PNn/58uXUrl2b9evXM3z4cA4ePMjYsWPp1q0bn332GSNHjuStt95i/fr1wI1xVitWrMjo0aPZtm0b27ZtA/43vmrnzp3ZtGkT8+fPZ8+ePcycOfOO8S1atIiHH36YTZs28cADDzB+/HiuXLly1+2KiopizJgxdOzYkY0bNxIaGsr8+fNz/48SmwJPBgC88sorpKen07t3b77++mtOnjzJ8ePHWbVqla2bn2rVqpGWlsbq1as5c+YMGzdu5KOPPrpjvc8++ywbNmzgww8/5OTJk0RERLB582YGDRqUo/iGDBnC/v37mT59OocOHeLkyZN8++23tgP8+++/Z9WqVRw6dIizZ8+yceNG0tPT7fr4z4rBYGDatGn06NGDoUOH8ssvvwDw1FNPER8fz7hx44iMjOTkyZNs3LiRv/76C7jRomLTpk0cP36c3377jfHjx9+1NcG92L59O+fOnaNnz54Z5g0ZMoRnnnmG6dOn07NnT/7++29WrFhhN5DxpEmT6NSpE2PHjuWJJ57Azc2Nd999V/0Kyj27Ep/K7iPX7rGWjE0DrE4m9jbKvHugzPwa+0uux8EQERERERFJSUsn+lIyf0Vf59rFCySfO0daXJy+Z4hItlWqVIlJkyZRo0YN/vnPf/L000/bPZ1///33M3jwYNtDzhEREbRq1YoRI0YQEBBAjx49eOqpp1i+fDlw4yFuk8mEh4cHvr6+tu7Cbx1f1d/fn6ZNmzJ58mQ2btxIcnJylvE9/vjjdO/enerVqzNu3DiuX7/OgQMH7rpdH330EQEBAUyYMIEaNWrwj3/8g8cff/ze/lkCFMKYAXBjMOD169fz7rvvEh4ezoULFyhbtiwNGjSwDQ5cr149XnrpJZYuXcobb7xB8+bNGTduHBMmTMiy3k6dOjFp0iSWL1/OrFmzqFKlCq+99hotW7bMUXx169Zl9erVvPnmmzz55JO2mLt16wbcePJ98+bNLFq0iOTkZKpXr868efOoXbt2tuo3GAxMnToVo9HIsGHDWLx4MSEhIaxcuZK5c+fSr18/jEYj9erVo1mzZgC89tprvPzyyzz22GNUrlyZ559/njlz5uRou3Kidu3aPPLII4SGhpKUlIS/vz+zZs2iYcOGGAwGRo4cCcDHH3/MgQMHmDlzJlOnTrX9D1xcXGz76vPPP2fHjh1Mnz6dadOmUbFixXyLWxzf3qPx3Ptn44wV/N2wDDFuV7Jdw5XUK5xJPE01j+r3GoyIiIiIiJQAVquVv6KTOHQ6gWNnr3MlIQ2r9cb0+pf3cvGPPzEABhcXXCpVwjUgAPe6dTHl44OAIlK8NW7c2K579CZNmhAREYHFYgEyjpv6119/0bFjR7tpN8dbtVgsWT7Ee7fxVbPqleXWbobc3d3x8PDg0qVLd92uEydOZIi9UaNGd11O7q5QkgEA5cuXZ+rUqbZxADIzYMCADCNXP/bYY7a/e/ToQY8ePezmP/nkk7Yb+Jk5fPhwhmktW7bMML1Ro0Z2fWbdqnnz5qxevTrLdWSnfoApU6YwZcoU2+u6devaMnG3q1+/Pp988ondtIceesjudWbryI24uDieeOIJWrZsydKlSylbtixnzpyhVKlStjJLly4lIiKC2bNn4+/vz+LFixk4cCBfffWVrYXArFmz+P7775k/fz6lS5dm9uzZDB06lPXr16uFgOSK1Wpl//F7bRUAhtsaRaX5lmJP1Ss5rufwtUNKBoiIiIiIyB1Z0q0c+CuebZFxXLyaedfARoPR9sySNTmZpJMnSTp5ks1O+yhX3p8WZVvi7nTn8Q9FRG7n5uZm9zq3LY9ujq/ar1+/DPMqVaqU5XJms9nutcFgID397t0+ZzYGrFpN5Y1CSwZI0bV06VIqVqxIWFiYbVrVqlVtf1utVlatWsWwYcPo0qULAOHh4YSEhPD5558TGhrKtWvX+OSTT5gzZ45tnIC5c+fy4IMPsn37dtq2bZvteG5mM0XOXEjiSnzWA4hnVzo3jimr1QomE3uC0knHmlmDgTvHk3CatLS0DBcoKXw3zxs6f4g4jptfGtLT0/XeFhGRYiM6NplPf4nl78uZJwEAsFoxGgxY061wy3eLlAqlOO9yjfNxkRy7doT7yrainlf9Qvv+oc/Yjkv7tPj67bffMryuXr16lg/h1qxZk71799pN27t3L/7+/rZlzGZzhhv2t46vWhBq1KjBjz/+aDft4MGDBbJuR6dkgGTw3Xff0aZNG0aPHs2uXbuoUKECTz75JH369AFuDOIRExNDmzZtbMs4OzvTokUL9u3bR2hoKAcPHiQ1NZXWrVvbylSoUIHatWuzb9++HCUDIiMj827jpFj7/ayBq1fv/YOvE/EAXLt6lTN1S3Es7W/IxWD0V7nKz1e24YnXPcck+UPnDxHHERcXB8CxY8eIiYkp5GhERETu7uh5A7/+ZSA9Gw8dGTBy7ar9l5LDNa1cvZpoe/3FlU38yg6CaIKJwmttr8/YIkVHdHQ0YWFh9O3blz/++IP333//jl2sDxo0iF69evH222/TrVs39u/fz5o1a3jllVdsZapUqcKuXbv4xz/+gdlspmzZsgwZMoS+ffsyffp0+vTpg5ubG8ePH2f79u28/PLLeb5dffv25b333mPu3Ln06tWLQ4cOsWHDBgA9kHmPlAyQDM6cOcOHH37IwIEDGTZsGAcOHODVV1/F2dmZxx57zPYFvFy5cnbL+fj4cO7cOQAuXryI2WzG29s7Q5mLFy/mKJ6goCB1KyQAHL8WQ6lSiXcveBfeJhNcAreAypxsmkQpQ6m7L5QFH99y1PWqf88xSd6yWCxERkbq/CHiQM6ePctPP/1ErVq1qFKlSmGHIyIickfbf4/jj5greGbnuSGrFeM1A16lStluclldzFysa83wXSWZJM66nqZrhW64mFzyIfKs6TO247q5b8Xec7VGFXYId/XYY4+RlJRE7969MZlMPP300/Tt2zfL8g0aNODNN99kwYIFLF68GF9fX0aPHm3XDfvo0aOZOnUqnTp1IiUlhcOHD991fNW85ufnx1tvvUV4eDirVq2iSZMmDBs2jGnTpuHs7Jwv6ywplAyQDKxWKw0bNmTcuHHAjaZAx44d48MPP7QbsyE3fXflpn8vk8mkDxoCwJV4S55kgI0GE1ajgf1NDGA0cC81JqUn6fgswnT+EHEcRqPR9lvvaxERKcp2H77Kln1x2f7uYgVMGDEY/vfd5EoNb9KNV8js28r55Gi+vvAlj1bpcWOsgQKmz9giRYeTkxOTJ09m+vTpGeZ99913mS7TtWtXunbtmmWdTZo0YdOmTRmm32l81czWl9nYprt3785y+dt17NjRbrDjxYsXU7FiRVxcCjYR6mgK/qohRZ6vr2+GUcBr1Khhe+rf19cXIMMT/rGxsfj4+AA3WgCkpqbamvRnVkYkp9IseTNYjAE4U8Odv92v33NdiZaEew9IREREREQcwpkLSXz5a2yOlzPe+lXHYODPKsl3LH8+KZodsdtzvB4RkeJizZo1HDhwgDNnzrBx40aWL19u95Cy5I6SAZJB06ZNOXHihN20kydP2prkV61aFV9fX37++Wfb/JSUFHbt2kVwcDAADRs2xGw225W5cOECR48etZURyam07HS2mQ1mrvFHygm8k5ww3eNpMM2qgZZERERERAQsFivrt8VgSb972dvd2gIgpYI3sW53f3Dptyv7OJ1wKucrExEpZFOnTiU4ODjTn6lTpwJw6tQphg8fTrdu3Vi8eDEDBw5k1Kii33VTUadugiSDZ555hieeeIJ3332Xhx9+mAMHDrB27VpmzJgB3OgeqH///ixZsgR/f3+qV6/OkiVLcHV1pXv37gB4eXnRs2dPwsPDKVOmDN7e3oSHh1OnTh1CQkIKc/OkGMtFL1OZauZ8BOPJOPz2ncbZ3YOrpb2JLe1BrLsTF53TuMJ10sneypyN6qtORERERERgx6E4Ll1Ly9WyxluSAVH+2e+C5+eLP1HV3a9QugsSkcK1evXqwg4h18aMGcPgwYMznefp6QnApEmTmDRpUkGGVSIoGSAZ/Pjjj6SlpTF//nzmz58P3Hgj/vOf/wRu9PuflJSExWJh5MiRGAwGGjRowIoVK2xv2JSUFAwGA5cuXWLAgAEYjUZatmzJu+++q74FJde8PZxy/eH6JjdTGlVTjnHuv69N6emUuXSZMpcuU+u/09JMJi6XK82lUu7Euhm5aE4ljqRM63NRMkBEREREpMRLSU1na2Tc3QtmwWQ1AFasbs4c9rma7eWupF7mePwxanvVyfW6RUQKWrly5ShXrlxhh1EiKRkgmapduzYRERG217fewF+6dCnvvfce4eHh+Pv7s3jxYnbt2kXlypVtZWbNmsX333/PkiVLKF26NLNnz+by5cuUL1++QLdDHEu5UmZOnM/8pnx2tS59BtOllDuWcbJY8L0Qi++F//X1meLszOWy3sSWciPWzcBFUwrxJFPK7H1P8YiIiIiISPF38GQCSSm56B/ov24+13/F3xuL4XLO1h13QMkAERHJFiUDJFMmk8k2UPCtrFYrq1atYtiwYXTp0gWA8PBwQkJC+PzzzwkNDeXatWt88sknzJkzx9Yl0Ny5c3nwwQfZvn07bdu2LdBtEcfh422+5zrqpR/KZgdA9pxTUqhwPoYK5/83LcnNFc+KymSLiIiIiJR0B0/E39Pypv9+Sfmz6t3HCrjd30nnSbIk4WpyvacYRETE8SkZIJk6deoUbdq0wdnZmcaNGzNu3Dj8/PyIiooiJiaGNm3a2Mo6OzvTokUL9u3bR2hoKAcPHiQ1NZXWrVvbylSoUIHatWuzb9++HCcDLBYN0Co3BFRwxnoPAwfU94rF5XoMSTersHJP9blaDJjdyuoYLYJu7hPtGxHHkZ6ebvut97aIiBQllnQrpy4k5f67hdWKwQpJFby46JJITp9esmLlxLW/qOMVmLv1Z5M+Yzsu7VORkkPJAMmgUaNGti6AYmNjWbx4MaGhoXz++efExMQAZOjXy8fHh3PnbvTCfvHiRcxmM97e3hnKXLx4McfxREZG5nJLxBEZUo3E5fxhGQBqGLYTlxJHWuqNcQcSEhJITknOdSzXy/lwdf/+XC8v+U/nDxHHERd3ox/mY8eO2T6PiIiIFAWx8RB76d4G8DVZrRwoFcfVq7n7srPn6m4SyeUXpRzSZ2wRkeJLyQDJoF27dnavmzRpQufOndm4cSONGzcGwGAw2JXJzhMQuX1KIigoSIMOi80VwxV+PJDzgblKOydT1ykOg6s3SUlJXLp0CQ8PD1xdc9+UtsKDPTF6axyMoshisRAZGanzh4gDOXv2LD/99BO1atWiSpUqhR2OiIiIzcETCZQ6kfMH32ysVtKvmrhYx4lSxtx1jVrWvQxNKjbJfQzZoM/YjuvmvhURx6dkgNyVu7s7derU4eTJk3Tq1Am48fT/rYMBx8bG4uPjA9xoAZCamkpcXJxd64DY2FiCg4NzvH6TyaQPGmJzX11vfvnjGqmWnCWX2nmfxJhgBYMBbuayDBkTW9llqlgTc9lKuVpWCo7OHyKOw2g02n7rfS0iIkVJclruv1fAjV6BoisaSTem57qe6+mJBXZ91GdsKSnOzJ9foOvze/75PKmnX79+1K1bl8mTJ9OhQwf69+/PgAED8qTugrZlyxbCw8OJiori6aefpl69erz22mvs3r0bgIULF7JlyxY+/fTTQo60+Li3dmxSIqSkpHD8+HF8fX2pWrUqvr6+/Pzzz3bzd+3aZbvR37BhQ8xms12ZCxcucPTo0VwlA0Ru5eXuRIu6Xjlaxkg6NVIP5Wkc5sBWeVqfiIiIiIgUT6lp6fe0vAfXuHLhEOUTnTGTu5vsaVb1+S4iGa1bt46+fftmu/zChQt59NFH8zGinJk6dSpdu3blhx9+YMyYMXTr1o2vv/66sMMq1tQyQDIIDw+nffv2VKpUiUuXLrF48WLi4+N5/PHHMRgM9O/fnyVLluDv70/16tVZsmQJrq6udO/eHQAvLy969uxJeHg4ZcqUwdvbm/DwcOrUqUNISEghb504gnaNShP5VwLXrmfvA2+L0n9jTr6WZ+s3VQ7EqULNPKtPRERERESKL1fn3D9n6WZKo4/TFi5HXcHvt5O4uLtzqVwZ/i7jRbS7lQvGRCzcPdngasp996ci4rjKli1bKOu1WCwYDAZb697cSEhIIDY2ljZt2lChQgXb9Hvp7jm7UlNTMZtz121bUaeWAZLB+fPnGTduHA8//DAjR47EbDazdu1aW/+8Q4YM4ZlnnmH69On07NmTv//+mxUrVuDp6WmrY9KkSXTq1ImxY8fyxBNP4ObmxrvvvqumhJInXJ1N9HrAF1M2z2CNTX/m2boNrh64Nn8kz+oTEREREZHizcM1d99znQwW+pX5Cc+UGNs0Y7oVn5hLNDhyik77T9Pnt8t0OWei0XUvfK3uGMi8GyEXo0uuYhCR4i0xMZEXX3yR4OBg2rRpw4oVK+zmd+jQgffee8/2+tq1a7z88su0atWKpk2b0r9/f/7888Y9k/Xr17No0SL+/PNPAgMDCQwMZP369QBERETwyCOP0KRJE9q1a8e0adNISEiw1bt+/XqaN2/O999/T7du3QgKCmL37t00aNCAmJgYu5hmz57NU089dcft2rlzJ02bNgXgmWeeITAwkJ07d9rWc7uPPvqIdu3a0bhxY0aPHs3Vq1ft5n/yySc8/PDDBAUF8dBDD7FmzRrbvKioKAIDA/nyyy/p168fQUFBbNq06Y7xAaxdu9a2zhEjRhAREZFpbEWNkgGSwfz589m2bRsHDx7kp59+omHDhvzjH/9g1qxZwI2+EEeOHEnfvn3x9vbmwIEDzJw5k6NHj9rqcHFxYcKECXTv3h1XV1d27NjB9OnTOX/+fGFtljgY/4pudGx69wx3FbcESiWeyZuVGk24tuqDwdUjb+oTEREREZFir1ypnD89asDK0z678E6483cVJ4uFCudjaHzoFA/ti6LPwWu0/9uZeklelMHNVq6U2fsOtYiIo5ozZw47d+5k0aJFLF++nF9//ZWDBw9mWtZqtfKvf/2LmJgY/vOf/7B+/XoaNGjAM888w5UrV+jWrRuDBg2idu3abNu2jW3bttGtWzfgxr3AyZMn89lnnzF79mx27NjB3Llz7epPSkpiyZIlvPrqq3z++ec0bNiQqlWr2vXnn5aWxqZNm+jRo8cdtys4OJivvvoKuNF10bZt27Lsevz06dP83//9H++++y7Lli3jzz//ZPr06bb5a9euZf78+Tz//PN8+eWXjBs3jgULFrBhwwa7el5//XX69evHl19+SZs2be4Y3549e3jllVfo378/GzduJCQkhHffffeOyxQVSgbIHR04cICPP/6YwMBAu+lLly4lIiKCqVOnsm7dOnx8fBg4cCDx8fG2MrNmzWLz5s3Mnz+fDz74gMTERIYOHYrFor4MJW+0buBNy3ql7lzG81gWz87kkNGEy32PYfKtlhe1iYiIiIiIg/DxNuPukrPbK318D+AbfyTH63JOSaHq2fM0/+MU3feepfehRB6IdaWWU+Uc1yUixVtCQgLr1q1jwoQJtG7dmsDAQGbPnk16euZdi+3YsYMjR46wYMECgoKC8Pf3Z8KECZQqVYqvv/4aV1dX3N3dMZlM+Pr64uvra+uSZ8CAAdx///34+fnRqlUrxowZw//93//Z1Z+amsq0adNo2rQpNWrUwN3dnV69etlaFwD88MMPXL9+nYcffviO2+bs7Ey5cuUA8Pb2xtfXF2dn50zLJicnEx4eTr169WjRogVTpkzhyy+/tLVIeOedd5g4cSJdunTBz8+PLl268Mwzz/Dxxx/b1fPMM8/YytzaLVFm3n//fR544AEGDx5MQEAATz31FG3btr3jMkWFxgyQLCUkJPDCCy/w6quvsnjxYtt0q9XKqlWrGDZsGF26dAFujDMQEhLC559/TmhoKNeuXeOTTz5hzpw5tnEC5s6dy4MPPsj27duLzRtEir5u95XD09XEt/suZ5jnYrRQ9XoedBHk7IZb676YfKvfe10iIiIiIuJQDAYDNSu7EXki4e6FgUd8DlMt/rc8Wbfr9SSqR13Ao1nVPKlPRIqPM2fOkJqaSpMmTWzTSpcuTUBAQKblf//9dxITE2nZsqXd9KSkJE6fPn3Hde3YsYMlS5Zw7Ngx4uPjsVgsJCcnk5iYiLu7OwBmsznDw8Q9evTgrbfeYv/+/TRp0sTWXc/NZfJCpUqVqFixou11cHAw6enpnDhxApPJRHR0NJMnT+bll1+2lUlLS8PLy8uunoYNG2Z7nSdOnKBTp0520xo1asQPP/yQu40oQEoGSJZmzJhBu3btCAkJsUsGREVFERMTY9dkxtnZmRYtWrBv3z5CQ0M5ePAgqamptG7d2lamQoUK1K5dm3379uUoGaCWBHI3rRt4UcrdyFe7LpGY/L8MeCvv0xivJ2G9fQHr/35brRnm2jF4lsWlzRPgWVbHYjFyc19pn4k4jptPOKWnp+u9LSIiRU6Tmh4c+Cv+ruXalz1FYPwO++8oOfh+khlT+QDSDSbI5+ujPmM7Lu3T4imn54v09HR8fX1ZvXp1hnm33xi/1dmzZ/nXv/5FaGgoY8aMwdvbmz179jB58mTS0tJs5VxdXTEY7PtmKFeuHO3bt2f9+vX4+fmxdetWVq1alaO4c+pmDAaDwfYdYubMmTRu3Niu3O2DG+ckQWG1WjNsa27O34VByQDJ1BdffMEff/zBunXrMsy72czmZnOdm3x8fDh37hwAFy9exGw24+3tnaHMxYsXcxRLZGRkjspLydU2AHb9ZeDkxRsn5IrW7cSlxWUol5Z642KVkJBAckpy5pUZnEioUJcE3wZYj50G7pwll6JJ5w8RxxEXd+N8fuzYsQyDkImIiBQFhlQjcdeznt/Y/Qy1/v6ROOy78MjW95Os10pslfKk7d+fw+VyT5+xRYqGatWqYTab2b9/P5Ur3+gqLC4ujpMnT9KiRYsM5Rs0aMDFixcxmUxUrZp5ayKz2Zyhm6GDBw9isViYOHGi7Qb67V0E3UmvXr0YN24cFSpUwM/Pj2bNmmV72eyIjo7m77//tnXts2/fPoxGI/7+/vj4+FChQgXOnDnDP//5zzxbZ40aNTKcC7Maq6GoUTJAMoiOjmbWrFmsWLECFxeXLMvlJgOWmyxZUFAQJpMpx8tJyXR/CzhzIYm/jkdTNTod0jMOpJWUlMSlS5fw8PCw9X9nYzLjFNAEpzohGN3vPB6BFF0Wi4XIyEidP0QcyNmzZ/npp5+oVasWVapUKexwREREMnArl8hHP2SesK7vdYmH0w9gTM/49O0dv5/chcm/CZWat89VvDmlz9iO6+a+leLFw8ODnj17MnfuXMqUKUO5cuWYP39+hvt1N4WEhNCkSRNGjBjB+PHjCQgI4MKFC/z444906tSJoKAgqlSpQlRUFIcOHaJChQp4enpSrVo10tLSWL16NR06dGDPnj189NFH2Y6zbdu2eHl5sXjxYkaPHp1Xm2/j4uLCxIkTmTBhAvHx8bz66qs8/PDD+Pr6AjBq1CheffVVPD09eeCBB0hJSeHgwYNcvXqVgQMH5mqdTz/9NE8//TQRERG0b9+eHTt2sHXr1iz/90WJkgGSwe+//05sbKzdyN4Wi4Vdu3axZs0a22jeFy9epHz58rYysbGx+Pj4ADdaAKSmphIXF2fXOiA2NjbL0b+zYjKZ9EFDcsS/kgf+lWphTfo3qWcOkn7pHOlxf5N+9SKkW7CNKGwAg9GA0bsCpgo1MVWsgcmnOgaTTo2OQucPEcdx8ykko9Go97WIiBRJ9f29qFM1gaNn7ZsHVHe/xsOGbzFZLZDZjaJbv5/k5EaSkxnXRh0xFvB1UZ+xpaTwe/75wg7hrl588UUSExN57rnn8PDwYODAgcTHZ95lmcFg4D//+Q9vvvkmkyZN4vLly/j4+NC8eXPb/byuXbuyefNm+vfvz9WrVwkLC6NHjx689NJLLF26lDfeeIPmzZszbtw4JkyYkK0YjUYjjz/+OEuWLOGxxx7Lq023qVatGp07d2bIkCHExcXRrl07XnnlFdv83r174+rqyvLly5k7dy7u7u7UqVOHZ555JtfrbNasGdOnT2fRokW8+eabtGnThgEDBrBmzZq82KR8ZbAWlw6NpMDEx8fbuvu56aWXXqJGjRoMGTKE2rVr07ZtW5555hmGDBkCQEpKCiEhIYwfP942gHCrVq2YM2cO3bp1A+DChQu0a9eO//znP9kaM8BisdgGGNEHDckL1nQL1oTLREdF8fHatfR5qj9VAmrp5r8D0vlDxPFERUWxfPlyBg8enGWzZhERkcJ27Xoa//n8HFcTb/TBXt71Ok86/x/m1KzHE7iedJ0zp8/gV80PN1e3bK/LpWk3zLUydgWSX/QZ23GV5H2blJTEiRMnCAgIyHHLHMm+KVOmcPHiRd59993CDiXfTJkyhb/++osPPvgg28sUxvGnO2CSgaenJ3Xq1LGb5u7uTunSpW3T+/fvz5IlS/D396d69eosWbIEV1dXunfvDtwYeKRnz56Eh4dTpkwZvL29CQ8Pp06dOoSEhBT4NokAGIwmDF4+WL2SuIYLuHoqESAiIiIiInnGy82J0PYViPgqGldDMqGu32JOvvvAwjllDmxVoIkAEZHcuHbtGpGRkXz22We88847hR1Onlq+fDmtW7fGzc2NrVu3snHjRrsWCUWV7oJJrgwZMoTk5GSmT59OXFwcjRs3ZsWKFXh6etrKTJo0CScnJ8aOHUtSUhKtWrVi9uzZJS7LLCIiIiIiIiVHFR8XnupYAbf9a3G5dinP6zfXbolzo855Xq+ISF4bPnw4Bw4coG/fvrRu3dpu3rPPPsuePXsyXW7o0KEMGzasIELMVHZiO3DgAMuWLSMhIQE/Pz8mT55M7969CzjSnFMyQDL44IMP+PDDDzl79iwAtWvXZvjw4bRr1w64MQjwokWL+Pjjj7l69SpNmjRh6tSp1K5d21ZHSkoKc+bM4fPPPyc5OZlWrVoxbdo0KlasWCjbJCIiIiIiIlJQAiq5ke7RjevbPsQafzlvKjWZcW74IM6Bam0vIsXD6tWrs5w3a9YskpKSMp136/ijhSE7sb311lsFGVKeUTJAMqhYsSLjx4+nWrVqAGzcuJERI0awYcMGateuzdKlS4mIiGD27Nn4+/uzePFiBg4cyFdffWVrGTBr1iy+//575s+fT+nSpZk9ezZDhw5l/fr1ahkgIiIiIiIiDs9Yyhf3zv8i5fAvpB7ZAWkpua7LVDkQl+CHMHqUzrsARUQKUYUKFQo7hCwV5djulbGwA5Cip0OHDrRr146AgAACAgJ4/vnncXd3Z//+/VitVlatWsWwYcPo0qULderUITw8nKSkJD7//HPgRn9gn3zyCRMnTiQkJIT69eszd+5cjhw5wvbt2wt560REREREREQKhsHsikvD9nj8YwzmOvdDDscsM5argmubUNzahCoRICIi90wtA+SOLBYLX331FYmJiQQHBxMVFUVMTAxt2rSxlXF2dqZFixbs27eP0NBQDh48SGpqql1fYBUqVKB27drs27ePtm3b5jgGkbyUnp5u+63jy3Gcv3ido9EpxMSlkpKUgMvJr7lcKZayLmWp5l6dMs5lCztEEbkHOneLiEix5uSCU1AnTIFtsFw4QXrMCdIvnyf9agxWYxrJmLA6e4JHKYylfDGW98dUqTZGjzJA0fhefDOGohCL5C3tU5GSQ8kAydThw4cJDQ0lOTkZd3d33n77bWrVqsXevXsBKFeunF15Hx8fzp07B8DFixcxm80Z+vfy8fHh4sWLOY4lMjIyl1shkrm4uDgAjh07RkxMTCFHI/fEasX10l94nj/IPks9frhWFwBXrlPv+t8ci/7VVtSb0vhTg/I4bnM/EUemc7eIiDgUQ2UoWxnK3rjG/XT8J9qWD/nf9+h44Ogp4FRhRpkpfUcXESm+lAyQTAUEBLBx40auXr3KN998w4QJE3j//fdt8w0Gg115q9V61zqzUyYzQUFBGmdA8tTZs2f56aefqFWrFlWqVCnscCSX0q/FkvLrRtIvnwMXI/e5x7PXcOPLk5vRGUO6M15eXrbzlZV0TnCMNLcUOpbvjIvJtTDDF5Ec0rlbREQcVXG5xlksFiIjI/Ud3QHd3Lci4viUDJBMOTs7U716deDGzfjIyEhWrVrFkCFDgBtP/5cvX95WPjY2Fh8fH+BGC4DU1FTi4uLsWgfExsYSHByc41hMJpM+aEieMhqNtt86toony8UzJG/7AFKSbDf7va6fw8clmdgUVwwYMLiYMRgMGZKXUUln2Bj9CY9Ufhwvs1dhhC8iuaBzt4iIOKrido3Td3QRkeJLyQDJFqvVSkpKClWrVsXX15eff/6Z+vXrA5CSksKuXbsYP348AA0bNsRsNvPzzz/TrVs3AC5cuMDRo0d54YUXCm0bRMQxpMdf5vp/EwG3MgDNvM7yTWzNG+Vcsr7ExaXGsensenr49cbN5J6f4YqIiIiIiEgx9MWSXQW6vn8MbZGn9UVFRdGxY0c2btxIvXr1ikx9HTp0oH///gwYMOCeY5KcUzJAMnjjjTd44IEHqFixIgkJCXz55Zf8+uuvLFu2DIPBQP/+/VmyZAn+/v5Ur16dJUuW4OrqSvfu3QHw8vKiZ8+ehIeHU6ZMGby9vQkPD6dOnTqEhIQU8taJSHFmTbeQtH1thkTATTU4CdxMBtz5aaWraVf5KeZHulR8OI+jFBEREREREREpepQMkAwuXrzIiy++yIULF/Dy8iIwMJBly5bRunVrAIYMGUJycjLTp08nLi6Oxo0bs2LFCjw9PW11TJo0CScnJ8aOHUtSUhKtWrVi9uzZakooIvfk6pnfMF05n+V8z8SzlHNOIjH17skAgOPxxzibGEUV96p5GaaIiIiIiEOIvpTM/mPxnPo7iSvxqTx8agsXfv8dl8qVca9fH9fKlQs7RBERyQFjYQcgRU/16tUpU6YMZrMZAHd3dypVqmSbbzAYGDlyJH379sXb25sDBw4wc+ZMjh49aivj4uLChAkT6N69O66uruzYsYPp06dz/nzWN/FERO4k3ZrOJutvbA6uxt8VfTMtc7OrIACLiyHTMrfbdWlHXoUoIiIiIuIQrMmJJG1fy+8/72THoatEX0ohMTkdQ2oqqbGxJERGcvS37/js7EYS0hIKO1yREmvr1q088cQTNG/enJYtWzJ06FBOnz6dZfmjR4/yr3/9i6ZNmxIcHMyTTz5pK5+ens6iRYt44IEHaNiwIY8++ihbt27NUMeZM2fo168fjRs35p///Cf79u2zm//111/zj3/8g4YNG9KhQwdWrFiR6+07fvw4TzzxBEFBQXTr1o3t27cTGBjIli1bcl1nSadkgGTw66+/8tRTT7F27VoiIiKwWCwMHjyYxMREW5mlS5cSERHB1KlTWbduHT4+PgwcOJD4+HhbmVmzZrF582bmz5/PBx98QGJiIkOHDsVisRTGZolIMXc68RTxafGcN8TzTWULW5pU40IFnwzlbnQVBGku2as3Oima+LT4uxcUERERESkB0hPjuP59BGlRhwhO34+R9IyFTEYOVE8g6voZ1ket5WJyTMEHKiJcv36dgQMHsm7dOt577z0MBgMjRowgPT3j+/bvv//m6aefxsXFhZUrV7J+/Xp69uxJWloaAKtWrSIiIoIJEyawadMm2rRpw/Dhwzl58qRdPfPnz2fw4MFs3LgRf39//v3vf9vqOHjwIGPHjqVbt2589tlnjBw5krfeeov169fneNvS09MZMWIEbm5u/L//9/+YMWMG8+fPz/k/SewoGSAZLF++nB49elC7dm3q1q1LWFgY586d4/fffwduDCa8atUqhg0bRpcuXahTpw7h4eEkJSXx+eefA3Dt2jU++eQTJk6cSEhICPXr12fu3LkcOXKE7du3F+bmiUgxdT4p2u51tDGer6uks6VJNWLKl7NN90w8SxmXJFKzmQwAOHc9Kq/CFBEREREptqypyVz/YSXpVy8C4JJ8mbZlz2Yod7VGWa46pwAQnxbPF+c2kagWAiIFrmvXrnTp0gV/f3/q1avHa6+9xpEjRzh27FiGsmvWrMHT05M33niDoKAgAgIC6NmzJzVq1ABu3A8cMmQI//jHP6hRowYvvPACdevWZeXKlXb1DBo0iAcffJCAgABGjx7N2bNnOXXqFAARERG0atWKESNGEBAQQI8ePXjqqadYvnx5jrdt27ZtnDlzhvDwcOrWrUvz5s15/vnnc/FfkltpzAC5q2vXrgHg7e0N3Bg9PCYmhjZt2tjKODs706JFC/bt20doaCgHDx4kNTXVNs4AQIUKFahduzb79u2jbdu22V6/WhJIXruZIU9PT9fxVYxcTLqI1WrNMP2c4RrnqkDlSn40PpuAT0wsQW5n+dnFilMm5bOqu6a7jgWRokznbhERcVRF6RqXcuBb0q9dspvWyLKXrdbKWK03uuG0YiWyeqLdZ/OEtAS2XviBzhUeKtB4JW8U9nEnuXf69Gneeust9u/fz+XLl23vy+joaGrWrGlX9tChQzRv3tzWLfit4uPjuXDhAk2bNrWb3rRpU/7880+7aYGBgba/fX1vdOF76dIlatasyV9//UXHjh0z1LFq1SosFkuOxhI9ceIEFStWtK0DoFGjRtleXjKnZIDckdVqJSwsjGbNmlGnTh0AYmJuNP8rV66cXVkfHx/OnTsH3BiE2Gw22xIIt5a5ePFijmKIjIzMbfgimYqLiwPg2LFjtuNZir5TnOQaV7Ocf5Wr/OkN5V09qHr+GKmmdFsy826OXD2My2m3vApVRPKBzt0iIuKoiso1zpCWTPnI78B6+43hOBo47ePna7UAOO1l5WRKDKTYl9p/dR+e0d64oc/VIgVl2LBhVKpUiVdffZXy5cuTnp5O9+7dSU1NzVDW1dX1rvUZDPZj71mt1gzTbk0m3Jx3M6mZ2QN8uZXZuuXeKRkgdzRjxgyOHDnCBx98kGFeZieIu8nNSSEoKChHmUORuzl79iw//fQTtWrVokqVKoUdjmTTsajDGFLuXi4J+MM7hZhTMVSvXh1nZ+e7LlPNqxpNfJvcc4wikn907hYREUdVVK5xaWcOknLSM9N5HZyj+MPQBGscnG/uRSmPjE8WA7iUMdOkTJN8jFLyg8Vi0YOYxdDly5c5fvw4M2bMoHnz5gDs3r07y/KBgYFs2LCB1NTUDK0DPD09KV++PHv27KFFixa26fv27cvR0/g1a9Zk7969dtP27t2Lv79/ju/t1ahRg+joaC5evIiPz43xAnWc3jslAyRLM2fO5LvvvuP999+nYsWKtuk3m+dcvHiR8uXL26bHxsba3pw+Pj6kpqYSFxdn1zogNjaW4ODgHMVhMpmUDJA8ZTQabb91bBUfpZxLcSk1NltlrelW2+/sPEngbvbQsSBSxOncLSIijqqoXONSY05l+dnZJfUq7cpFEZfqQYxHUpbl4pJjdZ0WKSDe3t6ULl2ajz/+GF9fX86dO8e8efOyLP/UU0+xevVqxo0bx7/+9S+8vLzYv38/jRo1okaNGgwePJiFCxdSrVo16taty/r16/nzzz95/fXXsx3ToEGD6NWrF2+//TbdunVj//79rFmzhldeeSXH29e6dWv8/PyYMGECL7zwAgkJCRpAOA8oGSAZWK1WZs6cyebNm1m9ejV+fn5286tWrYqvry8///wz9evXByAlJYVdu3Yxfvx4ABo2bIjZbObnn3+mW7duAFy4cIGjR4/ywgsvFOwGiYhDKOtclpMJJ/Kl7tLmMvlSr4iIiIhIcWFNvvMAwEFp+/i2ipWAtNJ4Wgy4p1pxS0rBPSkF98QkXK9fx6n0WVADPnEQ/xja4u6FCpHRaGT+/Pm8+uqrdO/enYCAAKZMmUK/fv0yLV+mTBlWrlzJ3Llz6devH0ajkXr16tGsWTMA+vfvT3x8PLNnz7aNAfDOO+/g7++f7ZgaNGjAm2++yYIFC1i8eDG+vr6MHj2aHj165Hj7TCYTb7/9NlOmTKFXr174+fnx4osvMmzYMFxcXHJcn9ygZIBkMH36dD7//HPeeecdPDw8bH0Wenl54erqisFgoH///ixZsgR/f3+qV6/OkiVLcHV1pXv37rayPXv2JDw8nDJlyuDt7U14eDh16tQhJCSkMDdPRIqpiq6V8qVeAwYqu+kbi4iIiIiUcHdpUWtIiKXW7yfxv+SfdVecJt1mEilIISEhfPnll3bTDh8+nOnfAHXr1mX58uWZ1mU0Ghk5ciQjR47MdH7VqlUz1FeqVKkM07p27UrXrl2zjPm7777Lct7tatasyYcffmh7vWfPHgCqV6+e7TrEns7SksHNN9ntmcSwsDBbJm/IkCEkJyczffp04uLiaNy4MStWrMDT83/9C06aNAknJyfGjh1LUlISrVq1Yvbs2WoyKCK5UtW9Gp5OnsSnxedpvVXcqlLKXCpP6xQRERERKW6M3hWwnD2c5XxLusXud6Z1lPLN87hEpOTavHkz7u7uVK9endOnTzNr1iyaNm1KtWrVCju0YkvJAMng8OHD7Nq1i+XLl3Pw4EFiYmJ4++236dSpU6blDQaD7ef26bf/rVHARSS3TAYTwWWa8VPMj3lab9OyzfO0PhERERGR4sipfACpf2y9pzpMZdXiVkSyZ9OmTVmOJVC5cmW++OILEhISmDt3LtHR0ZQpU4aQkBAmTJhQwJE6FiUDJFOJiYkEBgbSo0cPRo0alWH+0qVLiYiIYPbs2fj7+7N48WIGDhzIV199ZWsdMGvWLL7//nvmz59P6dKlmT17NkOHDmX9+vVqHSAiuVK/VEP+iDtIbEr2BhK+G3+PAKq4Vc2TukREREREijOjjx8GD2+sCXG5q8DZFSe/BnkblIg4rA4dOtC4ceNM5zk53bhl/dhjj/HYY48VYFSOT8kAyVS7du1o165dpvOsViurVq1i2LBhdOnSBYDw8HBCQkL4/PPPCQ0N5dq1a3zyySfMmTPHNkbA3LlzefDBB9m+fTtt27YtsG0REcdhNBjpVLErn0atJyk96Z7qKm0uTYfynfMoMhERERGR4s1gNOEc1InkHZ/kannn+g9gcMpiLAERkdt4enradTcuBUPJAMmxqKgoYmJiaNOmjW2as7MzLVq0YN++fYSGhnLw4EFSU1Np3bq1rUyFChWoXbs2+/bty1EywGLJuj9CkdxIT0+3/dbxVfx4m0rzUIV/8H/nP88yIWDFavtttVoz1mEuTbeK/8QJJx0DIsWEzt0iIuKoitI1zlilHqYaTUk7vifjTOv/ft/+GdtULQhTzfsKPX7JHe03kZJDyQDJsZiYGADKlStnN93Hx4dz584BcPHiRcxmM97e3hnKXLx4MUfri4yMvIdoRTKKi7vR7PXYsWO241mKn9rU5Tf2Ec+1DPNSU1MBSEhIICUlxW6eL+UJoBbHYo8VSJwikjd07hYREUdV5K5xhsp4uUbjfuGQ3eS01DTgxmfs5JRk2/Sk0tWJc/KD/fsLMkoREckFJQMk124fDDizp29vl50ytwsKCtIYA5Knzp49y08//UStWrWoUkUDXBVnrawhHIk/zG9X9nI59bJtelJSEpcuXcLDwwNXV1cAyrtUoGmZ5lR39y+kaEXkXujcLSIijqpIXuOaNMFy/hipB78n/cp5IONnbINXOcz1H8DJr2EhByv3ymKx6EFMkRJCyQDJMV9fX+DG0//ly5e3TY+NjcXHxwe40QIgNTWVuLg4u9YBsbGxBAcH52h9JpNJyQDJU0aj0fZbx1bxV790A+qXbkD09XP8nXSeSymX+Ntynui489SsVYua5WtRybUK5VzK3b0yESmydO4WERFHVVSvcaYqgThXCST96kUssWdIOHmY46fiqVS7NR4NWmL0Ln/3SkREpEgxFnYAUvxUrVoVX19ffv75Z9u0lJQUdu3aZbvR37BhQ8xms12ZCxcucPTo0RwnA0REsqOSW2WalGlKhwqdaOv5IJ5HvGnmfh8NvRspESAiIiIikkvGUj6YA4JJq92GP6y+WKoFKxEgIlJMqWWAZCohIYHTp0/bXkdFRXHo0CG8vb2pXLky/fv3Z8mSJfj7+1O9enWWLFmCq6sr3bt3B8DLy4uePXsSHh5OmTJl8Pb2Jjw8nDp16hASElJYmyUiIiIiIiIiInJXG96aUKDre3xMeIGu71ZRUVF07NiRjRs3Uq9ePXbu3En//v3ZtWsXpUqVKrS4JO8pGSCZOnjwIP3797e9DgsLA+Dxxx9n9uzZDBkyhOTkZKZPn05cXByNGzdmxYoVeHp62paZNGkSTk5OjB07lqSkJFq1asXs2bOLVLNHERERERERERER+Z/g4GC2bduGl5dXYYcieUzJAMlUy5YtOXz4cJbzDQYDo0aNYtSoUVmWcXFx4eWXX6ZGjRosX76cn3/+mREjRjBp0iSaN2+eH2GLiIiIiIiIiIjIPXB2draNGSqORWMGSL768ssvCQsL47nnnmPjxo00a9aMIUOGcO7cucIOTUREREREREREpFj66quveOSRR2jUqBEtW7ZkwIABJCYmkp6ezqJFi3jggQdo2LAhjz76KFu3brVb9sCBAzz22GMEBQXRo0cPDh06ZDd/586dBAYGcvXqVQAWLlzIo48+alfmvffeo0OHDrbXEydOZPjw4bz77ruEhITQvHlzFi1aRFpaGuHh4dx333088MADrFu3LtvbuHfvXh599FFbnFu2bCEwMDBDvJJ9SgZIvoqIiKBnz5707t2bmjVrMnnyZCpWrMiHH35Y2KGJiIiIiIiIiIgUOxcuXODf//43PXv25Msvv2TVqlV07twZq9XKqlWriIiIYMKECWzatIk2bdowfPhwTp48CUBiYiJDhw4lICCA9evXM2rUKMLD82a8gh07dnDhwgXef/99Jk6cyMKFCxk6dCje3t6sXbuW0NBQpk2bRnR09F3rio+P57nnnqNOnTps2LCBMWPGMHfu3DyJsyRTN0GSb1JSUvj999/517/+ZTe9devW7Nu3767LW61WWz0aZ0DyUlpaGk5OTqSlpZGSklLY4Ug+0D4WcTx6X4uIiKMqLte44hKn5JzFYgH+dx9Gir6YmBjS0tLo3LkzVapUASAwMBCA5cuXM2TIEP7xj38A8MILL7Bz505WrlzJK6+8wmeffUZ6ejqvvfYabm5u1K5dm/PnzzNt2rR7jqt06dJMmTIFo9FIjRo1WLZsGUlJSQwbNgyAoUOHsnTpUvbu3WuLLyufffYZAK+++iouLi7UqlWLCxcuMGXKlHuOsyRTMkDyzeXLl7FYLJQrV85uuo+PDzExMXddPj09HYA//vgjX+KTku2hhx4iNjaW2NjYwg5F8on2sYjj0ftaREQcVXG5xhWXOCV3bt6HkaKvbt26tGrVikceeYQ2bdrQpk0bunbtislk4sKFCzRt2tSufNOmTfnzzz8BOH78OIGBgbi5udnmBwcH50lctWrVwmj8X0c0Pj4+1K5d2/baZDJRunTpbJ1DTpw4QWBgIC4uLrZpQUFBeRJnSaZkgOQ7g8Fg99pqtWaYlhknJyeCgoIwGo3ZKi8iIiIiIiIiIjljtVpJT0/HyUm3CYsLk8lEREQEe/fu5eeff2b16tXMnz+fiIgI4M734nLTAsRgMGRYLi0tLUO5248hg8GQ6bTsJJ6ye/9Qckbvcsk3ZcqUwWQycfHiRbvpsbGx+Pj43HV5o9GIs7NzfoUnIiIiIiIiIiJSLBkMBpo1a0azZs0YMWIE7du355dffqF8+fLs2bOHFi1a2Mru27ePRo0aATee3t+0aRNJSUm4uroCsH///juuq2zZsly8eNHuBn1+D+Jbo0YNPvvsM1JSUmz3ByMjI/N1nSWBBhCWfOPs7EyDBg34+eef7aZv3749z5ofiYiIiIiIiIiIlCS//fYb7777LpGRkZw7d45vvvmGS5cuUaNGDQYPHszSpUv58ssv+euvv3j99df5888/6d+/PwDdu3fHYDAwefJkjh07xo8//siKFSvuuL6WLVty6dIlli5dyunTp1mzZg0//fRTvm7jI488gtVq5eWXX+b48eP89NNPtjjVYiD31DJA8tXAgQN58cUXadiwIcHBwXz88cdER0cTGhpa2KGJiIiIiIiIiIhk6vEx4YUdQpY8PT3ZtWsXK1euJD4+nsqVKzNx4kTatWtH27ZtiY+PZ/bs2Vy6dImaNWvyzjvv4O/vD4CHhwfvvvsur7zyCo899hi1atVi/PjxjBo1Ksv11axZk1deeYUlS5awePFiunTpwqBBg1i7dm2+buPixYuZNm0ajz76KHXq1GHEiBH8+9//Vk8i98Bg1VDhks/WrFnD8uXLuXDhAnXq1OGll16ya6okIiIiIiIiIiJS0JKSkjhx4gQBAQG2LnOk6Nq0aROTJk1i9+7dDrG/CuP4U8sAyXdPPfUUTz31VGGHISIiIiIiIiIiIsXExo0bqVq1KhUqVODw4cO8/vrrPPTQQw6RCCgsSgaIiIiIiIiIiIiISIF59913WbJkSabzmjVrxrJly4iJiWHBggXExMTg6+vLQw89xPPPP1/AkToWdRMkIiIiIiIiIiIiJY66CSo8V65cIS4uLtN5rq6uVKhQoYAjKnjqJkhEREREREREREREHFrp0qUpXbp0YYdR4hgLOwARERERERERERGRwqKOU6QwFMZxp2SAiIiIiIiIiIiIlDhmsxmAxMTEQo5ESqKbx93N47AgqJsgESk2lixZwjfffMNff/2Fq6srwcHBjB8/nho1agCQmprKm2++ydatWzlz5gyenp6EhITw73//O9O+5jp06MC0adN44IEHOHz4MDNnzuTAgQN4e3vTt29fRowYgcFgsJVPSUnh7bffZtOmTcTExFCxYkWGDRtGr169Cux/4Oi0j0Ucj97XIiLiqO52jQNYuHAhX3zxBefPn8dsNtOgQQOef/55GjdunKG+/LrGFZc4RQqDyWSidOnSXLhwAQB3d3e741ckP1itVhITE7lw4QKlS5fGZDIV2LqVDBCRYuPXX3/lqaeeIigoCIvFwvz58xk8eDBffPEF7u7uJCUl8ccff/Dcc89Rt25drl69ymuvvcZzzz3H+vXr7er6888/uXLlCvfffz/x8fEMGjSIli1bsm7dOk6ePMnEiRNxd3dn0KBBtmXGjBlDbGwss2bNolq1aly6dIm0tLSC/jc4NO1jEcej97WIiDiqu13jAPz9/Zk6dSp+fn4kJSXx3nvvMWjQIDZv3kzZsmVtdeXnNa64xClSWCpWrAhgSwiIFJTSpUvbjr+CYrCqUywRKaYuXbpEq1ateP/992nRokWmZQ4cOEDv3r35/vvvqVy5sm3622+/zeHDh1mwYAEffPABb7zxBtu3b8fZ2RmA//znP6xevZqtW7diMBjYunUr48aNY8uWLRrgpgBpH4s4Hr2vRUTEUWXnGhcfH0+zZs147733aNWqlW16QV7jikucIgXNYrGQmppa2GFICWE2mwu0RcBNahkgIsXWtWvXAPD29s6yTHx8PAaDgVKlStlN/+677+jfvz8A+/fvp0WLFrYPsABt2rRh3rx5REVF4efnx3fffUfDhg1ZtmwZn376Ke7u7nTo0IExY8bg6uqaD1snoH0s4oj0vhYREUd1t2tcSkoKH3/8MV5eXgQGBtrNK8hrXHGJU6SgmUymQrk5K1KQlAwQkWLJarUSFhZGs2bNqFOnTqZlkpOTef311+nevTuenp626X///TeHDx+mXbt2AFy8eJEqVarYLVuuXDnbPD8/P86cOcOePXtwcXHh7bff5vLly0yfPp0rV64QFhaWT1tZsmkfizgeva9FRMRR3eka9/333zNu3DiuX7+Or68vK1assOt6pyCvccUlThERyR/Gwg5ARCQ3ZsyYwZEjR3jjjTcynZ+amsrzzz+P1Wpl2rRpdvO+/fZbgoOD7ZqpZjVA0M3pVqsVg8HA66+/TqNGjWjXrh0TJ05kw4YNJCUl5ck2iT3tYxHHo/e1iIg4qjtd41q2bMnGjRv56KOPaNu2LWPHjiU2NtY2vyCvccUlThERyR9KBohIsTNz5ky+++47Vq5cmelAK6mpqYwdO5aoqChWrFhh92Qp3Gja2rFjR9trHx8fYmJi7Mrc/NB788kWX19fKlSogJeXl61MzZo1sVqtnD9/Ps+2TW7QPhZxPHpfi4iIo7rbNc7d3Z3q1avTpEkTXnvtNZycnFi3bp1tfkFd44pLnCIikn+UDBCRYsNqtTJjxgy++eYbVq5ciZ+fX4YyN28mnTp1ivfee48yZcrYzU9ISGDnzp12H2KbNGnC7t27SUlJsU3btm0b5cuXp2rVqgA0bdqUCxcukJCQYCtz4sQJjEZjgY/87si0j0Ucj97XIiLiqLJzjctquZvXr4K4xhWXOEVEJP8pGSAixcb06dPZtGkT8+bNw8PDg5iYGGJiYmzNS9PS0hg9ejQHDx7k9ddfx2Kx2Mrc/ID6008/4e/vb/cB+JFHHsHZ2ZmXXnqJI0eOsHnzZpYsWcLAgQNtzVu7d+9O6dKleemllzh27Bi7du1i7ty59OzZUwNf5SHtYxHHo/e1iIg4qrtd4xITE3njjTfYv38/Z8+e5ffff2fy5MmcP3+ehx56CCiYa1xxiVNERPKfwWq1Wgs7CBGR7AgMDMx0elhYGD169CAqKsruSZVbrVq1ipYtW/LCCy9QuXJlnn/+ebv5hw8fZsaMGRw4cABvb29CQ0MZMWKEXR+Yx48f59VXX2Xv3r2ULl2ahx9+mLFjx+pDbB7SPhZxPHpfi4iIo7rbNS45OZl///vf/Pbbb1y+fJnSpUsTFBTEc889R6NGjQAK5BpXXOIUEZH8p2SAiJQYFouFkJAQli5davtQK45F+1jE8eh9LSIijqq4XOOKS5wiInJ36iZIREqMK1eu8MwzzxAUFFTYoUg+0T4WcTx6X4uIiKMqLte44hKniIjcnVoGiIiIiIiIiIiIiIg4OLUMEBERERERERERERFxcEoGiIiIiIiIiIiIiIg4OCUDREREREREREREREQcnJIBIlJs7Nq1i2HDhtGmTRsCAwPZsmWL3Xyr1crChQtp06YNjRo1ol+/fhw9evSOde7cuZPnnnuONm3a0KRJEx599FE2bdqUoVxKSgrz58+nffv2NGzYkE6dOrFu3bo83T65+z6+1dSpUwkMDOS99967a72HDx/m6aefplGjRrRt25ZFixZx+5A5v/76Kz169CAoKIiOHTvy4Ycf3uvmiAiwZMkSevbsSXBwMK1atWL48OH89ddfdmW++eYbBg8eTMuWLQkMDOTQoUN3rTc5OZmJEyfyyCOPUL9+fYYPH56hzM6dOwkMDMzwc/z48TzbPhERKdny4ztKflzj7hZnbq7F2f0utWbNGh5++GEaNWpE165d2bhx413rFhGR/OFU2AGIiGRXYmIigYGB9OjRg1GjRmWYv3TpUiIiIpg9ezb+/v4sXryYgQMH8tVXX+Hp6Zlpnfv27SMwMJAhQ4bg4+PDDz/8wIQJE/D09KRDhw62cmPGjCE2NpZZs2ZRrVo1Ll26RFpaWr5ta0l1t31805YtW/jtt98oX778XeuMj49n0KBBtGzZknXr1nHy5EkmTpyIu7s7gwYNAuDMmTP861//onfv3sydO5e9e/cyffp0ypYtS9euXfNs+0RKol9//ZWnnnqKoKAgLBYL8+fPZ/DgwXzxxRe4u7sDN977wcHBPPTQQ0yZMiVb9VosFlxcXOjXrx9ff/31Hcvefh0oW7Zs7jdIRETkFvnxHSU/rnF3izM31+LsfJf64IMPmDdvHq+++ipBQUEcOHCAKVOmUKpUKbvvWyIiUjCUDBCRYqNdu3a0a9cu03lWq5VVq1YxbNgwunTpAkB4eDghISF8/vnnhIaGZrrcsGHD7F7379+fbdu2sXnzZtuH061bt7Jr1y62bNlC6dKlAahatWoebZXc6k77+Ka///6bGTNmsHz5coYOHXrXOjdt2kRycjKzZ8/G2dmZOnXqcPLkSSIiIhg4cCAGg4GPPvqISpUqMXnyZABq1qxJZGQkK1asUDJA5B4tX77c7nVYWBitWrXi999/p0WLFgA89thjAERFRWW7Xnd3d6ZPnw7A3r17uXr1apZly5UrR6lSpXIYuYiIyN3lx3eU/LjG3e1zdm6uxdn5LrVp0yb69u1Lt27dAPDz82P//v0sXbpUyQARkUKgboJExCFERUURExNDmzZtbNOcnZ1p0aIF+/bts02bOHEi/fr1u2Nd165ds930B/juu+9o2LAhy5Yto23btnTt2pXw8HCSkpLyfDvkztLT03nhhRcYPHgwtWvXzrTM7ft4//79tGjRAmdnZ9u0Nm3acOHCBduXnf3799O6dWu7etq2bcvBgwdJTU3Nhy0RKbmuXbsGgLe3d46Wy875OyuPPfYYbdq04ZlnnmHHjh25qkNERCSn8vI7SlYK8hqXm+9SKSkpuLi42JVxdXUlMjJSn7NFRAqBkgEi4hBiYmKAG0/G3MrHx4eLFy/aXvv6+lKpUqUs6/nqq6+IjIykR48etmlnzpxhz549HD16lLfffptJkybx9ddf257WkYKzdOlSnJyc6N+/f5Zlbt/HFy9exMfHx67MzePk5rGRVZm0tDQuX76cV+GLlHhWq5WwsDCaNWtGnTp1crTs3c7fWS0zc+ZMFi5cyMKFCwkICGDAgAHs2rUrR/WIiIjkRl59R8lMYVzjcvNdqk2bNqxbt46DBw9itVqJjIzkk08+ITU1VZ+zRUQKgboJEhGHYjAY7F7fPkjsv//97yyX3blzJy+99BKvvvqq3VPnVqsVg8HA66+/jpeXF3DjqZjRo0fzyiuv4OrqmodbIFk5ePAgq1atYv369Rn2860y28dZlb91elbHzp3WJSI5M2PGDI4cOcIHH3yQ42XvdP7OSo0aNahRo4btdXBwMOfPn2f58uW2LopERETy2718R8lKYVzjcvNdavjw4cTExNC3b1+sVivlypXj8ccfZ9myZZhMpnyJU0REsqaWASLiEHx9fQHsnrABiI2NzfDEd2Z+/fVXhg0bxsSJE239Zd5ad4UKFWyJALjRp7zVauX8+fP3Hrxky+7du4mNjaV9+/bUr1+f+vXrc/bsWcLDw+/Y36iPj4/tqaybYmNjgf89pZVZmUuXLuHk5GTXzFlEcm/mzJl89913rFy5kooVKxZaHI0bN+bUqVOFtn4RESk57vU7Sk4V1jXuTt+lXF1dCQsLY//+/Xz33Xf88MMPVKlSBQ8PD8qUKVPgsYqIlHRKBoiIQ6hatSq+vr78/PPPtmkpKSns2rWL4ODgOy67c+dOhg4dyvjx4+nbt2+G+U2bNuXChQskJCTYpp04cQKj0VioN7RKmkcffZRNmzaxceNG20/58uUZPHgwy5Yty3K5Jk2asHv3blJSUmzTtm3bRvny5W0DQTdp0oTt27fbLbdt2zYaNmyI2WzOnw0SKSGsViszZszgm2++YeXKlfj5+RVqPIcOHbLdnBEREclP9/IdJTcK4xp3t+9SN5nNZipWrIjJZOLLL7+kffv2GI26JSUiUtDUTZCIFBsJCQmcPn3a9joqKopDhw7h7e1N5cqV6d+/P0uWLMHf35/q1auzZMkSXF1d6d69u22ZefPm8ffffzNnzhzgfx9e+/fvT5cuXWxPh5vNZtsT4d27d+edd97hpZdeYvTo0Vy+fJm5c+fSs2dPdRGUx+62j29/eshsNuPj42PXRPr2ffzII4/w9ttv89JLLzF06FBOnTrFkiVLGDFihK3JdmhoKGvWrCEsLIw+ffqwb98+PvnkE+bNm1cAWy3i2KZPn87nn3/OO++8g4eHh+086+XlZTuHXrlyhejoaC5cuADcSLjCjVY7N29q3P7eBjh27BipqalcuXKFhIQEDh06BEC9evUAeO+996hatSq1atUiNTWVTZs28fXXX7Nw4cKC2XgREXF4+fEdBfL+Gne3OHNzLc7Od6kTJ05w4MABGjduzNWrV4mIiODo0aPMnj079/90ERHJNYP19s7qRESKqJ07d2Y6cOzjjz/O7NmzsVqtLFq0iI8//pi4uDgaN27M1KlT7QapnDhxImfPnmX16tW21xs2bMhQ53333WcrA3D8+HFeffVV9u7dS+nSpXn44YcZO3askgF57G77+HYdOnSgf//+DBgwwDbt9n0McPjwYWbMmMGBAwfw9vYmNDTULhkAN5o3h4WFcfToUcqXL8+QIUN44okn8nYDRUqgwMDATKeHhYXZBhhcv349L730UoYyI0eOZNSoUUDm7+0OHTpw9uzZDMsdPnwYuDHo+Nq1a/n7779xdXWlVq1aDB06lHbt2t3zdomIiED+fEeBvL/G3S3O3FyLs/Nd6vjx4/z73//mxIkTODk50bJlS8aPH2/3MI+IiBQcJQNERERERERERERERBycOmgTEREREREREREREXFwSgaIiIiIiIiIiIiIiDg4JQNERERERERERERERByckgEiIiIiIiIiIiIiIg5OyQAREREREREREREREQenZICIiIiIiIiIiIiIiINTMkBERERERERERERExMEpGSAiIiIiIiIiIiIi4uCUDBARERERERERERERcXBKBoiIiIiIiIiIiIiIODglA0REREREREREREREHJxTYQcgIiIiIiIiIiIiUpgsFgupqamFHYZIjjk7O2M0Zu+ZfyUDREREREREREREpESyWq2cP3+eK1euFHYoIrliNBoJCAjA2dn5rmUNVqvVWgAxiYiIiIiIiIiIiBQp0dHRXLlyhfLly+Pu7o7BYCjskESyLT09nXPnzmE2m6lWrdpdj1+1DBAREREREREREZESx2Kx2BIB5cqVK+xwRHLF19eXc+fOkZaWhtlsvmNZDSAsIiIiIiIiIiIiJc7NMQLc3d0LORKR3LvZPZDFYrlrWbUMkCIrPT2dtLQ0jEajmmiJiIiIiIiIiOQDq9VKeno6Tk5O2R6E1NHovpMUZzk5fpUMkCIrLS2NyMjIwg5DRERERERERMThBQUFZWsAUhEpvpQMkCLrZjY6KCgIk8lUyNGII7FYLERGRurYcmDaxyKOR+9rERFxVMXlGldc4pScu7lvS2qrgKxciU8jMfnu3a7kFXcXE6U9s3+rtl+/ftStW5fJkyfnY1TZs3PnTvr378+uXbsoVapUYYcjd6BkgBRZN5u4mEwmfdCQfKFjy/FpH4s4Hr2vRUTEURWXa1xxiVNyTl3l/M+V+DTmfHyKq4lpBbbOUu5OvNi3eo4SAiI5paNLRERERERERERE5L8Sky1cTUzDbDLibM7/FhMpqelcTbzREiG/kgEpKSnqBkqUDBARERERERERERG5nbPZiKtzwXSflGpJz/EyFouFGTNmsGnTJkwmE6GhoYwdOxaDwUCHDh3o1asXp0+fZvPmzXTq1Inw8HD27t3LvHnziIyMpEyZMnTu3Jlx48bh7u4OwKeffsrKlSs5ceIE7u7u3H///UyaNIly5crZ1vvjjz/y2muvER0dTePGjXn88cfz7P8g+UudgYmIiIiIiIiIiIgUMxs2bMBkMrF27VomT57MypUr+X//7//Z5i9fvpzatWuzfv16hg8fzuHDhxk8eDCdO3dm06ZNzJ8/nz179jBz5kzbMqmpqYwZM4ZNmzbx9ttvExUVxcSJE23zo6OjGTlyJA888AAbN26kd+/ezJs3r0C3W3JPLQNEREREREREREREiplKlSoxadIkDAYDNWrU4MiRI7z33nv06dMHgPvvv5/Bgwfbyr/44os88sgjDBgwAAB/f38mT55Mv379mDZtGi4uLvTq1ctW3s/Pj8mTJ9O7d28SEhLw8PDgww8/xM/PL8N6ly5dWqDbLrmjZICIiIiIiIiIiIhIMdO4cWO7gZ+bNGlCREQEFosFgIYNG9qV//333zl16hSfffaZbZrVaiU9PZ2oqChq1qzJH3/8wcKFC/nzzz+5cuUKVqsVuNEioFatWhw/fjzT9UrxoGSAiIiIiIiIiIiIiINxc3Oze52enk5oaCj9+vXLULZSpUokJiYyaNAgWrduzdy5cylTpgzR0dEMHjyY1NRUAFtyQIonJQNEREREREREREREipnffvstw+vq1atjMpkyLV+/fn2OHj1K9erVM51/5MgRLl++zPjx46lUqRIABw8etCtTq1YttmzZcsc4pOjSAMIiIiIiUixcvQ7RscnEXk0t7FBERETy1M1r3Dld50QkB6KjowkLC+Ovv/7i888/5/3336d///5Zlh8yZAj79+9n+vTpHDp0iJMnT/Ltt9/aBhCuXLkyZrOZ1atXc+bMGb799lveeecduzpCQ0M5ffq0bb2fffYZGzZsyNftlLyjlgEiIiIiUuTFXk1l7U4jxr1ncHc1MTG0OuVKmQs7LBERkXt26zXOYAA3F13nRIqKlNT0Ir2exx57jKSkJHr37o3JZOLpp5+mb9++WZavW7cuq1ev5s033+TJJ58EbgwS3K1bNwDKli3L7NmzeeONN1i9ejUNGjRgwoQJPPfcc7Y6KleuzMKFCwkLC+ODDz6gUaNGPP/880yaNClX2yAFS8kAERERESnyUlLTSU4z4OoE15MtJBfQFzMREZH8dvMaV8rNgAGDrnMiRYC7i4lS7k5cTUwj1VIw78dS7k64u2TevU9mVq9ebft7+vTpGeZ/9913mS7XqFEjVqxYkWW93bt3p3v37nbTDh8+bPe6ffv2tG/f3m5az5497xqzFD4lAxxcv379qFu3LpMnTy7sUNi5cyf9+/dn165dlCpVqrDDERERkWLI7GTAkq5By0RExPE4OxkxGAwFduNRRLJW2tOJF/tWJzHZUmDrdHcxUdpTt2olf+kIExEREREREREREblFaU8n3ZwXh6MBhMVOSkpKYYcgIiIiIiIiIiIiInlM6a0SwGKxMGPGDDZt2oTJZCI0NJSxY8diMBjo0KEDvXr14vTp02zevJlOnToRHh7O3r17mTdvHpGRkZQpU4bOnTszbtw43N3dAfj0009ZuXIlJ06cwN3dnfvvv59JkyZRrlw523p//PFHXnvtNaKjo2ncuDGPP/54ruMXyUs3jykdW45L+1jE8VjS/9tlgtWK1QrpFove4yIi4hDsrnE3fhXJ65w+Yzsu7VORkkPJgBJgw4YN9OrVi7Vr13Lw4EGmTp1KlSpV6NOnDwDLly9n+PDhtpHBDx8+zODBgxkzZgyzZs3i0qVLzJw5k5kzZxIWFgZAamoqY8aMoUaNGsTGxhIWFsbEiRNZunQpANHR0YwcOZLQ0FCeeOIJDh48SHh4eK7ij4yMzIP/gkhGOrYcn/axiOOIjQcwkXg9EUu6gT8OHeJvz8KOSkRE5N7dvMbFJ8QDkJRatK9z+owtIlJ8KRlQAlSqVIlJkyZhMBioUaMGR44c4b333rMlA+6//34GDx5sK//iiy/yyCOPMGDAAAD8/f2ZPHky/fr1Y9q0abi4uNCrVy9beT8/PyZPnkzv3r1JSEjAw8ODDz/8ED8/vwzrvZksyImgoCBMpuyPpi5yNxaLhcjISB1bDkz7WMTxRMVchx3HcHdzJy0d6tfzo1I5l8IOS0RE5J7dvMZ5eniCwYAhyVIkr3P6jO24bu5bEXF8SgaUAI0bN8ZgMNheN2nShIiICFszsIYNG9qV//333zl16hSfffaZbZrVaiU9PZ2oqChq1qzJH3/8wcKFC/nzzz+5cuUKVqsVuNEioFatWhw/fjzT9eaGyWTSBw3JFzq2HJ/2sYjjMBn/O9SVwYDBYMWo97eIiDgI+2ucAYOBIn2d02dsEZHiS8kAwc3Nze51eno6oaGh9OvXL0PZSpUqkZiYyKBBg2jdujVz586lTJkyREdHM3jwYFJTUwFsyQERERERERERERERKXxKBpQAv/32W4bX1atXzzKTX79+fY4ePUr16tUznX/kyBEuX77M+PHjqVSpEgAHDx60K1OrVi22bNlyxzhEREREREREREREpGAoGVACREdHExYWRt++ffnjjz94//33mTBhQpblhwwZQt++fZk+fTp9+vTBzc2N48ePs337dl5++WUqV66M2Wxm9erVPPHEExw5coR33nnHro7Q0FBWrFhhW+/vv//Ohg0b8ntTRURERERERERE7ll6QhzWlMQCW5/B2R2jh3eBrU9KJiUDSoDHHnuMpKQkevfujclk4umnn6Zv375Zlq9bty6rV6/mzTff5MknnwRuDBLcrVs3AMqWLcvs2bN54403WL16NQ0aNGDChAk899xztjoqV67MwoULCQsL44MPPqBRo0Y8//zzTJo0KX83VkRERBxaapqVm10ri4iIOJKUtHQMGO5eUETyXXpCHAmfzsF6/VqBrdPg5oXHoy8qISD5SskAB7d69Wrb39OnT88w/7vvvst0uUaNGrFixYos6+3evTvdu3e3m3b48GG71+3bt6d9+/Z203r27HnXmEVERERu52w24uJkxWAANxcTLmZlBERExDHcvMalplkxGKy6zokUAdaUxBuJAJMZg9k5/9eXmoL1+rUbLRGUDJB8pGSAiIiIiBR55UqZ6dMyndp1/HBzNVOulLmwQxIREckTt17jjKYbiQBd50SKBoPZGYPZtUDWZbWk5nwZq5Vly5bx0UcfERMTg7+/P8OHD+ehhx4C4NtvvyU8PJzz58/TuHFjevTowcSJE9m1axelSpUCYO3atbz99ttcuXKFNm3a0Lx5c95++212794NwJ9//smsWbM4ePAgBoMBf39/pk+fTlBQUN5tvBQYJQNEREREpFgoY7hKBeMljBYTlstgcHLG6FWusMMSERG5Z7ZrnNGEweAM6PomInf35ptv8s033zBt2jT8/f3ZtWsXL7zwAmXLlqVy5cqMGTOGfv360bt3bw4dOkR4eLjd8nv27OGVV15h/PjxdOjQge3bt7NgwQK7MuPHj6devXpMmzYNk8nEoUOHMJuVsCyulAwQERERkSIv/Vos5Q+sI/FPo60/ZYOzGx6PvaiEgIiIFGu3X+N0fROR7EhMTCQiIoKVK1cSHBwM3Bjzc8+ePXz88cdUqlSJgIAAJkyYAECNGjU4cuQI7777rq2O999/nwceeIDBgwcDEBAQwL59+/jhhx9sZc6dO8fgwYOpWbMmAP7+/gWzgZIvlAwQERERkaIvLQVjWjK4lcJgdrnRr2rKdaxpKYUdmYiIyL255RoHBl3fRCRbjh07RnJyMoMGDbKbnpqaSr169UhKSqJhw4Z28xo1amT3+sSJE3Tq1ClDmVuTAQMHDmTKlCl8+umnhISE8NBDD1GtWrW83RgpMEoGiIiIiEixYXD6X7+tuelXVUREpKgyODljMBh0fRORbLFarQAsWbKEChUq2M1zdnZm5syZGAyGTJe59fXdyowaNYru3bvz448/snXrVhYsWMD8+fPp3LlzXm2KFCAlA0RERERERERERESKkZo1a+Ls7My5c+e47777MsyvUaMGP/74o920gwcPZigTGRl5xzJwo/uggIAABgwYwLhx4/jkk0+UDCimlAwQERERERERERERKUY8PT0ZNGgQYWFhWK1WmjVrRnx8PPv27cPd3Z2+ffvy3nvvMXfuXHr16sWhQ4fYsGEDgK01wNNPP83TTz9NREQE7du3Z8eOHWzdutU2PykpiTlz5tC1a1eqVq3K+fPniYyMpEuXLoW23XJvjIUdgBQeq9XK0qVL6dixI40aNeKf//wnX331lW3+t99+S5cuXWjUqBH9+vVjw4YNBAYGcvXqVVuZtWvX0q5dOxo3bsyIESOIiIigefPmtvl//vkn/fr1Izg4mKZNm9KjR48MGUcREREREREREZGixpqagjU1qQB+cjdOyNixYxkxYgRLliyhW7duDB48mO+++46qVavi5+fHW2+9xebNm/nnP//Jhx9+yLBhw4Ab3QgBNGvWjOnTpxMREcGjjz7KTz/9xIABA3BxcQHAaDRy5coVJkyYQNeuXRk7diwPPPAAo0ePzpt/sBQ4tQwowd58802++eYbpk2bhr+/P7t27eKFF16gbNmyVK5cmTFjxtCvXz969+7NoUOHCA8Pt1t+z549vPLKK4wfP54OHTqwfft2FixYYFdm/Pjx1KtXj2nTpmEymTh06BBmszlHcVoslnveVpFb3TymdGw5Lu1jEcdjSb/xfrZarf/7wUq6xQJ6r4uISDF26zUOKLLXN33GdlzapxkZnN0xuHlhvX6twMbxMLh5YXB2z9kyBgP9+/enf//+mc7v2LEjHTt2tL1evHgxFStWtN3sB+jTpw99+vSxvZ4yZYptgGBnZ2feeOONHMUkRZuSASVUYmIiERERrFy5kuDgYAD8/PzYs2cPH3/8MZUqVSIgIIAJEyYAN/oQO3LkCO+++66tjvfff58HHniAwYMHAzf6D9u3b5/diOPnzp1j8ODB1KxZEwB/f/8cx6qWBJJfdGw5Pu1jEcfhlHiJCkB8QjzWpBQMlhRMqcmcPHSINPe/Czs8ERGRXLv1GgcU+eubPmNLSWD08Mbj0RexpiQW2DoNzu4YPbzztM41a9YQFBREmTJl2LNnD8uXL+epp56yK7N8+XJat26Nm5sbW7duZePGjbzyyit5GocUHUoGlFDHjh0jOTmZQYMG2U1PTU2lXr16JCUl0bBhQ7t5jRo1snt94sQJOnXqlKHMrcmAgQMHMmXKFD799FNCQkJ46KGHbNnF7AoKCsJkMuVoGZE7sVgsREZG6thyYNrHIo4nNTaKK/vB08MTo7PbjebUyUbq16uHsUylwg5PREQk1269xhkMhiJ7fdNnbMd1c9+KPaOHN+TxzfmCdurUKRYvXkxcXByVK1dm4MCBDB061K7MgQMHWLZsGQkJCfj5+TF58mR69+5dSBFLflMyoIS62fxwyZIlVKhQwW6es7MzM2fOtA0Wcvsyt76+W5lRo0bRvXt3fvzxR7Zu3cqCBQuYP39+jkYcN5lM+qAh+ULHluPTPhZxHOnGG+9lg8Fw4/OHwQAYMOp9LiIixVyGa1wRv77pM7ZI8TFp0iQmTZp0xzJvvfVWAUUjRYGSASVUzZo1cXZ25ty5c9x3330Z5teoUYMff/zRbtrBgwczlLk9c3x7GbjRfVBAQAADBgxg3LhxfPLJJzlKBoiIiIiIiIiIiIjIvVEyoITy9PRk0KBBhIWFYbVaadasGfHx8ezbtw93d3f69u3Le++9x9y5c+nVqxeHDh1iw4YNALbWAE8//TRPP/00ERERtG/fnh07drB161bb/KSkJObMmUPXrl2pWrUq58+fJzIyki5duhTadouIiIiIiIiIiIiUREoGlGBjx46lXLlyLFmyhKioKLy8vKhfvz7Dhg3Dz8+Pt956i/DwcFatWkWTJk0YNmwY06ZNw9nZGYBmzZoxffp0Fi1axJtvvkmbNm0YMGAAa9asAcBoNHLlyhUmTJjAxYsXKVOmDF26dGH06NGFudkiIiJSjFnTUrAaDFhTUwo7FBERkTxlTUsBDHctJyIikltKBpRgBoOB/v37079//0znd+zYkY4dO9peL168mIoVK+Li4mKb1qdPH/r06WN7PWXKFNsAwc7Ozrzxxhv5FL2IiIiUKE7OpDu5gCUVqyUNAIOzGwYn50IOTERE5B7dco0Dg65vIiKSb5QMkCytWbOGoKAgypQpw549e1i+fDlPPfWUXZnly5fTunVr3Nzc2Lp1Kxs3buSVV14ppIhFRETEURm9ynGhUS8aBNbG+N9BCw1Ozhi9yhVyZCIiIvfm9mucrm8iIpJflAyQLJ06dYrFixcTFxdH5cqVGThwIEOHDrUrc+DAAZYtW0ZCQgJ+fn5MnjyZ3r17F1LEIiIi4sgsrqUwlqmE6b/JABEREUeha5yIiBQEJQMkS5MmTWLSpEl3LPPWW28VUDQiIjmTSAIxyTGYTEa76WaDM6WdSxdOUCIiIiIiIlIsXEu9RlL69QJbn6vRDS+zV7bLW61Wpk6dytdff01cXBwbN27ktddeo27dukyePPmuy/fr1y/bZYuLPXv2MG3aNP766y/atWvHO++8ky/r2blzJ/3792fXrl2UKlUqX9aRX5QMEBERhxOXeoXv2cK2kz9kmOdqcmNgwBAlBERERERERCRT11KvEXFiKQlp8QW2Tg8nTwYGDMl2QmDr1q1s2LCBVatW4efnR5kyZVi4cCFOTvl7u/fUqVPMmDGDffv24eTkRKNGjZgzZw5ly5bN1/Vmx+zZs6lbty5Lly7F3d29sMMpkox3L+JYrFYrL7/8Mvfddx+BgYEcOnSIfv36MWvWrGwtn5OyxcWePXt45JFHaNCgAcOHD8+39ezcuZPAwECuXr2ab+sQEQFISU8llVScDE64mdxtP05GM0mW66RaUwo7RBERERERESmiktKvk5AWj5PRbPedMr9+nIxmEtLic9QS4cyZM/j6+tK0aVN8fX1xcnKidOnSeHp65uN/Bl5++WUuX77M+++/z0cffUS3bt2wWq35us7sOn36NPfffz8VK1Ysdk/sF5QSlwy4mTV799132bZtG7Vr12bhwoWMGTMmX9d76tQpBg8eTNOmTbnvvvt49tlnuXTpUr6uM7tuZs2+/fZbZs+eXdjhiIjkGbPRjIvJxfZjNpgLOyQREREREREpJswG+++U+fWT0++qEydOZObMmZw7d47AwEA6dOgAZHyIec2aNXTp0oWgoCBCQkIYPXq0XT1Wq5U5c+Zw33330bp1axYuXHjXdRuNRtq0aUP9+vWpUaMGPXr0oFy5uw96/ueff9KvXz+Cg4Np2rQpPXr0IDIy0jZ/7969PPXUUzRq1Ih27drx6quvkpiYaJv/6aef0qNHD4KDg2ndujX//ve/iY2NBSAqKorAwECuXLnCpEmTCAwMZP369QD8+uuv9OrVi4YNG9KmTRtef/110tLSbPWmpKTw6quv0qpVK4KCgnjiiSc4cOCAXew//vgjXbt2pVGjRvTr14+zZ8/edXuLqhKXDFDWLCNlzURERERERERERIqHyZMnM3r0aCpWrMi2bdtYt25dhjKRkZHMmjWL0aNH89VXX7Fs2TKaN29uV2bDhg24u7uzdu1aXnjhBd5++21+/vnnO667Y8eOfPDBB/z+++85inn8+PFUrFiRdevWsX79eoYMGYLZfCMJcvjwYQYPHkznzp3ZtGkT8+fPZ8+ePcycOdO2fGpqKmPGjGHTpk28/fbbREVFMXHiRAAqVarEtm3b8PT0ZNKkSWzbto1u3brx999/869//YugoCA+/fRTpk2bxrp161i8eLGt3jlz5vD1118ze/ZsNmzYQPXq1Xn22We5cuUKANHR0YwcOZIHHniAjRs30rt3b+bNm5ejbS9KSlQyQFkzZc1ERERERERERESKMy8vLzw8PDCZTPj6+mbaX390dDRubm48+OCDVKlShfr169O/f3+7MoGBgYwcORJ/f38ee+wxGjZsyC+//JLlen/55RfmzZvHc889x9ChQ9m1a5dt3ldffUVwcHCWy547d46QkBBq1qyJv78/Dz/8MHXr1gVg+fLlPPLIIwwYMAB/f3+aNm3K5MmT2bhxI8nJyQD06tWLdu3a4efnR5MmTZg8eTJbt24lISHB9n8wGAx4eXnh6+uLq6srH3zwARUrVmTq1KnUrFmTTp06MWrUKFasWEF6ejqJiYl89NFHvPjii7Rr145atWoxc+ZMXFxcbAmWDz/8ED8/PyZNmkSNGjX45z//yeOPP579nVXElKgBhCdPnoyfnx9r165l3bp1mEymDGVuZs3mzJlDcHAwcXFx7N69267Mhg0bGDhwIGvXrmX//v1MnDiRpk2b0rp16yzX3bFjR9566y26du1KgwYNsh3z+PHjqVevHtOmTcNkMnHo0KEMWbMxY8Ywa9YsLl26xMyZM5k5cyZhYWHA/7JmNWrUIDY2lrCwMCZOnMjSpUttWbOHHnqI0aNH061bN7y8vGxZs8cff5zw8HBOnDjBlClTcHFxYdSoUYB91qxKlSosW7aMZ599lm+++YbSpUvbsmahoaE88cQTHDx4kPDw8Gxv960sFkuulhPJys1jSseW40r/7761Wq23tcK68bfFkq79L1LM6NwtIiKOqrhc44pLnJJz2qeOKSQkhMqVK9OpUyfatm1L27Zt6dy5M25ubrYygYGBdsv4+vraHiLOzLx583jyyScZPHgwtWvXZtiwYcyZM4eOHTty9OhRmjVrluWyAwcOZMqUKXz66aeEhITw0EMPUa1aNQB+//13Tp06xWeffWYrb7VaSU9PJyoqipo1a/LHH3+wcOFC/vzzT65cuWL7rh8dHU2tWrUyXefx48cJDg7GYDDYpjVr1ozExETOnz/P1atXSU1NpWnTprb5ZrOZRo0acfz4cVsdjRs3tqujSZMmWW5nUVeikgG3Z80yc2vWzNPT05Y5u9XNrBmAv78/77//Pr/88kuWyYCbWbNRo0YxdOhQ5s+fT4sWLYAbWbOXXnqJffv2ZbrsuXPnGDx4MDVr1rSt76Zbs2Y3502ePJl+/foxbdo0XFxc6NWrl628n58fkydPpnfv3iQkJODh4ZEhawawePFiW9bMYDBQs2ZN/v77b15//XVGjBhBUlISH330EWFhYbRr1w6AmTNn8vPPP7Nu3TqeffZZu6yZwWCgRo0aHDlyhKVLl95pF2Xq1pYQInlJx5bjukocAAkJCSTzv8GC00glmRQOHfqDs3gXVngicg907hYREUdVXK5xxSVOkZLO09OTDRs28Ouvv7Jt2zYWLFjAokWLWLduna2bcCcn+1vDBoPhjt2aHz582HYf8oEHHuC1115j7NixTJ06lfXr1/PCCy9kueyoUaPo3r07P/74I1u3bmXBggXMnz+fzp07k56eTmhoKP369cuwXKVKlUhMTGTQoEG0bt2auXPnUqZMGaKjoxk8eDCpqalZrjOzbbk57dab+7f+fbPMzWlFpZv3vFKikgHZoaxZ0cuaBQUFZdqKQyS3LBYLkZGROrYc2N+J5/nuyGY8PDxwMbnapqekJ2OyXKeef318XTJPCotI0aRzt4iIOKrico0rLnFKzt3ct+J4nJycCAkJISQkhJEjR9KiRQt27NhBly5dclVfhQoV2LVrF927dwega9euJCYm8tJLLxEYGMjDDz98x+UDAgIICAhgwIABjBs3jk8++YTOnTtTv359jh49SvXq1TNd7siRI1y+fJnx48dTqVIlAA4ePHjXeGvVqsXXX39td3N/7969eHh4UKFCBby9vTGbzezZs4fKlSsDN3pZOXjwIM8884ytji1bttjV+9tvv9113UWVkgG3Udas6GXNTCaTPmhIvtCx5biM/92vBoPhtnPVjb9NJqP2vUgxpXO3iIg4quJyjSsucYqUdN9//z1nzpyhRYsWlCpVih9//JH09HQCAgJyXeezzz7L9OnT8fX1pVu3bsTHx/PLL7/g5ubGX3/9xZ49ezIMUgyQlJTEnDlz6Nq1K1WrVuX8+fNERkbakhJDhgyhb9++TJ8+nT59+uDm5sbx48fZvn07L7/8MpUrV8ZsNrN69WqeeOIJjhw5wjvvvHPXeJ988klWrlzJzJkzeeqppzhx4gQLFy5k4MCBGI1G3N3deeKJJ5gzZw7e3t5UrlyZZcuWkZSUZOttJTQ0lBUrVhAWFkbfvn35/fff2bBhQ67/h4VNyYBMKGumrJmIiIiIiIiIiJRsqdZUKIAhFVKtWT+0m1teXl5s3ryZRYsWkZycTPXq1Zk3bx61a9fOdZ2hoaGULl2a//znPyxbtgx3d3fatWvH//3f/7Fo0SJGjBjBxx9/bNfNOYDRaOTKlStMmDCBixcvUqZMGbp06cLo0aMBqFu3LqtXr+bNN9/kySefBG50d96tWzcAypYty+zZs3njjTdYvXo1DRo0YMKECTz33HN3jLdChQr85z//Yc6cOaxdu5bSpUvTq1cvu+XGjx+P1WrlxRdfJCEhgYYNG7Js2TK8vW90LVy5cmUWLlxIWFgYH3zwAY0aNeL5559n0qRJuf4/FiYlA26jrJmyZiIiIiIiIiIiUnK5Gt3wcPIkIS2eNPL+Rn1mPJw8cTW63b3gfw0YMMDWE8lNq1evtv3dvHlzu9e3y2xedu4bPvTQQzz00EMZpr/66qu8+uqrmS7j7OzMG2+8ccd6GzVqxIoVK7Kc3717d9uD1jcdPnzY7vXu3bszLHffffexbt26LOt1cXFhypQpTJkyJcsy7du3p3379nbTevbsmWX5okzJgNsoa6asmYiIiIiIiIiIlFxeZi8GBgwhKf16ga3T1eiGl9mrwNYnJZPB6mhDIovDsFgs7N+/nyZNmqg/QslTOrYc3/nE87x96C1KuXthNjrbpqdaU0lLT+XZmsPwdSlfiBGKSE7p3C0iIo6quFzjikucknMled8mJSVx4sQJAgICcHV1LexwRHIlJ8exWgaIiIjDcTaaMWMmzZpGmiXNbp6ryQ2zwTmLJUVEREREREREHJOSASIi4nC8zaVpTydq+9fBZDLazTMbnCntXLpwAhMRERERERERKSRKBohIiWSIjyft8mVMPj6FHYrkE3c88HXxLXHNXEVEREREREREMmO8exEREceSdvkyzl9/TfR//kPq5cuFHY6IiIiIiIiIiEi+UzJAREqc9NRUSEkhPSkJa2pqYYcjIiIiIiIiIiKS75QMKGGsVisvv/wy9913H4GBgRw6dChX9ezcuZPAwECuXr2axxGKiIiIiIiIiIiISF5TMqCE2bp1Kxs2bODdd99l27Zt1K5dO1f1BAcHs23bNry8vABYv349zZs3z8tQRURERERERERERCSPaADhEubMmTP4+vrStGnTTOenpKTg7Ox813qcnZ3x9fXN6/BEREREREREREQKXdrVq6QnJRXY+oyurjiVKpXt8larlalTp/L1118TFxfHxo0bqVevXo7Xu3PnTvr378+uXbsolYP1S/GkZEAJMnHiRDZs2ABAYGAgVapUoUqVKtSuXRuz2czGjRupXbs2s2fPpmPHjnYnkatXr9KiRQtWrVpFy5Yt7U4Uhw4d4qWXXrLVCzBy5EhGjRrFmjVrWLlyJdHR0Xh5edG8eXMWLFhQOP8AERERERERERGRu0i7epWz776LJT6+wNZp8vSkyrBh2U4I3Oz9Y9WqVfj5+VGmTJlcrTez3j9ee+01du/enav6pGhTMqAEmTx5Mn5+fqxdu5Z169ZhMpkYM2YMGzZs4IknnuDDDz/EarXmuN7g4GAmTZrEggUL+OqrrwBwd3cnMjKSWbNmMWfOHIKDg4mLi8vVicRiseR4GZE7Sf/vMWW1WrFYLDrGHNDNfap9K+I49L4WERFHVVyuccUlTsk57dOM0pOSsMTHYzCbMZrN+b++1FQs8fE3WiJkMxmg3j8kN5QMKEG8vLzw8PDAZDLZvcmrV6/Oiy++aHsdFRWVo3qdnZ3x8vLCYDDY1RsdHY2bmxsPPvggnp6eVKlShfr16+c47sjIyBwvI3Inhrg4nIHr169z6NAhrOfOFXZIkk90/hBxPHpfi4iIoyou17jiEqdIXjCazRhdXApkXZbU1GyXVe8fkltKBggNGzbMl3pDQkKoXLkynTp1om3btrRt25bOnTvj5uaWo3qCgoIwmUz5EqOUTEnR0Zz48kvc3NyoWa8ezuXLF3ZIkscsFguRkZE6f4g4EL2vRUTEURWXa1xxiVNy7ua+leKjuPb+IYVPyQDJcHPeaDQC2J000tLSclyvp6cnGzZs4Ndff2Xbtm0sWLCARYsWsW7duhwNSGIymfRBQ/KU8b/Hk8Fg0PHl4LR/RRyP3tciIuKoiss1rrjEKeLIimvvH1L4jIUdgBQ9ZcuWBSAmJsY27dChQ3dcxmw2Z9rHnJOTEyEhIbz44ots2rSJs2fPsmPHjrwNWEREREREREREpIQriN4/XnjhBTZt2sT169fzZV2Sv9QyQDJwdXWlSZMm/Oc//6FKlSpcvnyZN998847LVKlShcTERH755RcCAwNxc3Njx44dnDlzhhYtWlCqVCl+/PFH0tPTCQgIKJgNERERERERERERKSGKeu8fUvjUMkAy9dprr5GWlkbPnj2ZNWsWY8eOvWP5pk2bEhoaytixY2nVqhXLli3Dy8uLzZs388wzz9CtWzc++ugj5s2bR+3atQtmI0REREREREREREoo9f4ht1PLgBJmwIABDBgwwPZ69erVmZarWbMmH3/8sd20w4cP2/5u2bKl3WuA6dOnM336dLtpWdUvUpiMZjM4O2N0dcVgNhd2OCIiIiIiIiIieU69f8jtlAwQkRLHqUwZUrp2pVKDBpjLlCnscERERERERESkCEpPTS3263nttdeYNGkSPXv2JCAggBdeeIFBgwZlWf7W3j+uXLnCyJEjadWqFZs3b2bRokUkJydTvXp19f5RTCkZICIlktXTEyclAkRERERERETkNkZXV0yenlji47EUUELA5OmJ0dU12+XV+4fkhpIBIlIipSRaiLuYiIurGQ/v7F9sRURERERERMSxOZUqRZVhw0hPSiqwdRpdXXHSYLySz5QMEJESJyEuiWM/XuH0z/twcTPTeUCwEgIiIiIiIiIiYuNUqhTo5rw4GGNhByDFx8KFC3n00UcLOwyRe5aWmo4l1QpASlIaaSmWQo5IREREREREREQkf6llgGTboEGDePrppws7DJE8Y3QyYrVYCzsMERERERERERGRfKeWAUJKSkq2ynl4eFBGA66KiIiIiIiIiIiIFDtqGeCA4uPjeeWVV/j222/x9PTk2Wef5dtvv6Vu3bpMnjyZDh060KtXL06fPs3mzZvp1KkT4eHhzJ07ly1btnD+/Hl8fHx45JFHGDFiBGazGbjRTdCWLVv49NNPAZg4cSJXr16lWbNmREREkJqaSrdu3Zg0aZJtmTVr1rBy5Uqio6Px8vKiefPmLFiwoND+NyIiIiIiIiIiIiIlkZIBDmj27Nns27ePxYsXU65cORYsWMDvv/9O3bp1bWWWL1/O8OHDee6552zTPDw8CAsLo3z58hw5coSXX34ZDw8PhgwZkuW6du7cia+vLytXruT06dM8//zz1KtXjz59+hAZGcmsWbOYM2cOwcHBxMXFsXv37hxvj8Wi/twlb6XfPKasVqxWK5b0dB1nDubm/tR+FXEcel+LiIijKi7XuOISp+Sc9qlIyaFkgIOJj49n48aNvP7667Rq1QqAsLAw2rZta1fu/vvvZ/DgwXbThg8fbvu7atWq/PXXX3z55Zd3TAZ4e3szdepUTCYTNWvWpF27dvzyyy/06dOH6Oho3NzcePDBB/H09KRKlSrUr18/x9sUGRmZ42VE7iTpahoAiYnXsaZbOfTHH7iW0unQEen8IeJ49L4WERFHVVyuccUlThERyUh3vxxMVFQUqampNGrUyDbNy8uLgIAAu3INGzbMsOxXX31le8I/MTGRtLQ0PD0977i+WrVqYTKZbK99fX05cuQIACEhIVSuXJlOnTrRtm1b2rZtS+fOnXFzc8vRNgUFBdmtQ+ReXf77Gkd/2Im7uxvpFiv16tfH28e9sMOSPGSxWIiMjNT5Q8SB6H0tIiKOqrhc44pLnJJzN/etiDg+JQMcjNVqBcBgMGQ6/abbb8jv37+fcePGMWrUKNq0aYOXlxdffPEFERERd1yfk5P9IWQwGGzr8vT0ZMOGDfz6669s27aNBQsWsGjRItatW0epUqWyvU0mk0kfNCRPGW8eTwYDBgOYjEYdYw5K5w8Rx6P3tYiIOKrico0rLnGK3Kvr15JJSUorsPU5uzrh5uVSYOu7k9vHDRXHoWSAg/Hz88NsNnPgwAEqVaoE3Og66NSpU7Ro0SLL5fbu3UvlypXtxhA4d+7cPcfj5ORESEgIISEhjBw5khYtWrBjxw66dOlyz3WLiIiIiIiIiIjktevXktm8ch9JCakFtk5XDzOdnwkuEgmBQYMG8fTTTxd2GJIPlAxwMJ6enjz22GPMmTMHb29vypUrx8KFCzEYDBlaC9yqWrVqREdH88UXXxAUFMQPP/zAli1b7imW77//njNnztCiRQtKlSrFjz/+SHp6eoYui0RERERERERERIqKlKQ0khJSMTkZMZmN+b4+S2o6SQmppCSl5WsyICUlBWdn57uW8/DwwMPDI9/ikMKjZIADmjhxIq+88grDhg3D09OTZ599lujoaFxcsj6ZdOrUiWeeeYYZM2aQkpLCgw8+yHPPPceiRYtyHYeXlxebN29m0aJFJCcnU716debNm0ft2rVzXaeIiIiIiIiIiEhBMJmNmF0K4vZpGpa09BwvFR8fzyuvvMK3335ruwf47bffUrduXSZPnkyHDh3o1asXp0+fZvPmzXTq1Inw8HDmzp3Lli1bOH/+PD4+PjzyyCOMGDECs9kMZOwmaOLEiVy9epVmzZoRERFBamoq3bp1Y9KkSbZl1qxZw8qVK4mOjsbLy4vmzZuzYMGCvPsXSZ5QMsABeXp6Mm/ePNvrxMREFi1aRJ8+fQD47rvvMl3uxRdf5MUXX7SbNmDAANvfo0aNYtSoUbbXs2fPzlDH5MmTbX83b96c1atX52obRApCelr6HVvMiIiIiIiIiIgUVbNnz2bfvn0sXryYcuXKsWDBAn7//Xfq1q1rK7N8+XKGDx9u1zW4h4cHYWFhlC9fniNHjvDyyy/j4eHBkCFDslzXzp078fX1ZeXKlZw+fZrnn3+eevXq0adPHyIjI5k1axZz5swhODiYuLg4du/ena/bLrmjZIAD+uOPP/jrr79o1KgR165d4+233wagY8eOhRyZSNHgZDZiMt9IAji7OuHkrMGvRERERERERKT4iI+PZ+PGjbz++uu0atUKgLCwMNq2bWtX7v7772fw4MF204YPH277u2rVqvz11198+eWXd0wGeHt7M3XqVEwmEzVr1qRdu3b88ssv9OnTh+joaNzc3HjwwQfx9PSkSpUq1K9fPw+3VvKKkgEOasWKFZw4cQKz2UyDBg1Ys2YNZcuWLeywRIoED29XarUrTWCderi4mvHwdi3skEREREREREREsi0qKorU1FQaNWpkm+bl5ZVhrM6GDRtmWParr76yPeGfmJhIWloanp6ed1xfrVq1MJn+9zClr68vR44cASAkJITKlSvTqVMn2rZtS9u2bencuTNubm73somSD5QMcED169dn/fr1hR2GSJHm7G7C28fd7kImIiJFW3JCHFcunLU7dzuZXfAs41OIUYmIiIiIFDyr1QqQofvjm9Nvuv2G/P79+xk3bhyjRo2iTZs2eHl58cUXXxAREXHH9Tk52d9GNhgMtnV5enqyYcMGfv31V7Zt28aCBQtYtGgR69ato1SpUrnaPskfSgaIiIiISJEXf+Uif3yzimPfGrn1+46zqzv/GDpNCQERERERKVH8/Pwwm80cOHCASpUqATe6Djp16hQtWrTIcrm9e/dSuXJluzEEzp07d8/xODk5ERISQkhICCNHjqRFixbs2LGD/8/encfHdPUPHP9MJpNlkpCIiIjYgiASSVBE1FN7PbSoWqqJfY1YakkQmiqCKGqrrUJ5WlStpbR5lNpqK2pf0lSE1L5ln8zM7488mZ+RhMSSzff9euXF3HvuPd87997M5HzvOadVq1YvvW/x6kgyQAghhBBCFHrpaalo01JQliiJyixjeLd0TSppKUmka1ILODohhBBCCFEcaTU6ID2f6skba2trOnTowMyZMylZsiT29vbMnz8fhUKRpbfAkypUqEB8fDzbt2/Hw8ODPXv2EBUV9TLh8+uvv3Lt2jXq169PiRIl2Lt3LzqdLsuQRaLgmRR0AEWJv78/U6dOzbf6mjVrxsqVK194ezc3t5e+mYUQQgghChNTlTkqcwtU5haYqswLOhwhhBBCCFEMmVmYYmGlQpuuIy05/bX/aNN1WFipMLPI23PbISEheHl5MWjQIHr37o2Pjw+urq6Ym+f8uLL3FQABAABJREFUPblFixb07NmTyZMn8/7773PixAmjXgIvwsbGhl9++YWePXvStm1b1q5dyxdffEG1atVear/i1ZOeAUIIIYQQQgghhBBCCPE/ljbmtOzpTVrK6+8VkMnMwhRLm7w97GJtbc0XX3xheJ2UlMSCBQvo0qULALt37852u7FjxzJ27FijZb169TL8PygoiKCgIMPr6dOnZ9nHhAkTDP+vV68eq1evzlPsomBIMqCAabVaFAoFJibSSUMIIYQQQgghhBBCiMLA0sY8z43z+e3cuXP89ddfeHp68vjxYxYuXAhA8+bNCzgyUVhJMiCP9Ho9M2fOZMOGDahUKrp162aUKYuMjGTjxo1cu3aNkiVL8s477zBmzBisrKwA2LhxI9OmTSMiIoKIiAj+/vtvdu3ahVqtZsKECRw8eJDSpUszYsSIXMWzYcMGIiMjuXr1Kra2trRq1YpJkyYZ1t+/f5/AwED279+Po6MjwcHBRr8Qrly5wowZMzh27BiWlpY0btyYcePGUapUKcPxLl++nLVr13L79m0qVarEkCFDaNOmDQAPHz5k8uTJHDhwgKSkJMqWLcvAgQP54IMPALh58ybh4eEcOHAAExMTfHx8mDBhAuXLl8/1e67VanNdVojcyLym5NoqvuQcC1H86HQZ46jq9Xr0ev0T/8+41+V+F0IIUVQVle+uRSVOkXdyTou2FStWEBMTg0qlwt3dnf/85z+Gdj0hnibJgDzatGkTvXv3Zv369Zw8eZKQkBB8fHxo3LgxAAqFggkTJuDs7ExcXByfffYZERERhIWFGfaRkpLCkiVLmDJlCra2ttjb2zN8+HD++ecfVq1ahUqlYsqUKdy9e/eZsXz77bdMnz6dUaNG8fbbb/P48WP++OMPozILFixgzJgxjB07ltWrVzN69Gh+/fVXbG1tuXXrFh9//DFdunQhJCSE1NRUZs2axYgRI/jmm28AmDt3Lj///DNhYWFUqlSJo0ePMmbMGEqVKsVbb73Fl19+SXR0NMuWLcPOzo7Y2FhSUlIASE5OJiAggLp167JmzRpMTU1ZtGgR/fr1Y+vWrZiZmeXqPT99+nRuT48QeSLXVvEn51iI4iP54R0AEhMTSUnTAKDVpJGemsT58+exvHG7IMMTQgghXlpR+e5aVOIU4k1Qq1YtNm7cWNBhiCJEkgF55ObmxtChQwGoVKkSa9as4dChQ4ZkwJPja7m4uDB8+HDCwsKMkgEajYawsDBq1KgBQExMDL/99hvr16+nTp06AEydOpW2bds+M5avvvqK3r1707NnT8MyT09PozIdO3akXbt2AHzyySesWbOGP//8k7fffpvvvvsOd3d3PvnkE0P5adOm0bRpU2JiYnB0dCQyMpJVq1bh7e1tOKbjx4+zbt063nrrLW7cuEHNmjXx8PAAMHrif/v27SgUCqZOnWqYxTw8PJz69etz5MgR/Pz8nvNuZ/Dw8ECpVOaqrBC5odVqOX36tFxbxZicYyGKn3v/XOPsTrCyssLMwhIATWoKqSZQs2ZNbMs4F3CEQgghxIspKt9di0qcIu8yz60QoviTZEAeubm5Gb12cHAweoL/999/Z8mSJVy5coWEhAS0Wi2pqakkJSWhVqsBUKlURvuJjo7G1NSU2rVrG5a5urpSokSJHOO4e/cut27dolGjRrmOV61WY2Vlxb179wA4e/Yshw8fNjT0Pyk2NpbHjx+TmppKnz59jNZpNBpq1qwJQPfu3Rk2bBjnzp2jcePGtGjRAh8fH8P+Y2NjDa8zpaamEhsb+8y4n6RUKuWLhngt5Noq/uQcC1F8ZM6vpFAoDA8ZZPxf7nUhhBDFQ1H5PCsqcQohhMhKkgF5ZGpq/JYpFArDuLXXr19nwIABdOvWjeHDh1OyZEmOHz/OhAkTSE///9nHLSwsDH/EPr2v3DI3z90EJiqVKksdmWPu6nQ63nnnHUaPHp1lOwcHBy5fvgzAkiVLcHR0NFqfOcRP06ZN+fXXX9mzZw8HDx6kV69e9OjRg+DgYHQ6He7u7syaNSvL/mXsMiGEEEIIIYQQQgghhMg/kgx4hc6cOYNWqyUkJMTw9NpPP/303O2qVKlCeno6Z86cMQzz89dff/Ho0aMct7G2tsbZ2ZlDhw7RsGHDF4rX3d2dXbt24ezsnCXJARm9E8zMzLhx4wZvvfVWjvspVaoUnTp1olOnTqxdu5aZM2cSHByMu7s7P/30E/b29lhbW79QjEIIIYQQQgghhBBCCCFenklBB1CcVKhQgfT0dFavXs21a9fYvHkza9eufe52VapUoUmTJoSGhnLq1CnOnDlDaGgoFhYWz9wuKCiIyMhIvvnmG/7++2/Onj3L6tWrcx3vRx99xMOHD/nkk0/4888/uXbtGvv372fcuHFotVqsra3p06cP4eHhbNq0idjYWM6dO8d//vMfNm3aBMCXX35JVFQUV69e5fLly+zZswdXV1cA2rdvj52dHYMHD+bYsWNcu3aNI0eOMGXKFP75559cxymEEEIIIYQQQgghhBDi5UjPgFeoZs2ajBs3jmXLljF79mzq1avHJ598QnBw8HO3DQ8PJzQ0lI8//pjSpUszfPhw5s2b98xtOnbsSGpqKitXrmTmzJnY2trSpk2bXMfr6OjId999x6xZs+jbty9paWmUK1eOJk2aGHo2jBgxAnt7e5YsWUJcXBw2NjbUqlWLQYMGARnDEM2ePZvr169jYWFB3bp1mT17NgCWlpasWbOGWbNmMXToUBITE3F0dKRRo0bSU0AIIYQQLyRdk2oYWjFdk1rA0QghhBBCCCFE0aHQZw54L0Qho9VqOXnyJF5eXjI5kXil5Noq/uQcC1H8PLx7k+/nBGOmNOHJaZbMLNT8e2AY1nalCy44IYQQ4iUUle+uRSVOkXdv8rlNSUkhJiaGypUrZxmhI+nRfdJSkvItFjMLNeoSdrku7+/vT40aNZgwYcJrjOr/NWvWjICAAHr16vVC27u5ubFw4UJatGjxagMTz7yOnyY9A4QQQgghRKFnbVuaWq0CcKtW1eiPVFOVuSQChBBCCCHEK5X06D7bl04mJeFhvtVpYV2Sfw+YlKeEgBB5JckAIYQQxZIiRYfmXjK6ZzzZojA1wbSEeT5GJYR4GeZWJbEt4/zGPbEmhBBCCCHyV1pKEikJD1GqzDBVvf6/GdM1qaQkPCQtJalAkwFarRaFQmEYPlwUP3JmhRBCFDvpj1NRH0/h1oYL/LPubI4/NzecJ/2RjDkuhBBCCCGEECIrU5U5KnOL1/7zogkHvV7PzJkzeeutt2jcuDHz5883Wh8ZGUn79u3x8vKiadOmhIWFkZiYaFi/ceNG6tWrx6+//krbtm3x8PDg+vXr3L17l0GDBuHp6UmzZs3YunVrruLZsGED//73v6lduzZ+fn5MnjzZaP39+/cJDAykTp06tGrViv/+979G669cuUL//v3x9vbG19eXMWPGcO/ePaPjXbZsGc2bN8fT05P33nuPnTt3GtY/fPiQUaNG0bBhQzw9PWnVqhU//PCDYf3NmzcZMWIE9evXp0GDBgwePJi4uLhcHVtxIckAIYQQxY5eo0OhAYVSgYmFabY/ClMTdKnp6NN1BR2uEEIIIYQQQgiRZ5s2bUKtVrN+/XrGjBnDwoULOXDggGG9QqFgwoQJbNu2jenTp/P7778TERFhtI+UlBSWLFnClClT+PHHH7G3tyckJITr16+zatUq5s2bx7fffsvdu3efGcu3337L5MmT6dKlC9u2bWPRokVUqFDBqMyCBQt499132bp1K2+//TajR4/mwYMHANy6dYuPP/6YmjVrsmHDBpYvX87du3cZMWKEYfu5c+eyceNGwsLC2L59O7169WLMmDEcOXIEgC+//JLo6GiWLVvGjh07CAsLw84uo6dFcnIyAQEBqNVq1qxZw7fffotaraZfv36kpaW96Ckocgo8GeDv78/UqVNfah9xcXG4ublx/vz5VxTV6607JCSEIUOGGF6/ivfgedzc3IiKinqtdQghRGGjMDXBxEyZ7Y/CtMA/AoUQQgghhBBCiBfm5ubG0KFDqVSpEh06dKB27docOnTIsL5Xr140bNgQFxcXGjVqxPDhw/npp5+M9qHRaAgLC8PHx4cqVapw8+ZNfvvtN6ZMmYK3tze1a9dm6tSppKSkPDOWr776it69e9OzZ08qV66Mp6dnlsmGO3bsSLt27ahYsSKffPIJycnJ/PnnnwB89913uLu788knn+Dq6kqtWrWYNm0ahw8fJiYmhqSkJCIjI5k2bRpNmjTBxcWFTp068d5777Fu3ToAbty4Qc2aNfHw8KB8+fL4+vrSrFkzALZv345CoWDq1Km4ubnh6upKeHg48fHxhmTCm6DA5wyYP38+pqYFHoaRjRs3Mm3aNI4dO/bcsk5OTuzfv9+QZXoRhfE9EEIIIYQQQgghhBBCFF5ubm5Grx0cHIye4P/9999ZsmQJV65cISEhAa1WS2pqKklJSajVagBUKpXRfqKjozE1NaV27dqGZa6urpQoUSLHOO7evcutW7do1KhRruNVq9VYWVkZhgE6e/Yshw8fxtvbO8t2sbGxPH78mNTUVPr06WO0TqPRULNmTQC6d+/OsGHDOHfuHI0bN6ZFixb4+PgY9h8bG2t4nSk1NZXY2Nhnxl2cFHgLtK2tbUGH8MLS0tIwMzPDwcHhpfZTlN8DIYQQQgghhBBCCCFE/nv64WKFQoFerwfg+vXrDBgwgG7dujF8+HBKlizJ8ePHmTBhAunp6YZtLCwsUCgUWfad3bKcmJvnbs4DlUqVpQ6dLmPoXp1OxzvvvMPo0aOzbOfg4MDly5cBWLJkCY6OjkbrzczMAGjatCm//vore/bs4eDBg/Tq1YsePXoQHByMTqfD3d2dWbNmZdl/qVKlchV/cVDgYyQ8PUROs2bNWLx4MePGjcPb25t//etfhq4emf788086dOiAh4cHnTp1yjJET+bkF0+Kiooyyj5duHABf39/vL298fHxoVOnTpw+fZrDhw8zbtw4Hj9+jJubG25ubobJN5o1a8aiRYsICQmhbt26TJw4McswQVqtlvHjx9OsWTM8PT1p3bo1q1atyvV7cPjwYUO9T/6EhIQYyu/evZtOnTrh4eFB8+bNWbBggdFN/Pfff9OjRw88PDxo27at0Vhh2Vm7di1NmjQx3HyZBg0aRHBwcK7rjY6Opnv37oZ6Dx48KMMTCSGEEEIIIYQQQgiRz86cOYNWqyUkJAQvLy8qV67MrVu3nrtdlSpVSE9P58yZM4Zlf/31F48ePcpxG2tra5ydnY2GKMord3d3Ll++jLOzMxUrVjT6UavVuLq6YmZmxo0bN7Ksd3JyMuynVKlSdOrUiVmzZjF+/HhDu7K7uztXr17F3t4+y/Y2NjYvHHdRU+A9A7ITGRnJsGHDGDRoELt27SIsLIx69erh6upKUlISAwcOpGHDhkRERBAXF/dC4+2PHj2amjVrEhYWhlKp5Pz586hUKry9vRk/fjzz5s0zzEad2W0G4Ouvv2bIkCEMHjw42/3qdDrKli3L3LlzsbOz48SJE0yaNAkHBwfatm373Li8vb3Zv3+/4XV0dDQDBgwwJDf27dvHmDFjCA0NpV69esTGxjJx4kQAhg4dik6nIygoCFtbW9avX09CQgLTpk17Zp1t2rRhypQpHD582NCd5+HDh+zfv5/Fixfnut7AwEDKlSvH999/T0JCAjNmzHju8eaGVqt9JfsRIlPmNSXXVvGVmdzUg+GpiKfp9Xr0ZFwHJnItCFHoye9uIYQQxVVR+YwrKnGKvJNzmrN0TWqRradChQqkp6ezevVqmjVrxvHjx1m7du1zt6tSpQpNmjQhNDSUzz//HKVSybRp07CwsHjmdkFBQXz66afY29vz9ttvk5iYyB9//IG/v3+u4v3oo49Yv349n3zyCf369cPOzo6rV6+yfft2pkyZgrW1NX369CE8PBy9Xk/dunVJSEjgxIkTqNVqOnbsyJdffom7uzvVqlUjLS2NPXv24OrqCkD79u35+uuvGTx4MMOHD8fR0ZH4+Hh+/vln+vXrR9myZXMVZ1FXKJMBb7/9Nj169ACgf//+rFy5kiNHjuDq6sq2bdvQ6XRMmzYNS0tLqlWrxj///ENYWFie6rhx4wZ9+/Y1XBCVKlUyrLOxsUGhUGQ7/E/Dhg3p27ev4XVcXJzRepVKxbBhwwyvXVxcOHHiBDt37sxVMuDJYYfu37/PxIkT+eCDD+jcuTMAixcvZsCAAXTs2NGw/+HDhxMREcHQoUM5ePAg0dHR7N6923ARjxw5kv79++dYp62tLU2aNGHbtm2GZMDOnTuxtbU1vH5evfv37+fatWusXr3aEP/IkSPp3bv3c4/5eU6fPv3S+xAiO3JtFV8miTrUQGJCApjm0LUxXY9CA+fPn0dnVeAd5YQQuSS/u4UQQhRXReUzrqjEKcTLMLNQY2FdkpSEh2g1aflSp4V1Scws1M8vmEs1a9Zk3LhxLFu2jNmzZ1OvXj0++eQTo1FAchIeHk5oaCgff/wxpUuXZvjw4cybN++Z23Ts2JHU1FRWrlzJzJkzsbW1pU2bNrmO19HRke+++45Zs2bRt29f0tLSKFeuHE2aNMHEJONv9hEjRmBvb8+SJUuIi4vDxsaGWrVqMWjQICCjXXb27Nlcv34dCwsL6taty+zZswGwtLRkzZo1zJo1i6FDh5KYmIijoyONGjXC2to613EWdYUyGfDkcD4KhYLSpUsbJr+Ijo7Gzc0NS0tLQ5nsJpZ4nt69exMaGsqWLVvw9fWlTZs2VKhQ4bnbPTl5Rk6+++47vv/+e27cuEFqaioajYYaNWrkKT6NRsOwYcNwcnJiwoQJhuVnz57l9OnThif2AcPkH8nJyURHR+Pk5GSUzcrN+9O+fXsmTZpEWFgYZmZmbNu2jbZt26JUKnNVb0xMDGXLljVKoHh6eubpmHPi4eFhiEOIV0Gr1XL69Gm5toqx1DuJXDt6Citra5Rm2Z9jXZoWXaqWijVroCplmW0ZIUThIb+7hRBCFFdF5TOuqMQp8i7z3Ir/py5hx78HTCItJSnf6jSzUKMuYZfr8qtXr86ybNGiRUave/XqRa9evYyWdejQwfD/Tp060alTpyz7cXBwYMmSJTlul5Nu3brRrVu3bNddvHgxy7Jjx44Zva5UqRILFizIcf8KhYKAgAACAgKyXT9kyBCGDBmS4/YODg6vbCSToqpQJgOeNflFTsM9PMnExCRLOY1GY/Q6KCiIdu3asXfvXn777TfmzZvHnDlzaNmy5TP3/WQSIjs7duwgPDyc4OBgvL29sbKy4uuvv+bUqVPPjftJYWFh3Lhxgw0bNhi9H5nDALVq1SrLNubm5tm+P7mZ8KNZs2aEhoayZ88ePDw8OHbsmNE8BbmpNy8Ti+SFUqmULxritZBrq/jKfGpAQc6/AxUKBQrkOhCiqJF7VgghRHFVVD7jikqcQrwsdQm7PDXOC1EUFMpkwLNUrVqVrVu3kpKSYhir6uTJk0Zl7OzsSExMJCkpyTDe/4ULF7Lsq3LlylSuXJlevXrxySef8MMPP9CyZUtUKtULj5d2/PhxvL29DcMcAcTGxuZpH5GRkezYsYN169ZhZ2f8S6dWrVrExMRQsWLFbLetWrUq8fHx3Lx50zCz9okTJ55bp4WFBa1atWLbtm1cvXqVSpUqGfWCeF69VapUIT4+njt37lC6dGlAug4KIYQQQgghhBBCCCFEYVHkBklu164dCoWCCRMmcOXKFfbu3cuKFSuMytSpUwdLS0tmz57N1atX2bZtGxs3bjSsT0lJYfLkyRw+fJjr169z/PhxTp8+bZg/wNnZmaSkJA4dOsS9e/dITk7OdXwVKlTgzJkz7Nu3j5iYGObOnZunRvGDBw8SERFBcHAwdnZ23L59m9u3b/P48WMAAgMD2bJlC/Pnz+fy5ctER0ezY8cO5syZA4Cvry+VK1cmODiYCxcucOzYMcO652nfvj179uzhhx9+4L333jNa97x6GzdujIuLi6He48ePZ1tvz549WbNmTa7fDyGEEEIIIYQQQgghhBAvr8glA6ysrFi8eDFXrlyhQ4cOzJkzh9GjRxuVsbW1JSIigt9++4327duzfft2goKCDOtNTEx48OABwcHBtG7dmhEjRvD2228bJv718fGhW7dujBgxgkaNGrF8+fJcx9e9e3datWrFyJEj6dKlCw8ePOCjjz7K9fbHjx9Hq9Xy6aef4ufnZ/iZOnUqAE2aNGHx4sUcOHCAzp0706VLFyIjI3F2djYc24IFC0hLS6Nz585MmDCBkSNH5qruhg0bUrJkSWJiYmjfvr3RuufVq1QqWbhwIUlJSXTu3JnQ0FAGDx4MZAwjlOnatWvcv38/1++HEEK8DH26LmNugGx+9Om6gg5PCCGEEEIIIYQQIt8o9LkZhF+IF3D8+HE++ugjfvnll1xNzvw0rVbLyZMn8fLykvEIxSsl11bxl/ogiZhvjqNWWfKs2UxMzE1x7FwT0xLmzyglhCgM5He3EEKI4qqofMYVlThF3r3J5zYlJYWYmBgqV65sGI5ciKImL9dxkZszQBRev/zyC2q1mooVKxIbG8vUqVPx8fF5oUSAEEK8DFMbc5LqWlCpeo1nfplVmJpIIkAIIYQQQgghhBBvBEkGiFcmMTGRiIgI4uPjsbOzw9fXl+Dg4IIOSwjxhtJbmKAqZfnGPdkihBBCCCGEEEIIkR1JBohXpkOHDnTo0KGgwxAiV5KTk7l37x4mJlmnTlGpVJQoUaIAohKv0tPnWM6rEEXf/fv3iY2NzXIvy/0thBBCCCGEEM8nyQAhxBvn0aNHHDlyhBMnTmS73tzcnG7duknDUhGW3TmW8ypE0Xbjxg1+++039u3bh52dnVGvH7m/hRBCCCGEEOL5sj4SK3Ll8OHDuLm58ejRIwA2btxIvXr1DOvnz5/P+++/X1DhPVdcXBxubm6cP3++oEMRIt+lp6ej0WgwNTXF0tLS6MfU1JTU1FQ0Gk1BhylewtPnWM6rEEVfSkoKOp0OyGj8l9/bQgghhBDiddImpqG5l5xvP9rEtDzF5+/vz9SpU1/qGAuyffBF6g4JCWHIkCGG16/iPXgeNzc3oqKiXmsd+Ul6Brwgb29v9u/fj42NTUGHUmg0a9aMgIAAevXqVdChCJErpqammJmZZVmenp5eANGI1+HJcyznVYjiQaFQoFKpjH5/y/0thBBCCCFeJW1iGjc3nEeblH8PnCjVKhw710RplbWdIjvz58/H1LRwNe1u3LiRadOmcezYseeWdXJyYv/+/djZ2b1wfYXxPSjs5N16QWZmZjg4OBR0GGg0GlQqVUGHIYQQQgghhBBCCCFEsaBL1aJN0qAwNUFh+voHVtGn69AmadClalFa5W4bW1vb1xrT65SWlvZK2laL8ntQUGSYIDK6lHz++edMnTqV+vXr4+vry7p160hKSmLcuHF4e3vTokUL9u7da9jm6WGCnufatWu0bNmSTz/91NDF/Wlubm58++239OvXD09PT5o1a8ZPP/1kWJ/ZfWbHjh34+/vj4eHB1q1b0el0LFiwgLfffpvatWvz/vvv89tvvxnt+88//6RDhw54eHjQqVOnLF1wnh7mCCAqKgo3NzejZf/973/p1KkTHh4eNGjQgKFDhxrew+vXrxMeHo6bm5thu+vXrzNo0CDq16+Pl5cX//73v43eRyGEEEIIIYQQQgghCiOFqQkmZsrX/vMiCYenh8hp1qwZixcvNrRl/utf/2LdunVG27yK9sELFy7g7++Pt7c3Pj4+dOrUidOnT3P48GHGjRvH48ePDW2D8+fPN8S2aNEiQkJCqFu3LhMnTswyTJBWq2X8+PE0a9YMT09PWrduzapVq3L9HmS21T79ExISYii/e/duQ7tm8+bNWbBggVEv47///psePXrg4eFB27ZtOXDgwDPrX7t2LU2aNMnS1jto0CCCg4NzXW90dDTdu3c31Hvw4MHXNjyR9Az4n02bNtGvXz++//57duzYQVhYGFFRUbRs2ZKBAweycuVKxo4dy549e7C0tMzTvi9dukSfPn3o2LEjo0aNembZL7/8ktGjRzNhwgS2bNnCqFGjqF69Oq6uroYys2bNIiQkhGnTpmFmZsY333xDZGQkkydPpmbNmvzwww8MGTKEH3/8kUqVKpGUlMTAgQNp2LAhERERxMXFvdB4Wnv27CEoKIhBgwYRERGBRqNhz549wP/PkdClSxe6dOli2Gby5MloNBrWrFmDWq3mypUrqNXqPNWr1WrzHKsQz5J5Ten1evR6vdG6zNc6nU6uvSLs6XMs51WIoi+n+1rubyGEEEVd5udXYf8cKypxiryTc1p8REZGMmzYMAYNGsSuXbsICwujXr16uLq6vrL2wdGjR1OzZk3CwsJQKpWcP38elUqFt7c348ePZ968eezcuRPAqA3w66+/ZsiQIQwePDjb/ep0OsqWLcvcuXOxs7PjxIkTTJo0CQcHB9q2bfvcuDKHdM8UHR3NgAEDDMmNffv2MWbMGEJDQ6lXrx6xsbFMnDgRgKFDh6LT6QgKCsLW1pb169eTkJDAtGnTnllnmzZtmDJlCocPH6ZRo0YAPHz4kP3797N48eJc1xsYGEi5cuX4/vvvSUhIYMaMGc893hclyYD/qVGjhmECioEDB7Js2TLs7OwMDduBgYF89913XLx4ES8vr1zv98SJEwwaNIgBAwbQt2/f55Zv06YNH374IQAjRozg4MGDrF69mrCwMEOZnj170qpVK8Prr7/+mv79+/Pvf/8bgDFjxnD48GFWrVrFp59+yrZt29DpdEybNg1LS0uqVavGP//8Y7TP3Fi8eDFt27Zl2LBhhmU1atQAMrrlKJVKrKysjLr43Lhxg9atWxsyiC4uLnmqE+D06dN53kaIZ0lISDD8m5KSYrQuc+LZc+fOYW1tXRDhiVfg6XMs51WIou/WrVtAxh8Jjx8/NowNKve3EEKI4qKo/O1bVOIU4k309ttv06NHDwD69+/PypUrOXLkCK6urq+sffDGjRv07dvX8OBypUqVDOtsbGxQKBTZDv/TsGFDo7bRuLg4o/UqlcqozdHFxYUTJ06wc+fOXCUDnhx26P79+0ycOJEPPviAzp07AxntmgMGDKBjx46G/Q8fPpyIiAiGDh3KwYMHiY6OZvfu3ZQtWxaAkSNH0r9//xzrtLW1pUmTJmzbts2QDNi5cye2traG18+rd//+/Vy7do3Vq1cb4h85ciS9e/d+7jG/CEkG/M+T3V2USiW2trZUr17dsKx06dIA3L17N9f7jI+Pp3fv3owYMSLXk+p6e3sbvfby8srSZad27dqG/yckJHDr1i18fHyMyvj4+HDhwgUgIxPm5uZm1KPh6Xpy4/z584ZERW4FBAQQFhbG/v378fX1pVWrVoYEQm55eHigVCrztI0Qz3L79m1+//13rK2tMTc3N1qXlpZGSkoKtWrVolSpUgUUoXhZT59jOa9CFH2XL1/mwIEDmJiYYGNjY5hAWO5vIYQQRZ1Wq+X06dOF/m/fohKnyLvMcyuKvifbNxUKBaVLlza0Zb6q9sHevXsTGhrKli1b8PX1pU2bNlSoUOG52z3ZnpmT7777ju+//54bN26QmpqKRqPJczuiRqNh2LBhODk5MWHCBMPys2fPcvr0acMT+5Bx7aemppKcnEx0dDROTk6GRADk7v1p3749kyZNIiwsDDMzM7Zt20bbtm0NvyefV29MTAxly5Y1SqB4enrm6ZjzQpIB//P0zNMKhcJomUKhAMgypMiz2NnZUaZMGbZv307nzp1f+Gm1zLozZTfMztNl9Hp9nmI2MTHJUk6jMZ4x3cLCIlfxPunDDz/Ez8+PPXv2cODAAZYuXUpwcDD+/v653odSqZQvGuKVyryeFApFlnsn87WJiYlcd0XY0+dYzqsQRV9O97Xc30IIIYqLovK3b1GJU4g3UXbtm08Pr/ksuWkfDAoKol27duzdu5fffvuNefPmMWfOHFq2bPnMfT9v2PUdO3YQHh5OcHAw3t7eWFlZ8fXXX3Pq1Knnxv2ksLAwbty4wYYNG4zej8xhgJ4cbSWTubl5tu/P021G2WnWrBmhoaHs2bMHDw8Pjh07ZjRPQW7qzU09r4pMIPwaWVhYsGTJEszNzenbt69h2IpnOXnypNHrU6dOUaVKlRzLW1tbU6ZMGY4fP260/MSJE4buOlWrVuXixYtGw6E8XY+dnR2JiYkkJSUZlmX2LMhUvXp1Dh06lGMsKpUq28mRnZyc6N69OwsWLKB3796sX78+x30IIYQQQgghhBBCCCFerVfVPghQuXJlevXqxYoVK2jVqhU//PADkNE2+KJzUBw/fhxvb2969OhBrVq1qFixIrGxsXnaR2RkJDt27OCrr77Czs7OaF2tWrWIiYmhYsWKWX5MTEyoWrUq8fHx3Lx507DNiRMnnlunhYUFrVq1Ytu2bYb5W5/sBfG8eqtUqUJ8fDx37twxbPM6e+pIMuA1U6vVLFmyBKVSSf/+/UlMTHxm+Z07d7JhwwZiYmKYN28ef/75Jx9//PEzt+nbty/Lli1jx44d/PXXX8yaNYsLFy4QEBAAQLt27VAoFEyYMIErV66wd+9eVqxYYbSPOnXqYGlpyezZs7l69Srbtm1j48aNRmWGDh3K9u3bmTdvHtHR0Vy8eJFly5YZ1js7O3P06FFu3rzJvXv3AJg6dSr79u3j2rVrnD17lt9//91oMmQhhBBCCCGEEEIIIQojfboOXZr2tf/o07M+XPuqvYr2wZSUFCZPnszhw4e5fv06x48f5/Tp04a2PmdnZ5KSkjh06BD37t0jOTk51/FVqFCBM2fOsG/fPmJiYpg7d26eGsUPHjxIREQEwcHB2NnZcfv2bW7fvs3jx4+BjPlgt2zZwvz587l8+TLR0dHs2LGDOXPmAODr60vlypUJDg7mwoULHDt2zLDuedq3b8+ePXv44YcfeO+994zWPa/exo0b4+LiYqj3+PHj2dbbs2dP1qxZk+v3IyeSDMgHVlZWLFu2DL1ez4ABA4yya08LCgpix44dvPfee2zevJlZs2ZRtWrVZ+4/ICCA3r17M336dN577z327dvHokWLDBN4WFlZsXjxYq5cuUKHDh2YM2cOo0ePNtqHra0tERER/Pbbb7Rv357t27cTFBRkVKZBgwZ8+eWX7N69m/fff5+ePXvy559/GtYPGzaM69ev06JFC8MkGTqdjsmTJ9O2bVv69etH5cqV+fTTT/Py9gkhhBBCCCGEEEIIkW9MzJUo1aqMZEBK+mv/0afrUKpVmJi/viG4XkX7oImJCQ8ePCA4OJjWrVszYsQI3n77bcPEvz4+PnTr1o0RI0bQqFEjli9fnuv4unfvTqtWrRg5ciRdunThwYMHfPTRR7ne/vjx42i1Wj799FP8/PwMP1OnTgWgSZMmLF68mAMHDtC5c2e6dOlCZGQkzs7OhmNbsGABaWlpdO7cmQkTJjBy5Mhc1d2wYUNKlixJTEwM7du3N1r3vHqVSiULFy4kKSmJzp07ExoayuDBgwGM5rm8du0a9+/fz/X7kROFPi+D4IvXys3NjYULF9KiRYuCDqVQ0Gq1nDx5Ei8vLxmPULxSt2/fZsWKFZQoUQKVSmW0TqPRkJ6ezkcffYS9vX0BRShe1tPnWM6rEEXf5cuXWbVqFUqlkrJlyxp+f8v9LYQQoqgrKn/7FpU4Rd69yec2JSWFmJgYKleunGWuTG1iGrrUFxvy5kWYmCtRWpnlW32i8Dp+/DgfffQRv/zyS64mZ37Wdfw0mUBYCPHGMTU1RaVSkZ6eTnp6epb15ubmWZIEomjJ7hzLeRWiaLOwsMDEJKNTa2pqqtHvb7m/hRBCCCHEq6a0MkNpVdBRiDfBL7/8glqtNsyTMHXqVHx8fHKVCMgrSQYIId44JUqU4K233sLNzc3QsPQklUpFiRIlCiAy8apkd47lvApRtJUrV463334bV1fXLPey3N9CCCGEEEKIoioxMZGIiAji4+Oxs7PD19eX4ODg11KXJAMKkYsXLxZ0CEK8MSxVCahVCVjZVi7oUMRrYmlpSalSpd64bq5CFGd2dnZUqFBB7mshhBCioOgSSU99gFItQ/MJIcSr0qFDBzp06JAvdckEwkKIN07K41gsHm/n2okvSX4UW9DhCCGEEEIIIUShl576ALPE3dw4G4km9UFBhyOEEOIFSM8AIcQbR5ueDOjQ60GXnlzQ4QghhBBCCCFEoafTaVDoNei0Kei1moIORwghxAuQngHilXNzcyMqKqqgwxBCCCGEEEIIIYQQQgjxP5IMeI0OHz6Mm5sbjx49eqn96HQ6IiIi8PPzw9PTk/bt20tjuxBCCCGEEEIIIYQQQohck2GCioCtW7eyatUqZsyYQZ06dYiNlTHOhRBCCCGEEEIIIYQQQuSe9AzIgb+/P1OmTGHmzJm89dZbNG7cmPnz5xvWx8XF4ebmxvnz5w3LHj16hJubG4cPHyYuLo6AgAAA6tevj5ubGyEhIQDs3LmT9u3b4+npSYMGDejVqxdJSUk5xqJQKLCzs+Pf//435cuXx9fXF19f3+ceQ1paGpMnT8bPzw8PDw+aNWvGkiVLDOsfP37MxIkTadSoET4+PgQEBHDhwgWjfezevZtOnTrh4eFB8+bNWbBgAenp6Yb1f//9Nz169MDDw4O2bdty4MCBPMUghBBCCCGEEEIIIYQQ4vWTngHPsGnTJnr37s369es5efIkISEh+Pj40Lhx4+du6+TkxPz58wkKCmLnzp1YW1tjYWHBrVu3GDVqFGPGjKFFixYkJiZy7Ngx9Hp9jvtq1KgRCQkJzJ07lxEjRuQ6/tWrV7N7927mzp2Lk5MT8fHx/PPPPwDo9XoGDBhAyZIlWbp0KTY2Nqxbt46ePXuya9cubG1t2bdvH2PGjCE0NJR69eoRGxvLxIkTARg6dCg6nY6goCBsbW1Zv349CQkJTJs2Ldcx5JZWq81TeSGeR/e/a0oPaHVaucaKocxzKudWiOJD7mshhBDFVVH5jDP8HaWXv6OKGzmX2UtISCA1NTXf6jM3N8fa2vq11nH48GECAgI4evQoJUqUYOPGjUybNo1jx44BMH/+fKKiotiyZctrjeNFxcXF0bx5czZv3kzNmjULOpwiSZIBz+Dm5sbQoUMBqFSpEmvWrOHQoUO5SgYolUpKliwJgL29PSVKlAAgNjaW9PR0WrZsibOzs6GenCQnJ9OnTx/atWvHwYMHSUlJITg4GIVCAYCPjw/h4eG0bt06y7bx8fFUrFiRunXrolAoDPUB/P7771y6dIlDhw5hZmYGQHBwMFFRUezatYuuXbuyePFiBgwYQMeOHQFwcXFh+PDhREREMHToUA4ePEh0dDS7d++mbNmyAIwcOZL+/fvnKobcOn36dJ63EeJZTDQ3MAP0Oh3RV6LRqZILOiTxmsjvDyGKH7mvhRBCFFeF/TNOoX2EGZCSksz5c+fRK68XdEhCvDYJCQmsW7fumSN5vGpqtZquXbu+1oSAt7c3+/fvx8bG5rXVUdQ0a9aMgIAAevXqVdCh5AtJBjzD0430Dg4O3L1796X2WaNGDRo1akT79u3x8/PDz8+P1q1bGxIHT9u4cSOPHj1i4sSJJCcn4+/vT0hICFOnTuWff/4hKSkJb2/vbLft2LEjffr0oU2bNjRp0oR//etf+Pn5AXD27FmSkpJo0KCB0TYpKSmGOQnOnj3L6dOnWbx4sWG9VqslNTWV5ORkoqOjcXJyMiQCgCyxPCuG3PLw8ECpVOZpGyGe5fEdM66fBoWJCa5VXbGyyzkhJ4omrVbL6dOn5feHEMWI3NdCCCGKq6LyGZeS8A8xf0RhYWGJa62amFk6FHRI4hXJvAbF/0tNTSUpKQlTU1NUKtVrr0+j0ZCUlERqauprTQaYmZnh4FDw965Go8mX91VkJcmAZzA1NX57FAqFYTgfE5OM6RaeHN7nybH0c6JUKomMjOSPP/7gwIEDrF69mjlz5rB+/XpcXFyylL948SLVqlXDzMwMMzMzIiMj+eijjxg6dCgVK1akSZMmlClTJtu63N3d+e9//8tvv/3GwYMHGTFiBL6+vsybNw+dToeDgwOrV6/Osl1mdjBzGKBWrVplKWNubp7t0EaZPRZyE0NuKZXKQv2FSBQ9Jv+7nhSA0kSur+JMfn8IUfzIfS2EEKK4KuyfcYa/oxTyd5R4c6hUKsOIGq9bbtoVn+Tv70/16tUxMTFh8+bNqFQqhg8fTvv27fn888/ZuXMn9vb2TJw4kaZNmwJZhwl6nmvXrtGnTx98fX359NNPDe2hT3Jzc+PTTz9l9+7dHDlyhNKlSzNmzBjeffdd4P+H9pkzZw7fffcdJ0+eJCwsjI4dO7Jo0SLWr1/PvXv3cHV1ZdSoUbz99tuGff/5559MmjSJ6OhoqlWrxuDBg43qfnqYI4CoqCgCAwO5ePGiYdl///tfFi5cyOXLl1Gr1dSvX58FCxbg7+/P9evXCQ8PJzw8HMhoi71+/Tqff/45x48fR6PR4OzszNixYw3vY1EmEwi/oFKlSgFw+/Ztw7InJxMGDBmup8deUygU1K1bl2HDhhlu1qioqGzrcXR05Pz58yQkJAAZQw6tXLmSS5cusXLlyufOIWBtbU3btm2ZMmUKc+bMYdeuXTx48AB3d3fu3LmDUqmkYsWKRj+Zx1arVi1iYmKyrK9YsSImJiZUrVqV+Ph4bt68aajvxIkTuY5BCCGEEEIIIYQQQgjxYjZt2oSdnR3ff/89H3/8MWFhYQwfPhxvb282bdqEn58fY8eOJTk578MjX7p0ie7du9OmTRs+++yzbBMBmb788ktat27Nli1beO+99xg1ahTR0dFGZWbNmoW/vz87duzAz8+Pb775hsjISIKDg9m6dSt+fn4MGTKEv//+G4CkpCQGDhxI5cqV2bhxI0FBQcyYMSPPx7Fnzx6CgoL417/+xebNm1m1ahW1a9cGMuZIKFu2LMOGDWP//v3s378fgMmTJ5OWlsaaNWvYtm0bo0ePRq1W57nuwkiSAS/IwsICLy8vli5dypUrVzh69Chz5841KuPs7IxCoWDPnj3cu3ePxMRETp06xeLFizl9+jQ3btzg559/5t69e1SpUiXbejp37oxWq2Xw4MH88ccf/PXXX+zevZtHjx5haWnJ999/n2OMK1euZPv27URHRxMTE8POnTtxcHCgRIkS+Pr64uXlRWBgIPv27SMuLo4//viDOXPmGLqGBQYGsmXLFubPn8/ly5eJjo5mx44dzJkzBwBfX18qV65McHAwFy5c4NixY4Z1uYlBCCGEEEIIIYQQQgjxYmrUqMGQIUOoVKkSAwcOxMLCAjs7O7p06UKlSpUIDAzkwYMHRk/J58aJEyfw9/end+/ejBo16rnl27Rpw4cffkjlypUZMWIEtWvXzjIaSc+ePWnVqhUuLi44Ojry9ddf079/f/79739TpUoVxowZQ40aNVi1ahUA27ZtQ6fTMW3aNKpVq8Y777xD375983QcAIsXL6Zt27YMGzYMV1dXatSowaBBgwCwtbVFqVRiZWWFg4ODYQilGzdu4OPjg5ubGy4uLrzzzjvUr18/z3UXRjJM0EuYNm0a48eP54MPPqBy5cqMGTOGPn36GNY7OjoSFBTEF198wbhx4+jQoQP9+/fn6NGjrFq1ioSEBMqVK0dISEiO3UwcHR3ZsGEDERERBAUFkZCQgLu7O1988QUWFhb06dOHihUr0rt37yzbqtVqli1bxtWrVzExMcHDw4OlS5caMnlLly5l7ty5jB8/nvv371O6dGnq1atH6dKlAWjSpAmLFy9m4cKFLF++HFNTU6pUqcKHH34IZAyVtGDBAiZMmEDnzp1xdnYmNDSUfv365ToGIYQQQgghhBBCCCFE3j0536lSqcTW1pbq1asblmW28eVlDtT4+Hh69+7NiBEjcj2p7tNziHp5eWUZQSXzaXzImKD51q1b+Pj4GJXx8fHhwoULAERHR+Pm5oalpWWO9eTG+fPnDW2ZuRUQEEBYWBj79+/H19eXVq1aUaNGjTzXXRhJMiAH2Y2lv2jRIqPXrq6urFu3zmjZ05m2wMBAAgMDjZZ9/fXXeYrFxcUlxzH2z549m+N2Xbp0oUuXLjmut7a2JjQ0lNDQ0BzLNGnShCZNmuS4vnLlynz77bdGy558D54XgxAFQWlqCZigUCgxMbV8bnkhhBBCCCGEeNOZmKjQK1SYKC1QKGXiTyEKg+zmO31yWebcntnN+5kTOzs7ypQpw/bt2+ncufMLT2j89Lyi2Q2z83QZvV6fp5hNTEyylNNoNEavLSwschXvkz788EP8/PzYs2cPBw4cYOnSpQQHB+Pv75/nfRU28ni2EOKNY2FTgRSbf+PiPRzLEhUKOhwhhBBCCCGEKPRMzW1Js2pGOffeqMxtCzocIcRrYmFhwZIlSzA3N6dv376GeUyf5eTJk0avT506leOQ6JDxgHKZMmU4fvy40fITJ07g6uoKQNWqVbl48SIpKSk51mNnZ0diYiJJSUmGZZk9CzJVr16dQ4cO5RiLSqVCp9NlWe7k5ET37t1ZsGABvXv3Zv369TnuoyiRZIAQ4s1k6oCFjSQChBBCCCGEECLXTKwwlUSAeINoNBrS0tJe+8/TT7MXNLVazZIlS1AqlfTv35/ExMRnlt+5cycbNmwgJiaGefPm8eeff/Lxxx8/c5u+ffuybNkyduzYwV9//cWsWbO4cOECAQEBALRr1w6FQsGECRO4cuUKe/fuZcWKFUb7qFOnDpaWlsyePZurV6+ybds2Nm7caFRm6NChbN++nXnz5hEdHc3FixdZtmyZYb2zszNHjx7l5s2b3Lt3D4CpU6eyb98+rl27xtmzZ/n9998NSYqiTpIBQgghhBBCCCGEEAUoRW/C4zRtQYchhPgfc3Nz1Go16enpJCcnv/af9PR01Go15ubmBX3oBlZWVixbtgy9Xs+AAQOMnr5/WlBQEDt27OC9995j8+bNzJo1i6pVqz5z/wEBAfTu3Zvp06fz3nvvsW/fPhYtWkSlSpUM9S9evJgrV67QoUMH5syZw+jRo432YWtrS0REBL/99hvt27dn+/btBAUFGZVp0KABX375Jbt37+b999+nZ8+e/Pnnn4b1w4YN4/r167Ro0YJGjRoBoNPpmDx5Mm3btqVfv35UrlyZTz/9NC9vX6Gl0Odl0Cgh8pFWq+XkyZN4eXmhVCoLOhxRjMi1VfzJORai+ElI1bD71EWa1XHD2lzGKRZCCFF8PEhOY82pa1hbW/NB9dLYmBXO76/yHbv4epPPbUpKCjExMVSuXDnL2PIJCQmkpqbmWyzm5uYvPD5/QXJzc2PhwoW0aNGioEN5Yz3rOn6aTCBciBw+fJiAgACOHj1KiRIl2LhxI9OmTePYsWP5HktycjJjx47lwIEDJCYmGmISQgghhCgIKek64nUWpKTrsC48D0wJIYQQLy1dp0erV5Cm1aHRyfOaQhQW1tbWRbJxXohnkWGCChFvb2/279+PjY3NK9vnli1baNOmDR4eHjRr1oyFCxfmartNmzZx7Ngx1q5dm+uYDh8+jJubG48ePXrZsIUQQgghhBBCCCGEEEK8QtIzoBAxMzPDwcHhle0vLi6O4OBg+vXrR9euXbl//z4xMTG52vbatWu4urpSvXr1VxaPEEIIIYQQQgghhBCi+Lh48WJBhyDyQHoG5KO0tDSmTJlCo0aN8PDwoHv37kYTVjzvyfoLFy7g7++Pt7c3Pj4+dOrUidOnT+dYn0KhQKFQ8MEHH+Di4oKnpyfvv//+c+P09/dnxYoVHD16FDc3N/z9/YGMXgadOnXC29ubxo0bM2rUKO7evQtkJB4yZ/uuX78+bm5uhISEABkzirdv3x5PT08aNGhAr169njnpiBBCCCGEEEIIIYQQQohXS3oG5KOZM2eya9cupk+fjrOzM8uXL6dfv378/PPP2NraPnf70aNHU7NmTcLCwlAqlZw/fx6VKucJ9BwdHalduzaff/45X331Va5nJJ8/fz5ffPEFly9fZv78+YY6NBoNw4cPp0qVKty9e5fw8HBCQkJYtmwZTk5OzJ8/n6CgIHbu3Im1tTUWFhbcunWLUaNGMWbMGFq0aEFiYiLHjh0jL/NWa7XaXJcVIjcyrym5toovOcdCFD9andbwr9zbQgghipPMzzj0oNNq0WoVBRtQDuQ7dvEl51SIN4ckA/JJUlISa9euJTw8nKZNmwLw+eefc+DAATZs2EC/fv2eu48bN27Qt29fXF1dAahUqdIzy0+cOBG9Xk/58uXp168fX331lWHik4EDB1K+fHkmTpyYZTtbW1ssLCxQqVRGwxZ17tzZ8H8XFxcmTJjAhx9+SGJiIlZWVpQsWRIAe3t7w2TDsbGxpKen07JlS5ydnYGMWcbz4lm9H4R4GXJtFX9yjoUoPhL1SsCaixcvEaeQP1iFEEIUHxmfcSVITk7m3PnzWBXyzzn5ji2EEEWXJAPySWxsLBqNBh8fH8MylUqFp6cn0dHRudpH7969CQ0NZcuWLfj6+tKmTRsqVKiQbdkrV66wceNGtm/fjqurK+PGjcPf35/ly5djb2/P5cuXczVk0JPOnTvH/PnzuXDhAg8ePDA83R8fH0/VqlWz3aZGjRo0atSI9u3b4+fnh5+fH61btzYkDnLDw8MDpVKZp1iFeBatVsvp06fl2irG5BwLUfzcSUrl/NkbuLlVp7Q6d70dhRBCiKLgTlIqJ878g6WlJbWqOWNnUTibauQ7dvGVeW6FEMVf4fyEKcYUCuPufnq9PsuynAQFBdGuXTv27t3Lb7/9xrx585gzZw4tW7bMUvbixYuoVCpDI/3UqVMZOXIk3bt3p2/fviQmJtKsWbNcx52UlESfPn1o3LgxERER2NnZER8fT9++fdFoNDlup1QqiYyM5I8//uDAgQOsXr2aOXPmsH79elxcXHJVt1KplC8a4rWQa6v4k3MsRPGhNFEa/pX7WgghRHGS+RmHAkyKwPdX+Y4thBBFl0wgnE8qVKiASqXi+PHjhmUajYYzZ84Yhv3JjcqVK9OrVy9WrFhBq1at+OGHH7It5+joiEaj4dSpU0DGh/WsWbOoUKECkyZNYvDgwVhYWOS63r/++ov79+8zevRo6tWrh6urq2Hy4EyZcws8PdacQqGgbt26DBs2jM2bN6NSqYiKisp13UIIIYQQQgghhBBCCCFejvQMyCdqtZru3bszc+ZMSpYsSbly5Vi+fDkpKSlGY/HnJCUlhZkzZ9K6dWvKly/PP//8w+nTp2nVqlW25evWrYu3tzcjR45k/PjxVK9enUuXLnHt2jXUajXbtm2ja9euWFpa5ir+cuXKoVKpWL16Nd27d+fSpUssWrTIqIyzszMKhYI9e/bQtGlTzM3NuXLlCocOHaJx48bY29tz6tQp7t27R5UqVXJVrxBCCCGEEEIIIXL28OFDkpKSXns9Wq2Whw8fEh8fX2R6BqjV6jwNUyzEk9LTHqNLT8m3+kxMLTA1s8m3+t5kbm5uLFy4kBYtWhR0KPlOkgH5aPTo0ej1esaOHUtiYiK1a9dm+fLlufpgMjEx4cGDBwQHB3Pnzh3s7Oxo1aoVw4YNy7a8QqFg+fLlLFiwgPDwcG7evEnFihXp3r077777Ll26dGH06NHMnz8fE5PndxApVaoU06dPZ/bs2axevRp3d3eCg4MZPHiwoYyjoyNBQUF88cUXjBs3jg4dOtC/f3+OHj3KqlWrSEhIoFy5coSEhBgmURZCCCGEEEIIIcSLefjwIQsXLnzm8L2v2r59+/KtrpelUqkIDAyUhIDIs/S0x1w/8zVaTWK+1alUWeFcu2++JgQOHz5MQEAAR48epUSJEi+8H51OxxdffMGWLVt49OgRFStWZPjw4W9kY3thJ8mAfGRubk5oaCihoaHZrm/QoAEXL140vO7UqROdOnUCwMzMjNmzZ+epPmtra0JCQggJCcmybu/evc/cdsKECVmWtWvXjnbt2hktezJegMDAQAIDA42Wff3117kNWQghhBBCCCGEELmUlJSERqOhY8eOODg4FHQ4hcrt27fZtGkTSUlJkgwQeaZLT8lIBChMMVGqXn99Wg1aTWJGT4Qi2Dtg69atrFq1ihkzZlCnTh1iY2MLOiSRA0kGCCGEEEKIQs/C1AQnkxQsTGXKKyGEEMWLqYkCpUKPmdIElYnihfbh4OCAk5PTK45MCGGiVGGiNM+XunTp6Xkq7+/vj5ubG2ZmZmzYsAGVSkW3bt0ICgoCIC4ujubNm7N582Zq1qwJwKNHj6hfvz7ffPMNzs7OBAQEAFC/fn0AOnbsyPTp09m5cycLFy7k6tWrWFpaUrNmTRYtWoRarc42FoVCgZ2dHf/+978BKF++fK6OIS0tjenTp/Pzzz/z8OFDHBwc6Nq1KwMHDgTg8ePHzJw5k6ioKFJTU6lduzbjx4+nRo0ahn3s3r2bBQsWcPnyZcqUKUPHjh0ZNGgQpqYZzd5///03EyZM4M8//8TFxSXLA9DPi6G4kWSAEEIIIYQo9CxNTXBWpmIpyQAhhBDFjI2ZEm/TR7i7umBjVjTG4hdCFA6bNm2id+/erF+/npMnTxISEoKPjw+NGzd+7rZOTk7Mnz+foKAgdu7cibW1NRYWFty6dYtRo0YxZswYWrRoQWJiIseOHUOv1+e4r0aNGpGQkMDcuXMZMWJEruNfvXo1u3fvZu7cuTg5OREfH88///wDgF6vZ8CAAZQsWZKlS5diY2PDunXr6NmzJ7t27cLW1pZ9+/YxZswYQkNDqVevHrGxsUycOBGAoUOHotPpCAoKwtbWlvXr15OQkMC0adNyHUNxJMkAIYQQQgghhBBCiAKUlqIjLUUHlgUdiRCiKHFzc2Po0KEAVKpUiTVr1nDo0KFcJQOUSqVhCC17e3vDnAGxsbGkp6fTsmVLnJ2dDfXkJDk5mT59+tCuXTsOHjxISkoKwcHBKBQZPZ18fHwIDw+ndevWWbaNj4+nYsWK1K1bF4VCYagP4Pfff+fSpUscOnQIMzMzAIKDg4mKimLXrl107dqVxYsXM2DAADp27AiAi4sLw4cPJyIigqFDh3Lw4EGio6PZvXs3ZcuWBWDkyJH0798/VzEUR5IMEEIIIYQQQgghhCggdx9pWH/YBOuz1wjpXgn7Eq9/fHIhRPHwdCO9g4MDd+/efal91qhRg0aNGtG+fXv8/Pzw8/OjdevWOc69sXHjRh49esTEiRNJTk7G39+fkJAQpk6dyj///ENSUhLe3t7ZbtuxY0f69OlDmzZtaNKkCf/617/w8/MD4OzZsyQlJdGgQQOjbVJSUgxzEpw9e5bTp0+zePFiw3qtVktqairJyclER0fj5ORkSAQAWWJ5VgzFkSQDhBBCCCGEEEIIIQpImkZHaroCk1QdqRpdQYfzUlJTU0lNTX1t+zc3N8fcPH/GbxeiKMgcFz+TQqEwDOdjYpIxvOaTw/uk52JeAqVSSWRkJH/88QcHDhxg9erVzJkzh/Xr1+Pi4pKl/MWLF6lWrRpmZmaYmZkRGRnJRx99xNChQ6lYsSJNmjShTJky2dbl7u7Of//7X3777TcOHjzIiBEj8PX1Zd68eeh0OhwcHFi9enWW7WxsMiZZzhwGqFWrVlnKmJubZzu0UWaPhdzEUBxJMuAN5O/vT40aNbJMmCGEEEIIIYQQQoiiJzIyklWrVhktK126NAcOHAAyGgMXLFjAunXrePToEXXq1GHSpElUq1bNUD4tLY0ZM2bw448/kpqaSsOGDQkLCzN6ovZ5UlNTOXr0KElJSa/mwJ6gVqupX7++JAOEyKVSpUoBcPv2bcOy8+fPG5VRqTJ6Imm1WqPlCoWCunXrUrduXQIDA3nnnXeIioqid+/eWepxdHQkKiqKhIQErK2tsbe3Z+XKlfTo0YNff/2VjRs3PjNOa2tr2rZtS9u2bWndujX9+vXjwYMHuLu7c+fOHZRKZY4TEteqVYuYmBgqVqyY7fqqVasSHx/PzZs3cXR0BODEiRO5jsHW1vaZsRdFkgwoxg4fPkxAQABHjx41jPslhBBCCCGEEEKI4qdatWpERkYaXiuV/z8Z8bJly4iMjGT69OlUqlSJr776it69exsmDQWYOnUqv/76K3PmzMHW1pbp06czcOBANm7caLSv50lKSiIhIeHVHZgQBUin1RTZeiwsLPDy8mLp0qU4Oztz//595s6da1TG2dkZhULBnj17aNq0Kebm5ly5csUw74C9vT2nTp3i3r17VKlSJdt6OnfuzDfffMPgwYMZOXIktra2HDp0iEePHmFpacn333+Pu7t7ttuuXLkSBwcHatSogYmJCTt37sTBwYESJUrg6+uLl5cXgYGBjB49msqVK3Pr1i327t1LixYt8PDwIDAwkEGDBuHk5ESbNm0wMTHh4sWLXLx4kZEjR+Lr60vlypUJDg4mJCSEhIQE5syZk+sYiiNJBohXQqPRGLKJQgghhBBCCCGEyF9KpRIHB4csy/V6Pd988w2DBg0yDKUxY8YMfH19+fHHH+nWrRuPHz/mhx9+YObMmfj6+gIQERHBv/71Lw4ePEiTJk0A+OOPP/jss8/466+/qFatGkOGDCEwMJDNmzdTs2bN/DtYIV4zE1MLlCortJpEdLkYWudVUKqsMDG1eKX7nDZtGuPHj+eDDz6gcuXKjBkzhj59+hjWOzo6EhQUxBdffMG4cePo0KED/fv35+jRo6xatYqEhATKlStHSEgITZs2zbYOR0dHNmzYQEREBEFBQSQkJODu7s4XX3yBhYUFffr0oWLFitn2KlCr1SxbtoyrV69iYmKCh4cHS5cuNQxxtHTpUubOncv48eO5f/8+pUuXpl69epQuXRqAJk2asHjxYhYuXMjy5csxNTWlSpUqfPjhh0DGUEkLFixgwoQJdO7cGWdnZ0JDQ+nXr1+uYyhuFPrsBk8SRUJaWhozZ85k+/btJCQkULt2bcaNG4enpydxcXE0b97cqHzHjh2ZPn06/v7+uLm5YWZmxoYNG1CpVHTr1o2goCBD2cePHzNz5kyioqJITU2ldu3ajB8/nho1agAwf/58oqKi8Pf356uvvuL69eucP3+eXbt2sXDhQq5evYqlpSU1a9Zk0aJFqNXqPB+fVqvl5MmTeHh45OkpBCGeR6vVcvr0abm2ijE5x0IUP3JfCyGEKK7ibifz2aorWFpYMK57BZzscz8MTnx8PF9//TUqlYr169djbW2NmZkZderU4ZNPPsHFxYVr167RokULNm3aRK1atQzbDh48mBIlSjBjxgwOHTpEr169OHLkiNEkoe+99x4tWrRg2LBhJCQk0Lx5c95++20GDhzI9evXmTZtGn///bchGfDo0SP27t37WnoGWFtb07Rp01w/rRsfH8/SpUvp27cvTk5Orzye4iTze5aXl9cb9z0rJSWFmJgYKleujIWFcUN8etpjdOkp+RaLiakFpmY2+VafKD6edR0/TXoGFGEzZ85k165dTJ8+HWdnZ5YvX06/fv34+eefcXJyYv78+QQFBRm6/T15MWzatInevXuzfv16Tp48SUhICD4+PjRu3Bi9Xs+AAQMoWbIkS5cuxcbGhnXr1tGzZ0927dplGC8rNjaWn376ifnz52NiYsLt27cZNWoUY8aMoUWLFiQmJnLs2LFsJ+vIi9OnT7/U9kLkRK6t4k/OsRDFj9zXQgghipu7CQBKklNSOHf+PDetc7/tw4cPgYxxs2fMmEGlSpW4e/cuX331Fd26dePHH380jBdub29vtG3p0qW5ceMGAHfu3EGlUhklAjLL3LlzB4Bt27YBMGXKFMzNzalatSq3bt0iNDT0BY46/1y6dImbN28WdBiiCDI1swFpnBfFjCQDiqikpCTWrl1LeHi4oZvO559/zoEDB9iwYQP9+vUzfIjb29tnyZy7ubkxdOhQACpVqsSaNWsM44H9/vvvXLp0iUOHDmFmZgZAcHAwUVFR7Nq1i65duwIZQwNFREQYJiQ5e/Ys6enptGzZEmdnZ0M9L0ueABSvmjxdWvzJORai+JH7WgghRHEVdzsZfs/oGVCrZt57Buzbt48GDRoYPf3u5eVFy5Yt2bx5M3Xq1AEyJgR9Um4e3HuyTExMDG5ubkYT+Hp4eOQ61oJSvXp16RnwHJnfs4QQxZ8kA4qo2NhYNBoNPj4+hmUqlQpPT0+io6Ofu/3TjfQODg7cvXsXyGjUT0pKokGDBkZlUlJSiI2NNbwuV66cIREAUKNGDRo1akT79u3x8/PDz8+P1q1bZ3myIK+USqX80S9eC7m2ij85x0IUP3JfCyGEKG6UmeNSKxSY5PFzLqeyarWa6tWr8/fff9OiRQsg4+n/MmXKGMrcvXvXMO526dKl0Wg0PHz40Ohv+Lt37+Lt7Q1kJAaeTigUBfLdQQgh/l/xnAnhDZJdZj83H86mpsZ5IIVCYcj463Q6HBwc2Lx5s9HPzp076du3r2EbS0tLo30olUoiIyNZtmwZVatWZfXq1bRp04Zr16696OEJIYQQQgghhBAij9LS0oiOjsbBwYHy5cvj4ODAgQMHjNYfPXrU0NBfu3ZtVCqVUZlbt25x+fJlQ5kqVapw8eJF0tLSDGXkaXIhhChaJBlQRFWoUAGVSsXx48cNyzQaDWfOnMHV1RXI6CkAGd298sLd3Z07d+6gVCqpWLGi0c+TPQGyo1AoqFu3LsOGDWPz5s2oVCqioqLyeHRCCCGEEEIIIYTIrUWLFnHkyBGuXbvGqVOnDBP+duzYEYVCQUBAAEuWLOGXX37h0qVLjBs3DgsLC9q1aweAjY0NH3zwgWEy4XPnzjFmzBiqV6+Or68vAO3bt0ev1zNx4kSio6PZt28fK1asALI+qCiEEKJwkmGCiii1Wk337t2ZOXMmJUuWpFy5cixfvpyUlBQ6d+4MgLOzMwqFgj179tC0aVPMzc2xsrJ67r59fX3x8vIiMDCQ0aNHU7lyZW7dusXevXtp0aJFjmMCnjp1yjDvgL29PadOneLevXtUqVLllR67EEIIIYQQQggh/t/t27f55JNPePDgAXZ2dnh5ebF+/XrDfH79+/cnNTWVzz77jIcPH1KnTh1WrFiBtfX/z1Y8fvx4TE1NGTFiBCkpKTRq1Ijp06cbhtixtrbmq6++IiwsjPfff5/q1asTGBjIqFGjDPMNCiGEKNwkGVCEjR49Gr1ez9ixY0lMTKR27dosX77cML6fo6MjQUFBfPHFF4wbN44OHTowffr05+5XoVCwdOlS5s6dy/jx47l//z6lS5emXr16hvEEs2Ntbc3Ro0dZtWoVCQkJlCtXjpCQEMMEx0IIIYQQQgghhHj1Pv3002dOkqtQKAgKCiIoKCjHMubm5kycOJGJEyfmWMbHx4etW7caXm/duhWVSkW5cuVeLHAhhBD5SpIBRZi5uTmhoaGEhobmWCYwMJDAwECjZatXr85SbtGiRUavra2tn7nv7L5EuLq68vXXX+c2fCGEEEIIIYQQ4o1npjLB3FSP2twEc1XhHs158+bNlC9fHkdHRy5evMisWbNo06YNFhYWhjJqtfq11P269iuEEG8SSQYIIYQQQgghhBBCFBD7Eiq6NNDh7u6CfQlVQYfzTLdv32bevHncvn0bBwcH2rRpw8iRIw3rzc3NqV+//mur39zc/LXtW4inJWq0pGr1+VafuVKBlUqZb/WJN5MkA4QQQgghRJGgTHmE7n48KJUoTM0wsbEv6JCEEEKIV6KEJYU+EQAZcw/0798/x/Xm5ubSYC+KhUSNlk2X75Kk0eVbnWqVCR2r2b+yhMDhw4cJCAjg6NGjlChRgo0bNzJt2jSOHTv2SvafF8nJyYwdO5YDBw6QmJhoiEnkP0kGCCGEEEKIQk/3+C5l/txA0gUTFChQmFli1WGsJASEEEIIIcQrl6rVk6TRYWoCpiaK115fui6jvlStHqtXlBf09vZm//792NjYvJodAlu2bOGrr77i+vXrODg48MEHH2QZnjw7mzZt4tixY6xduxY7O7tcxfR0MkO8GpIMEEIIIYQQhV96GibpqWBZAlCgT0tGn55W0FEJIYQQ4gmpqamkpqY+t5z0IBBFhamJAjNlfszloSNd92qHJDIzM8PBweGV7S8uLo7g4GD69etH165duX//PjExMbna9tq1a7i6ulK9evVXFo94MZIMEEbi4uJo3rw5mzdvpmbNmgUdjhBCCCGEEYWpGQqFAr1WU9ChCCGEEIXGf/7zHw4dOsRff/2FhYUF3t7ejB49mipVqhjK6PV6FixYwLp163j06BF16tRh0qRJVKtWzVAmLS2NGTNm8OOPP5KamkrDhg0JCwujbNmyuYojNTWVo0ePkpSUlGMZtVpN/fr1JRkgxEtKS0tj5syZbN++nYSEBGrXrs24cePw9PQEnv9k/YULF5g6dSpnzpxBoVBQqVIlPvvsMzw8PLKtT6FQoFAo+OCDD3BxccHFxcVQ17P4+/tz5MgRANzc3HjrrbdYvXo1W7ZsYdWqVcTExKBWq2nYsCHjx4/H3t6euLg4AgICAAzzkHTs2JHp06ezc+dOFi5cyNWrV7G0tKRmzZosWrRIJhnPpcI9Tb0QQgghhBBCCCGEeKaTJ0/So0cP1q9fT2RkJFqtlr59+xo1yi9btozIyEgmTZrEhg0bKF26NL179yYhIcFQZurUqfzyyy/MmTOHb7/9lqSkJAYOHIhWq811LElJSSQkJOT486xEgRAi92bOnMmuXbuYPn06mzZtomLFivTr148HDx7kavvRo0dTtmxZNmzYwMaNG+nfvz8qVc5jFDk6OlK7dm0+//zzXPUAyjR//ny6dOliGLZo/vz5AGg0GoYPH87WrVtZuHAhcXFxhISEAODk5GQot3PnTvbv38+ECRO4desWo0aN4oMPPmDHjh188803tGzZEr0+/yZ6LuokGSCEEEIIIYQQQghRhEVERNCpUyeqVatGjRo1CA8P58aNG5w9exbI6BXwzTffMGjQIFq1akX16tWZMWMGKSkp/PjjjwA8fvyYH374gZCQEHx9falVqxYRERFcunSJgwcPGur6448/eP/99/Hw8KBTp05ERUXh5ubG+fPnC+TYhXgTJSUlsXbtWsaOHUvTpk2pWrUqn3/+Oebm5mzYsCFX+7hx4wa+vr64urpSqVIl3n33XWrUqJFj+YkTJ6LX6ylfvjz9+vUzSiQOHDiQzz//PNvtbG1tsbCwQKVS4eDggK2tLQCdO3emadOmuLi44OXlxYQJE/jtt99ITExEqVRSsmRJAOzt7XFwcMDGxobbt2+Tnp5Oy5YtKV++PG5ubvTo0QMrK6tcvnNCkgHFjL+/P5MnT2by5MnUq1ePBg0aMGfOHEOGzM3NjaioKKNt6tWrx8aNG7Pd38OHDxk1ahQNGzbE09OTVq1a8cMPPxjW37x5kxEjRlC/fn0aNGjA4MGDiYuLM6w/fPgwnTt3xsvLi3r16tGtWzeuX7/+Go5cCCGEEEIIIYQQkNGwDxga0+Li4rh9+zZ+fn6GMmZmZtSvX58TJ04AcObMGTQaDY0bNzaUcXR0pFq1aoYyCQkJDB48mOrVq7Np0yaGDx9OREREfh2WEOJ/YmNj0Wg0+Pj4GJapVCo8PT2Jjo7O1T569+5NaGgovXr1YunSpcTGxuZY9sqVK2zcuJHp06fz2Wef4ezsjL+/P3fv3gXg8uXL1K1bN0/HcO7cOQYPHsw777yDt7e3YVig+Pj4HLepUaMGjRo1on379gwbNoz169fz8OHDPNX7ppM5A4qhTZs20blzZ9avX8+ZM2eYNGkSzs7OdOnSJc/7+vLLL4mOjmbZsmXY2dkRGxtLSkoKAMnJyQQEBFC3bl3WrFmDqakpixYtol+/fmzduhUTExMCAwP58MMPmT17NhqNhj///BOFIm+zsOelO6IQuZF5Tcm1VXzJORai+NHqMu7nzAcc9OjRabUg97kQQogi7mW+u2a3jV6vJzw8nLp16xom67x9+zaQ8YTtk0qXLs2NGzcAuHPnDiqVypBAeLLMnTt3ANi2bRsAU6ZMwdzcnKpVq3Lr1i1CQ0PzHHt+0Wq18nfBc8j7U3Q93cam1+tz3e4WFBREu3bt2Lt3L7/99hvz5s1jzpw5tGzZMkvZixcvolKpqFq1KpAxpNjIkSPp3r07ffv2JTExkWbNmuU67qSkJPr06UPjxo2JiIjAzs6O+Ph4+vbti0aT89xgSqWSyMhI/vjjDw4cOMDq1auZM2cO69evx8XFJdf1v8kkGVAMOTk5MX78eBQKBVWqVOHSpUusXLnyhZIBN27coGbNmobJQ8qXL29Yt337dhQKBVOnTjX8ogkPD6d+/focOXKE2rVr8/jxY9555x0qVKgAgKura55jOH36dJ63ESI35Noq/uQcC1F8mCbdwxFISMzojqzUpPL3+fOkq28WbGBCCCHEK/Ii312zeyJ28uTJXLp0iW+//TbLuuwaDp/nyTIxMTG4ubkZTf6b02SjhcWlS5e4eVO+L4jipUKFCqhUKo4fP065cuWAjDH4z5w5Q8+ePXO9n8qVK1O5cmV69erFJ598wg8//JBtMsDR0RGNRsOpU6eoU6cOSqWSWbNmMWTIECZNmsS4ceOwsLDIdb1//fUX9+/fZ/To0Tg5OQEZvZOelDl/wdPJKoVCQd26dalbty6BgYG88847REVF0bt371zX/yaTZEAxVKdOHaMPeC8vL8MEQnnVvXt3hg0bxrlz52jcuDEtWrQwdEE6e/YssbGxRl2SAFJTU4mNjcXPz49OnTrRt29fGjduTKNGjXj33XcpU6ZMnmLw8PBAqVTmOXYhcqLVajl9+rRcW8WYnGMhih/N3TgenARrK2sUCgX6VBNq1ayJiZ1TQYcmhBBCvJSX+e4aHx/Pvn37DK8///xzdu/ezZo1ayhbtqxhuYODA5Dx9P+Tf5PfvXuX0qVLAxk9ADQaDQ8fPjTqHXD37l28vb2BvD11XFhUr17d0Ngospd5DYqs0nV6QJdP9eSeWq2me/fuzJw5k5IlS1KuXDmWL19OSkoKnTt3fu72KSkpzJw5k9atW1O+fHn++ecfTp8+TatWrbItX7duXby9vRk5ciTjx4+nevXqXLp0iWvXrqFWq9m2bRtdu3bF0tIyV/GXK1cOlUrF6tWr6d69O5cuXWLRokVGZZydnVEoFOzZs4emTZtibm7OlStXOHToEI0bN8be3p5Tp05x7949qlSpkqt6hSQD3jgKhSJL5j89PT3H8k2bNuXXX39lz549HDx4kF69etGjRw+Cg4PR6XS4u7sza9asLNuVKlUKyOgp4O/vz759+/jpp5+YO3cukZGReHl55TpmpVIpjXnitZBrq/iTcyxE8aEzybiXFQrF/xohFJjIPS6EEKIYeZHvrpnl9Xo9kydP5pdffmH16tVZhssoX748Dg4OHDhwgFq1agGQlpbG0aNHGT16NAC1a9dGpVJx4MAB2rZtC8CtW7e4fPkyY8aMAaBKlSps27aNtLQ0zMzMgMLfG1f+JhAvwlypQK0yIUmjy3ND/YtSq0wwV+Y+2TZ69Gj0ej1jx44lMTGR2rVrs3z58ixDfWXHxMSEBw8eEBwczJ07d7Czs6NVq1YMGzYs2/IKhYLly5ezYMECwsPDuXnzJhUrVqR79+68++67dOnShdGjRzN//nxMTJ4/RW2pUqWYPn06s2fPZvXq1bi7uxMcHMzgwYMNZRwdHQkKCuKLL75g3LhxdOjQgf79+3P06FFWrVpFQkIC5cqVIyQkhKZNm+b6fXvTSTKgGDp16lSW1xUrVkSpVFKqVClu3bplWPf333+TnJz8zP2VKlWKTp060alTJ9auXcvMmTMJDg7G3d2dn376CXt7e6ytrXPcvlatWtSqVYuBAwfStWtXfvzxxzwlA4QQQgghhBBCCJGzuXPnsnv3bhYtWoSVlZVhjgAbGxssLCxQKBQEBASwZMkSKlWqRMWKFVmyZAkWFha0a9fOUPaDDz5gxowZ2NnZUbJkSWbMmEH16tXx9fUFoH379sydO5eJEycyYMAAbty4wYoVK4CsQxAJUZRZqZR0rGZPqjZ/EgGQkYCwUuU+cWVubk5oaGiOc3Y0aNCAixcvGl5ntu1BxgTis2fPzlN81tbWhISEEBISkmXd3r17n7nthAkTsixr166d4fdPpifjBQgMDCQwMNBo2ddff53bkEU2JBlQDMXHxxMeHk7Xrl05d+4ca9asITg4GICGDRvyn//8By8vL3Q6HbNmzTKMwZWdL7/8End3d6pVq0ZaWhp79uwxjPvfvn17vv76awYPHszw4cNxdHQkPj6en3/+mX79+qHRaFi/fj3NmjWjTJkyxMTE8Pfff/P+++/ny/sghBBCCCGEEEK8CbZs2QKAv7+/0fLw8HBD41///v1JTU3ls88+4+HDh9SpU4cVK1YYPdw3fvx4TE1NGTFiBCkpKTRq1Ijp06cbnqy3trbmq6++IiwsjPfff5/q1asTGBjIqFGjDD0FhCgurFRKrHJuMhOiSJJkQDHUoUMHUlJS+PDDD1EqlXz88cd07doVgODgYMaPH8/HH39MmTJlGD9+PGfPns1xXyqVitmzZ3P9+nUsLCyoW7euIXNoaWnJmjVrmDVrFkOHDiUxMRFHR0caNWqEtbU1KSkp/PXXX2zatIkHDx5QpkwZevToQbdu3fLlfRBCCCFE8aNPTwPkyUMhhBDiSXv27HnuuPgKhYKgoCCCgoJyLGNubs7EiROZOHFijmV8fHzYunWr4fXWrVtRqVSUK1eOtLS0vAcvhBAi30gyoBgyNTVlwoQJfPbZZ1nWOTo6ZulOc+zYMcP/y5cvb9QlZ8iQIQwZMiTHuhwcHJgxY0a266ytrVm4cGFewxdCCCGEyMrUDJ2pOWg1gAKFmSUKU3kCUQghhMhvmzdvpnz58jg6OnLx4kVmzZpFmzZtsLCwIC0tDbVa/cztn7deCCHE6yPJACGEEEIIUeiZ2Nhzy7Mz7m7VMFEqUZiaYWJjX9BhCSGEEG+c27dvM2/ePG7fvo2DgwNt2rRh5MiRQEbPgvr16z93H+bm5q87TCGEENmQZIAQQgghhCgStBYlMLFzMoxbLIQQQoj8179/f/r375/tOnNzc2noF0KIQkySAcXM6tWrCzoEIYQQQojXIolEbqfeRqk0yXa9SmGGrZlt/gYlhBBCCCGEEEWEJAOEEEIIIUSh91DzgF+JYv/fe3IsY6G0pHfl/pIQEEIIIQpIamoqqampRsukt4AQQhQekgwQAMyfP5+oqCi2bNmSY5mQkBAePXrEokWL8jEyIYQQQghI02nQoMFSYYHKJOvEwRq9hhRtMhp9WgFEJ4QQQgjISAYcPXqUpKQkIGOy4Pr160syQAghCglJBhQz0mAvhBBCiOJMZaLCXJlNg4IW0tHkf0BCCCFEIXDq1Ck+++wzzpw5w+3bt1m4cCEtWrQwrNfr9SxYsIB169bx6NEj6tSpw6RJk6hWrZqhTFpaGjNmzODHH38kNTWVhg0bEhYWRtmyZfMUS1JSEgkJCa/s2IQoKA8S0klK1eZbfWpzJbbW0lQrXi+5woQQQgghhBBCCCGKsJSUFNzc3OjUqRNBQUFZ1i9btozIyEimT59OpUqV+Oqrr+jduzc7d+7E2toagKlTp/Lrr78yZ84cbG1tmT59OgMHDmTjxo0olcr8PiQhCtSDhHRmrrvKo6T0fKuzhNqUsV0rvvaEgL+/PzVq1GDChAmvtR5ROGU/+5rIs7Vr19KkSRN0Op3R8kGDBhEcHAzA7t276dSpEx4eHjRv3pwFCxaQnv7/v1Sio6Pp3r07Hh4etG3bloMHD+Lm5kZUVJShzM2bNxkxYgT169enQYMGDB48mLi4OCBjqJ9Nmzbx3//+Fzc3N9zc3Dh8+DAAERERtG7dmjp16tC8eXPmzp2LRpP16bm1a9fStGlT6tSpw7Bhw3j06FGOx6zX61m2bBnNmzfH09OT9957j507dxrWP3z4kFGjRtGwYUM8PT1p1aoVP/zwwwu8u0IIIYQQQgghhMhJgwYNGDlyJK1atcqyTq/X88033zBo0CBatWpF9erVmTFjBikpKfz4448APH78mB9++IGQkBB8fX2pVasWERERXLp0iYMHDxr29ccff/D+++/j4eFBp06diIqKws3NjfPnz+fbsQqRH5JStTxKSkelNMHKwvS1/6iUJjxKerU9EQ4fPoybm9sz2/bEm0d6Brwibdq0YcqUKRw+fJhGjRoBGY3h+/fvZ/Hixezbt48xY8YQGhpKvXr1iI2NZeLEiQAMHToUnU5HYGAg5cqV4/vvvychIYEZM2YY1ZGcnExAQAB169ZlzZo1mJqasmjRIvr168fWrVvp06cP0dHRJCQkEB4eDkDJkiUBsLKyIjw8nDJlynDp0iUmTpyIlZUV/fv3N+w/NjaWn376icWLF5OQkMCECRP47LPP+OKLL7I95rlz5/Lzzz8TFhZGpUqVOHr0KGPGjKFUqVK89dZbfPnll0RHR7Ns2TLs7OyIjY0lJSUlz++tVpt/XbLEmyHzmpJrq/iScyxE8aP73/2s1+vR6/XZlMhYptXq5N4XQghRpLzMd9fcbBMXF8ft27fx8/MzLDMzM6N+/fqcOHGCbt26cebMGTQaDY0bNzaUcXR0pFq1apw4cYImTZqQkJDA4MGDefvtt/niiy+4fv0606ZNy3PM+U2r1cp3g+eQ9ydnZioTLMzy51lqjVb3/EKFlEajQaVSFXQYIhckGfCK2Nra0qRJE7Zt22ZIBuzcuRNbW1saNWpEQEAAAwYMoGPHjgC4uLgwfPhwIiIiGDp0KPv37+fatWusXr0aBwcHAEaOHEnv3r0NdWzfvh2FQsHUqVNRKBQAhIeHU79+fY4cOYKfnx8WFhakpaUZ9pFpyJAhhv+XL1+ev/76ix07dhglA1JTU5kxY4ZhPMDQ0FAGDhxISEhIlv0lJSURGRnJqlWr8Pb2NhzT8ePHWbduHW+99RY3btygZs2aeHh4GOp9EadPn36h7YR4Hrm2ij85x0IUH494CEBiYiKpZJ0kOB0NqaRx/vw5rlMyv8MTQgghXtqLfHd9+PDhc8vcvn0bAHt7e6PlpUuX5saNGwDcuXMHlUpleKDwyTJ37twBYNu2bQBMmTIFc3Nzqlatyq1btwgNDc1z3Pnp0qVL3Lx5s6DDEOKVS0tLY+bMmWzfvp2EhARq167NuHHj8PT0JC4ujoCAAADq168PQMeOHZk+fTqQ8YDNzJkz2bBhAyqVim7duhkNMfb48WNmzpxJVFQUqamp1K5dm/Hjx1OjRg0gY3SSqKgo/P39+eqrr7h+/Trnz59n165dLFy4kKtXr2JpaUnNmjVZtGgRarU6n98dkRNJBrxC7du3Z9KkSYSFhWFmZsa2bdto27YtSqWSs2fPcvr0aRYvXmwor9VqSU1NJTk5mZiYGMqWLWvU6O7p6Wm0/7NnzxIbG4uPj4/R8tTUVGJjY58Z286dO1m1ahWxsbEkJSWRnp5uGBcwk5OTk9HEQN7e3uh0OmJiYrIkA65cuUJqaip9+vQxWq7RaKhZsyYA3bt3Z9iwYZw7d47GjRvTokWLLLHnhoeHh4xPKF4prVbL6dOn5doqxuQcC1H83Ez6h92XfsHKygpzpUWW9Wm6VJTaZGpWqoWDuUM2exBCCCEKp5f57hofH8++fftyVTbzocJM2fe0I8cyMTExuLm5YW5ubliW+fBfYVa9enWcnJwKOoxCLfMaFEXLzJkz2bVrF9OnT8fZ2Znly5fTr18/fv75Z5ycnJg/fz5BQUGGuUEsLP7/O/SmTZvo3bs369ev5+TJk4SEhODj40Pjxo3R6/UMGDCAkiVLsnTpUmxsbFi3bh09e/Zk165d2NraAv8/wsj8+fMxMTHh9u3bjBo1ijFjxtCiRQsSExM5duxYrn7XiPwjyYBXqFmzZoSGhrJnzx48PDw4duwYISEhAOh0OoKCgrIdv8/c3By9Xp/lg/lpOp0Od3d3Zs2alWVdqVKlctzu5MmTfPLJJwQFBeHn54eNjQ3bt28nMjLymfVlxpNdXJk38pIlS3B0dDRaZ2ZmBkDTpk359ddf2bNnDwcPHqRXr1706NHDMIdCbimVSmnME6+FXFvFn5xjIYoPk//dywqFIofvTBnLlEoTue+FEEIUSS/y3TU35TMf7rtz5w5lypQxLL979y6lS5cGMnoAaDQaHj58aNQ74O7du4bRAHLTblEYyd8EojhKSkpi7dq1hIeH07RpUwA+//xzDhw4wIYNG+jXr5/hXra3t6dEiRJG27u5uTF06FAAKlWqxJo1azh06BCNGzfm999/59KlSxw6dMjQxhccHExUVBS7du2ia9euQMYDwREREYY2ybNnz5Kenk7Lli1xdnY21CMKF0kGvEIWFha0atWKbdu2cfXqVSpVqkTt2rUBqFWrFjExMVSsWDHbbatUqUJ8fDx37twxfBg/nZV1d3fnp59+wt7ePstT/ZlUKlWWSYz/+OMPypUrx+DBgw3LMrsCPik+Pp6bN28aGvdPnDiBiYkJlSpVylLW1dUVMzMzbty4wVtvvZXDO5KRpOjUqROdOnVi7dq1zJw5M8/JACGEEEIIIYQQQryY8uXL4+DgwIEDB6hVqxaQMbzI0aNHGT16NAC1a9dGpVJx4MAB2rZtC8CtW7e4fPkyY8aMATLaLbZt20ZaWpqhgVCeJheiYMTGxqLRaIxG4FCpVHh6ehIdHf3c7Z9upHdwcODu3btARqN+UlISDRo0MCqTkpJiNDJJuXLljB5OrlGjBo0aNaJ9+/b4+fnh5+dH69atsww/JgqWJANesfbt2zNo0CAuX77Me++9Z1geGBjIoEGDcHJyok2bNpiYmHDx4kUuXrzIyJEjady4MS4uLgQHBzNmzBgSExOZM2dOln1//fXXDB48mOHDh+Po6Eh8fDw///wz/fr1o2zZsjg7O7N//37++usvbG1tsbGxoUKFCsTHx7N9+3Y8PDzYs2cPUVFRWWI3NzcnJCSE4OBgEhISmDJlCu+++26WIYIArK2t6dOnD+Hh4ej1eurWrUtCQgInTpxArVbTsWNHvvzyS9zd3alWrRppaWns2bMHV1fXV/+mCyGEEEIIIYQQb7CkpCTOnz9veB0XF8f58+cpWbIk5cqVIyAggCVLllCpUiUqVqzIkiVLsLCwoF27dgDY2NjwwQcfMGPGDOzs7ChZsiQzZsygevXq+Pr6AhltEnPnzmXixIkMGDCAGzdusGLFCiD7EQWEEK9fdsN/5eZ+NDU1bhJWKBSGUUB0Oh0ODg6sXr06y3Y2NjaG/1taWhqtUyqVREZG8scff3DgwAFWr17NnDlzWL9+PS4uLrk+JvF6STLgFWvYsCElS5YkJiaG9u3bG5Y3adKExYsXs3DhQpYvX46pqSlVqlThww8/BDJumIULFxIaGkrnzp1xcXFh7NixDBo0yDAen6WlJWvWrGHWrFkMHTqUxMREHB0dadSokaGnQJcuXThy5AgffPABSUlJfPPNN7Ro0YKePXsyefJk0tLS+Ne//sXgwYNZsGCBUewVKlSgZcuW9O/fn4cPH9K0aVM+/fTTHI91xIgR2Nvbs2TJEuLi4rCxsaFWrVoMGjQIyMhIzp49m+vXr2NhYUHdunWZPXv2K32/hRBCCCGEEEKIN13mg4aZwsPDgf+fMLR///6kpqby2Wef8fDhQ+rUqcOKFSuMRh0YP348pqamjBgxgpSUFBo1asT06dMNQ+xYW1vz1VdfERYWxvvvv0/16tUJDAxk1KhRhp4CQoj8UaFCBVQqFcePH6dcuXJAxrA9Z86coWfPnkBGuxxkzAmRF+7u7ty5cwelUkn58uXztK1CoaBu3brUrVuXwMBA3nnnHaKioujdu3ee9iNeH0kGvGJKpZL9+/dnu65JkyY0adIkx21dXV357rvvDK+PHz8OYDS0kIODAzNmzMhxH6VKlTJk5p80duxYxo4da7SsV69ehv8HBQUZZg3/6KOPst135ozjmRQKBQEBAYbZyZ82ZMgQhgwZkmOsQgghhBB5pdFpyJwfwGi5XpP/wQghhBCFhLe3NxcvXsxxvUKhMPq7Pzvm5uZMnDiRiRMn5ljGx8eHrVu3Gl5v3boVlUplaIwUorhJ0+ieX6gA6lGr1XTv3p2ZM2caegAtX76clJQUOnfuDICzszMKhYI9e/bQtGlTzM3NsbKyeu6+fX198fLyIjAwkNGjR1O5cmVu3brF3r17adGiRY4Th586dcow74C9vT2nTp3i3r17VKlSJU/HJl4vSQYUIr/88gtqtZqKFSsSGxvL1KlT8fHxoUKFCgUdmhBCCCFEgTIzUaFCRbo+nXRterZlLJSWqBTyZKIQQgjxumzevJny5cvj6OjIxYsXmTVrFm3atMHCwsJQRq1WZ/t/IYoStbmSEmpTHiWlo9HmT0KghNoUtXnuJ7sePXo0er2esWPHkpiYSO3atVm+fLlhjH5HR0eCgoL44osvGDduHB06dMjyoG92FAoFS5cuZe7cuYwfP5779+9TunRp6tWrZ5jnNDvW1tYcPXqUVatWkZCQQLly5QgJCTFMcCwKB4U+c0AoUeA2b97MokWLiI+Px87ODl9fX4KDg7Gzsyvo0AqEVqvl5MmTeHl5GbolCvEqyLVV/Mk5FqL40Wq1HDx5gGo1q6NUmmRbRqUww9bMNn8DE0IIIV7Sy3x3jY+PZ+nSpQwYMAAnJ6fXFOH/W7ZsGd999x23b9/GwcGBFi1aMHLkSMPY4ampqaSmphptY25ubhj+OD/l93tTlL3Jfz+lpKQQExND5cqVjZJaAA8S0klKzdsQOy9Dba7E1lqe2xZ596zr+GlyhRUiHTp0oEOHDgUdhhBCCCFEoaTGCgdzhzfuj1QhhBCisOjfvz/9+/fPcX1BNfwL8TrYWptK47wodrJ/rEoIIYQQQgghhBBCCCGEEMWGJAOEEEIIIYQQQgghhBBCiGJO+roIIYQQQgghhBBCFGG3b98u6BAKHXlPhBAiK0kGCCGEEEIIIYQQQhRBarUalUrFpk2bCjqUQkmlUqFWqws6DCGEKDQkGSCEEEIIIYQQQghRBJUsWZLAwECSkpJee11arZZLly5RvXp1lErla6/vVVCr1ZQsWbKgwxBCiEJDkgFCCCGEEEIIIYQQRVTJkiXzpcFbq9Vy8+ZNnJycikwyQAghhDGZQFgIIYQQQgghhBBCCCGEKOakZ4AQQgghhBBCCCGEEEI8QZf4EH3a6x+CK5PCTI2JlQxrJV4vSQYIIYQQQgghhBBCCCHE/+gSH5K4ZSb65Mf5VqfC0gar98fmW0IgLi6O5s2bs3nzZmrWrJkvdYqCJ8kAIYQQQgghhBBCCCGE+B99WlJGIkCpQqEye/31adLQJz/O6IkgvQPEayTJACGEEEIIIYQQQgghhHiKQmWGQmWRL3XptZp8qUe82WQCYSGEEEIIIYQQQgghhChC/P39mTx5MpMnT6ZevXo0aNCAOXPmoNfrAXBzcyMqKspom3r16rFx48Zs9/fw4UNGjRpFw4YN8fT0pFWrVvzwww+G9Tdv3mTEiBHUr1+fBg0aMHjwYOLi4gzrDx8+TOfOnfHy8qJevXp069aN69evv4YjFy9DegYIIYQQQgghhBBCCCFEEbNp0yY6d+7M+vXrOXPmDJMmTcLZ2ZkuXbrkeV9ffvkl0dHRLFu2DDs7O2JjY0lJSQEgOTmZgIAA6taty5o1azA1NWXRokX069ePrVu3YmJiQmBgIB9++CGzZ89Go9Hw559/olAoXvUhi5ckyQBRaGVmMrVabQFHIoqbzGtKrq3iS86xEMWP3NdCCCGKq6LyGVdU4hR5l3lOM9thRNHh5OTE+PHjUSgUVKlShUuXLrFy5coXSgbcuHGDmjVr4uHhAUD58uUN67Zv345CoWDq1KmGBv7w8HDq16/PkSNHqF27No8fP+add96hQoUKALi6ur6CIxSvmiQDRKGl0+kAOH36dAFHIoorubaKPznHQhQ/cl8LIYQororKZ1xRiVPkXWY7jCg66tSpY/T0vZeXF5GRkS+UtOvevTvDhg3j3LlzNG7cmBYtWuDj4wPA2bNniY2NNbzOlJqaSmxsLH5+fnTq1Im+ffvSuHFjGjVqxLvvvkuZMmVe7gDFKyfJAFFomZqa4uHhgYmJiXQrEkIIIYQQQgghhHgN9Ho9Op0OU1NpJixOFApFlt4e6enpOZZv2rQpv/76K3v27OHgwYP06tWLHj16EBwcjE6nw93dnVmzZmXZrlSpUkBGTwF/f3/27dvHTz/9xNy5c4mMjMTLy+uVHpd4OXKXi0LLxMQEMzOzgg5DCCGEEEIIIYQQQohC59SpU1leV6xYEaVSSalSpbh165Zh3d9//01ycvIz91eqVCk6depEp06dWLt2LTNnziQ4OBh3d3d++ukn7O3tsba2znH7WrVqUatWLQYOHEjXrl358ccfJRlQyEgyQAghhBBCCCGEEEIIIZ6i16QV6nri4+MJDw+na9eunDt3jjVr1hAcHAxAw4YN+c9//oOXlxc6nY5Zs2ahUqly3NeXX36Ju7s71apVIy0tjT179hjG/W/fvj1ff/01gwcPZvjw4Tg6OhIfH8/PP/9Mv3790Gg0rF+/nmbNmlGmTBliYmL4+++/ef/991/ouMTrI8kAIYQQQgghhBBCCCGE+B+FmRqFpQ365MfotZr8qdPSBoWZOk/bdOjQgZSUFD788EOUSiUff/wxXbt2BSA4OJjx48fz8ccfU6ZMGcaPH8/Zs2dz3JdKpWL27Nlcv34dCwsL6taty+zZswGwtLRkzZo1zJo1i6FDh5KYmIijoyONGjXC2tqalJQU/vrrLzZt2sSDBw8oU6YMPXr0oFu3bi/+hojXQqGXqcKFEEIIIYQQQgghhBBvmJSUFGJiYqhcuTIWFhZG63SJD9GnJeVbLAozNSZWJXNd3t/fnxo1ajBhwoTXGJUoCp51HT9NegYIIYQQQgghhBBCCCHEE0ysSkIeGueFKApMCjoAIYQQQgghhBBCCCGEEEK8XtIzQAghhBBCCCGEEEIIIYqQ1atXF3QIogiSngFCCCGEEEIIIYQQQgghRDEnyQAhhBBCCCGEEEIIIYQQopiTZIAQQgghhBBCCCGEEEIIUcxJMkAIUWQsWbKEDz74AG9vbxo1asSQIUP466+/DOs1Gg0RERG0b98eLy8v/Pz8GDt2LDdv3sx2f82aNeO3334D4OLFi3z88cd4enrSpEkTFixYgF6vNyqflpbGnDlzeOedd6hduzYtWrRgw4YNr++A30ByjoUofuS+FkIIUVw97zMOYP78+bRp0wYvLy/q169Pr169OHXqVLb7e12fcUUlTiGEEK+fTCAshCgyjhw5Qo8ePfDw8ECr1TJnzhz69u3L9u3bUavVpKSkcO7cOQYPHkyNGjV49OgR06ZNY/DgwWzcuNFoXxcuXODBgwc0bNiQhIQE+vTpQ4MGDdiwYQN///03ISEhqNVq+vTpY9hm+PDh3L17l6lTp1KhQgXu3btHenp6fr8NxZqcYyGKH7mvhRBCFFfP+4wDqFSpEpMmTcLFxYWUlBRWrlxJnz59+OWXXyhVqpRhX6/zM66oxCmEECIf6IUQooi6e/euvnr16vojR47kWObUqVP66tWr669fv260fMGCBfqgoCC9Xq/X/+c//9HXrVtXn5qaali/ZMkSvZ+fn16n0+n1er1+7969+rp16+rv37//6g9E5EjOsRDFj9zXQgghiqvcfMY9fvxYX716df3BgweNlufnZ1xRiVOI/JCcnKw/d+6cPjk5Ocu6R2mP9LdSbubbz6O0RwXwDoji4FnX8dOkZ4AQosh6/PgxACVLlsyxTEJCAgqFghIlShgt3717NwEBAQCcPHmS+vXrY2ZmZljv5+fHF198QVxcHC4uLuzevZvatWuzfPlytmzZglqtplmzZgwfPhwLC4vXcHQC5BwLURzJfS2EEKK4et5nXFpaGuvWrcPGxgY3Nzejdfn5GVdU4hSiID3WPCYyZhmJ6Qn5VqeVqTW9K/fHRmWTb3UWlPnz5xMVFcWWLVtyLBMSEsKjR49YtGhRPkZW/EkyQAhRJOn1esLDw6lbty7Vq1fPtkxqaiqzZs2iXbt2WFtbG5bfvHmTixcv0rRpUwDu3LmDs7Oz0bb29vaGdS4uLly7do3jx49jbm7OwoULuX//Pp999hkPHjwgPDz8NR3lm03OsRDFj9zXQgghiqtnfcb9+uuvfPLJJyQnJ+Pg4MCKFSuMht7Jz8+4ohKnEAUtRZdMYnoCpiYqVArVa69Po9eQmJ5Aii4ZG4pOMkAa7IsemUBYCFEkTZ48mUuXLjF79uxs12s0GkaOHIlerycsLMxo3X//+1+8vb2xtbU1LFMoFNnuJ3O5Xq9HoVAwa9YsPD09adq0KSEhIWzatImUlJRXckzCmJxjIYofua+FEEIUV8/6jGvQoAGbN29m7dq1NGnShBEjRnD37l3D+vz8jCsqcQpRWKgUKsyV5q/9Jz8SDkKAJAOEEEXQ559/zu7du1m1ahVly5bNsl6j0TBixAji4uJYsWKF0ZOlkNG1tXnz5obXpUuX5vbt20ZlMr/0Zj7Z4uDggKOjIzY2/5+hd3V1Ra/X888//7yyYxMZ5BwLUfzIfS2EEKK4et5nnFqtpmLFinh5eTFt2jRMTU3ZsGGDYX1+fcYVlTiFEM+XmbTT6XRGywcNGkRwcDCQcc926tQJDw8PmjdvzoIFC4wm746OjqZ79+54eHjQtm1bDh48iJubG1FRUYYyN2/eZMSIEdSvX58GDRowePBg4uLigIyhfjZt2sR///tf3NzccHNz4/DhwwBERETQunVr6tSpQ/PmzZk7dy4ajSbb42jatCl16tRh2LBhPHr0KMdj1uv1LFu2jObNm+Pp6cl7773Hzp07DesfPnzIqFGjaNiwIZ6enrRq1YoffvjhBd7d4k2SAUKIIkOv1zN58mR+/vlnVq1ahYuLS5YymY1JV69eZeXKldjZ2RmtT0xM5PDhw0ZfYr28vDh27BhpaWmGZfv376dMmTKUL18eAB8fH27dukViYqKhTExMDCYmJtl+kRYvRs6xEMWP3NdCCCGKq9x8xuW0XebnV358xhWVOIUQudemTRvu379vaHyHjMbw/fv30759e/bt28eYMWPw9/dnx44dTJ48mY0bN7J48WIAdDodgYGBWFpa8v333zN58mTmzJljVEdycjIBAQGo1WrWrFnDt99+i1qtpl+/fqSlpdGnTx/effddmjRpwv79+9m/fz/e3t4AWFlZER4ezvbt25kwYQLff/89K1euNNp/bGwsP/30E4sXL2b58uVcuHCBzz77LMdjnjt3Lhs3biQsLIzt27fTq1cvxowZw5EjRwD+j737Do+i2v84/tl0UkiABKSEKkSRkNB+XCARKdIuSBPEq6EKBBBBbJGmNEMERAUFRAhSvBZEREFURC6gV6RK4CIi1VAkBEglbTO/P7jZy5KEJJBCNu/X8+SBOXPmzHd2dndm5ztzjt566y0dP35cS5cu1aZNm/Tqq69m+10BkgEASpFp06Zpw4YNmjdvntzc3BQTE6OYmBjL46UZGRl65plndOjQIc2dO1dms9lSJ+sEdceOHapdu7bVCXCPHj3k5OSkl19+Wb///ru+++47LVmyREOGDLE83tq9e3d5eXnp5Zdf1h9//KHdu3drzpw56tu3LwNfFSL2MWB7+FwDAGxVXse45ORkvfHGGzpw4IDOnj2rw4cPa9KkSbpw4YK6dOkiqXiOcaUlTgD55+XlpeDgYH355ZeWss2bN8vLy0utWrXS4sWLNWLECPXu3Vu+vr5q06aNxo0bp48++kjS9cTdn3/+qYiICN13331q3ry5nn32Wat1bNy4USaTSbNmzZKfn5/q1aun8PBwnT9/Xr/88ovc3Nzk4uIiJycn+fj4yMfHxzKg+OjRo9W0aVPVqFFD7du315AhQ/T1119btZ+amqqIiAjdf//9atGihSZPnqxNmzZle+JIuv49FRkZqddee03BwcHy9fVVnz599Mgjj+jjjz+WJJ07d07333+//P39VaNGDbVu3Vrt27cv1NfdFjCAMIBS45///KckKSQkxKo8PDxcffr00YULF7R161ZJUs+ePa3qrFy5Ui1bttT333+f7WDg4eGh5cuXa/r06erbt688PT01ZMgQDRkyxFLHzc1Ny5cv18yZM9W3b195eXmpa9euGj9+fBFsadnFPgZsD59rAICtyusYZ29vrxMnTujzzz/XlStX5OXlJX9/f61Zs0b169eXpGI5xpWWOAEUTI8ePTR16lS9+uqrcnJy0pdffqlu3brJ3t5ehw8fVlRUlOVJAEkym81KTU3VtWvXdPLkSd1zzz3y8fGxzG/cuLFV+4cPH9aZM2fUtGlTq/LU1FSdOXPmlrFt3rxZH3zwgc6cOaPk5GRlZGRk6wa0atWqVk8INWnSRJmZmTp58qRVXJL0xx9/KDU1VUOHDrUqT09P1/333y9Jevzxx/XMM8/oP//5j9q0aaOOHTtmix0kAwCUIkePHr3l/Bo1atyyjtls1vbt27V06dJs8/z8/LRmzZpbtl+vXj1FRkbmL1jcFvYxYHv4XAMAbFVexzhnZ2ctXLgw1/nFdYwrLXECKJj27dtr8uTJ2rZtm/z9/bVnzx6FhYVJut4N0NixY9WpU6dsyzk7O1sG976VzMxMPfDAA5o7d262eRUrVsx1uQMHDmjChAkaO3asgoKC5OHhoY0bN+b5PZAVT05xGYYhSVqyZImqVKliNS/raYS2bdvqhx9+0LZt2/TTTz9p8ODBeuKJJyxjKOA6kgEAyoyrV69q0KBB8vf3L+lQUETYx4Dt4XMNALBVpeUYV1riBMoaFxcXderUSV9++aVOnz6t2rVrq1GjRpKkhg0b6uTJk6pVq1aOy9atW1fnz5/XpUuX5O3tLUmKioqyqvPAAw/o66+/VqVKlbLd1Z/F0dEx2yDG+/btU7Vq1TRq1ChL2blz57Ite/78ef3111+Wi/v79++XnZ2dateuna1uvXr15OTkpHPnzun//u//cnlFricp+vTpoz59+uijjz7S66+/TjLgJiQDAJQZlSpV0ujRo0s6DBQh9jFge/hcAwBsVWk5xpWWOIGikG6kS+ZiWs9t6NGjh0JDQ3Xs2DE98sgjlvIxY8YoNDRUVatWVZcuXWRnZ6ejR4/q6NGjevbZZ9WmTRv5+vrqpZde0gsvvKCkpKRsAwj36NFDy5Yt06hRozRu3DhVqVJF58+f17fffqunnnpK99xzj6pXr66dO3fqxIkT8vLykoeHh2rWrKnz589r48aN8vf317Zt27Rly5ZssTs7OyssLEwvvfSSEhMTNXPmTHXt2jVbF0GS5O7urqFDhyo8PFyGYahZs2ZKTEzU/v375erqqt69e+utt97SAw88oPr16ystLU3btm1TvXr1but1tWUkAwAAAAAAAADgv1zsysnNwV1JGYnK0O1dqC8oNwd3udiVK9Ayf/vb3+Tp6amTJ0+qR48elvLg4GAtXrxY77zzjt5//305ODiobt266tevnyTJ3t5e77zzjiZPnqxHH31Uvr6+evHFFxUaGipnZ2dJUrly5bR69WrNnTtXTz/9tJKSklSlShW1atXK8qRA//799csvv6hv375KTk7WypUr1bFjRw0aNEjTp09XWlqaHnroIY0aNSpbd2Q1a9bUww8/rOHDhysuLk5t27bVK6+8kuu2jh8/XpUqVdKSJUsUHR0tDw8PNWzYUKGhoZKuP6Xwxhtv6OzZs3JxcVGzZs30xhtvFOj1LAtMRlanSwAAAAAAAABQRqSkpOjkyZOqU6eOXFxcrOYlpCcoJfNascXiYldOHo4exba+m+3du1f/+Mc/9N1336lmzZolFgcK7lbv45vxZAAAAAAAAAAA3MDD0UMeKrmL80Xtu+++k6urq2rVqqUzZ85o1qxZatq0KYkAG2dX0gEAQH7t3r1boaGhCgoKkp+fX7Y+5wzD0IIFCxQUFKTGjRsrJCREx44du2Wbu3bt0qhRoxQUFKTAwED17NlTGzZsyFYvLS1N8+fPV7t27dSoUSN17NhRa9euLdTtQ977+EZTp06Vn5+fVqxYkWe7R48e1ZNPPqnGjRsrODhYCxcu1M0Pxv3yyy/q06eP/P391aFDB/3zn/+8080BIGnJkiXq27evmjRpolatWmn06NE6ceKEVZ1vv/1Ww4YNU8uWLeXn56cjR47k2W5qaqrCwsLUo0cPNWzYMMe+jHft2iU/P79sf8ePHy+07QMAlG1F8RulKI5xecV5O8fi/P6WWrNmjbp27arGjRurc+fOWr9+fZ5tAyh6SUlJmjZtmrp27aqwsDD5+/vr3XffLemwUMR4MgBAqZGcnCw/Pz/16dNHY8eOzTZ/6dKlioyM1OzZs1W7dm0tWrRIQ4YM0ebNmy392d1s//798vPz0/Dhw+Xt7a1t27bppZdekru7u9q3b2+pN27cOMXGxmrWrFmqWbOmLl++rIyMjCLb1rIqr32cZcuWLfr1119VuXLlPNtMTEzU0KFD1bJlS61du1anTp1SWFiYXF1dNXToUEnSn3/+qREjRqhfv36aM2eO9u3bp2nTpqlixYrq3LlzoW0fUBb98ssveuKJJ+Tv7y+z2az58+dr2LBh2rhxo1xdXSVd/+w3adJEXbp00eTJk/PVrtlslrOzs0JCQvTNN9/csu7Nx4GKFSve/gYBAHCDoviNUhTHuLzivJ1jcX5+S3344YeaN2+eZs6cKX9/fx08eFCTJ09W+fLlrX5vASh+vXr1Uq9evUo6DBQzkgEASo22bduqbdu2Oc4zDEMrV65UaGioOnXqJEmKiIhQ69at9dVXX2nAgAE5Lpc10EyWgQMHaufOnfruu+8sJ6fbt2/X7t27tWXLFnl5eUmSatSoUUhbhRvdah9n+euvvzR9+nQtW7ZMI0eOzLPNDRs2KDU1VbNnz5aTk5MaNGigU6dOKTIyUkOGDJHJZNJHH32kqlWratKkSZKkevXqKSoqSsuXLycZANyhZcuWWU2Hh4erVatWOnz4sFq0aCFJlh8h0dHR+W7X1dVV06ZNkyTt27dP8fHxudatVKmSypcvX8DIAQDIW1H8RimKY1xe59m3cyzOz2+pDRs26LHHHlO3bt0kSb6+vjpw4ICWLl1KMgAASgDdBAGwCdHR0YqJiVFQUJClzMnJSS1atND+/fstZWFhYQoJCbllWwkJCZaL/pK0detWNWrUSO+//76Cg4PVuXNnRUREKCUlpdC3A7eWmZmpF154QcOGDVP9+vVzrHPzPj5w4IBatGghJycnS1lQUJAuXrxo+bFz4MABtWnTxqqd4OBgHTp0SOnp6UWwJUDZlZCQIEny9PQs0HL5+f7OTa9evRQUFKRBgwbp559/vq02AAAoqML8jZKb4jzG3c5vqbS0NDk7O1vVcXFxUVRUFOfZuKvc3I0sUJoU5P1LMgCATYiJiZF0/c6YG3l7e+vSpUuWaR8fH1WtWjXXdjZv3qyoqCj16dPHUvbnn39q7969OnbsmN555x1NnDhR33zzjeVuHRSfpUuXysHBQQMHDsy1zs37+NKlS/L29raqk/U+yXpv5FYnIyNDV65cKazwgTLPMAyFh4erWbNmatCgQYGWzev7O7dlZsyYoQULFmjBggWqU6eOBg8erN27dxeoHQAAbkdh/UbJSUkc427nt1RQUJDWrl2rQ4cOyTAMRUVF6bPPPlN6ejrn2bgrODo6SrreVRZQWqWlpUmS7O3t86xLN0EAbIrJZLKavjk7+txzz+W67K5du/Tyyy9r5syZVnedG4Yhk8mkuXPnysPDQ9L1u2KeeeYZvfLKK3JxcSnELUBuDh06pJUrV2rdunXZ9vONctrHudW/sTy3986t1gWgYKZPn67ff/9dH374YYGXvdX3d27q1q2runXrWqabNGmiCxcuaNmyZZYuigAAKGp38hslNyVxjLud31KjR49WTEyMHnvsMRmGoUqVKql37956//3383XRCihq9vb28vLy0sWLFyVd76aL34AoTTIzMxUTEyNXV1c5OOR9qZ9kAACb4OPjI+n6Hd43DiobGxub7Y7vnPzyyy8KDQ1VWFhYtgF0fHx8VKVKFUsiQLrep7xhGLpw4YJq165dKNuAW9uzZ49iY2PVrl07S5nZbFZERIRWrlyprVu35rict7e35a6sLLGxsZL+d5dWTnUuX74sBwcHq8ecAdy+GTNmaOvWrVq9erXuueeeEosjICBAGzZsKLH1AwDKjjv9jVJQJXWMu9VvKRcXF4WHh2v69OmKjY2Vj4+PPv74Y7m5ualChQrFHiuQk6xz06yEAFDa2NnZqWbNmvlKZJEMAGATatSoIR8fH/34449q2LChpOuPSe3evVvPP//8LZfdtWuXQkND9fzzz+uxxx7LNr9p06bavHmzkpKS5ObmJkk6efKk7OzsSvSCVlnTs2dPtW7d2qps2LBh6tmzp9WjyDcLDAzU/PnzlZaWZhk3YOfOnapcubJlIOjAwED98MMPVsvt3LlTjRo1sjw2CuD2GIahGTNm6LvvvtOqVavk6+tbovEcOXLEcnEGAICidCe/UW5HSRzj8votlcXR0dHy22nTpk1q166d7OzouRp3B5PJpKpVq6py5cqMZYFSycnJKd/fqSQDAJQaSUlJOnPmjGU6OjpaR44ckaenp6pVq6aBAwdqyZIlql27tmrVqqUlS5bIxcVF3bt3tywzb948/fXXX3r99dclXT95HTlypAYOHKhOnTpZ7g53dHS03BHevXt3vfvuu3r55Zf1zDPP6MqVK5ozZ4769u1LF0GFLK99fPPdQ46OjvL29rZ6RPrmfdyjRw+98847evnllzVy5EidPn1aS5Ys0ZgxYyxZ8wEDBmjNmjUKDw9X//79tX//fn322WeaN29eMWw1YNumTZumr776Su+++67c3Nws37MeHh6W79CrV6/q/PnzlruxTp48Ken6UztZFzVu/mxL0h9//KH09HRdvXpVSUlJOnLkiCTp/vvvlyStWLFCNWrU0L333qv09HRt2LBB33zzjRYsWFA8Gw8AsHlF8RtFKvxjXF5x3s6xOD+/pU6ePKmDBw8qICBA8fHxioyM1LFjxzR79uzbf9GBImJvb0/3VbB5JoPhsgGUErt27cpx4NjevXtr9uzZMgxDCxcu1Mcff6y4uDgFBARo6tSpVoNUhoWF6ezZs1q1apVl+vPPP8/W5v/93/9Z6kjS8ePHNXPmTO3bt09eXl7q2rWrxo8fTzKgkOW1j2/Wvn17DRw4UIMHD7aU3byPJeno0aOaPn26Dh48KE9PTw0YMMAqGSBdf7w5PDxcx44dU+XKlTV8+HA9/vjjhbuBQBnk5+eXY3l4eLjlqZ5169bp5Zdfzlbn6aef1tixYyXl/Nlu3769zp49m225o0ePSro+6Pgnn3yiv/76Sy4uLrr33ns1cuRItW3b9o63CwAAqWh+o0iFf4zLK87bORbn57fU8ePH9dxzz+nkyZNycHBQy5Yt9fzzz1vdzAMAKD4kAwAAAAAAAAAAsHF00AYAAAAAAAAAgI0jGQAAAAAAAAAAgI0jGQAAAAAAAAAAgI0jGQAAAAAAAAAAgI0jGQAAAAAAAAAAgI0jGQAAAAAAAAAAgI0jGQAAAAAAAAAAgI0jGQAAAAAAAAAAgI0jGQAAAAAAAAAAgI0jGQAAAAAAAAAAgI0jGQAAAAAAAAAAgI0jGQAAAAAAAAAAgI0jGQAAAAAAAAAAgI0jGQAAAAAAAAAAgI0jGQAAAAAAAAAAgI0jGQAAAAAAAAAAgI1zKOkAgNxkZmYqIyNDdnZ2MplMJR0OAAAAAACAzTEMQ5mZmXJwcJCdHfcNA7aMZADuWhkZGYqKiirpMAAAAAAAAGyev7+/nJycSjqMEmM2m5Wenl7SYaCMcHR0lL29fbGvl2QA7lpZ2Wh/f/8S+XDAdpnNZkVFRfHesmHsY8A2pF+9qoRfflFGUpIk6Vpyssq5ukqSHNzc5PF//ydHL68SjBAAgDtXWs5dS0ucKLisfVtWnwowDEMXLlzQ1atXSzoUlDFeXl665557irVHFJIBuGtlfRDs7e050UCR4L1l+9jHQOmWaTIp/fx5mePiZEhKjouTg6enTJIMT0/Zm0x8xgEANqO0nLuWljhRcGW1i+asREDlypXl6upaZl8HFB/DMJScnKyLFy9KkqpWrVps6yYZAAAAAAAAAKDMMZvNlkRApUqVSjoclCHlypWTJF28eFGVK1cutiRr2Xz+BwAAAAAAAECZljVGgOt/u6IEilPW+644x6rgyQAAAADctRw8PCz/d3JwkIObW7ZyAAAA4E7QNRBKQkm870gGAAAA4O7k7Kjy7R+yTHplZloPbOfsWPwxAQAAAEApRTdBAAAAuCslO5q1I32fvrm2Q5uv7dD6y99q87Ud+ubaDu1I36dkR3NJhwgAAADYlJCQEM2aNeuO2li3bp2aN29eSBEVfbtlCU8GAAAA4K5kyNDFlAuKz4iXYRiKT4xXebvyMplMKu9QXoaMkg4RAAAANiopxaxrqcV380k5Z3u5uRTPILJlXXR0tDp06KD169fr/vvvL+lwihXJAAAAAAAAAAC4wbVUs778d6zikjOKfF2erg7q0apSiSYD0tPT5ehYurvhtIVtKGp0EwQAAAAAAAAAN4lLztCVhKL/u92EQ2Zmpt577z09/PDDatSokR566CEtWrRIkjRnzhx17txZAQEB6tChg958802lp6dbll2wYIF69uyptWvXqkOHDvL395dhXH/y1mw2a/r06WrevLlatmyp+fPnW+ZJUlxcnF588UW1aNFCAQEBeuqpp3Tq1Kls8e3YsUNdu3ZVkyZNNGzYMF28eFGStHv3bj3wwAOKiYmxqj979mw98cQTlul169bpoYceUkBAgMaMGaOrV69a1c9tG7Zv367HH3/cEv/IkSN15swZy3IdOnSQJPXq1Ut+fn4KCQmxzPvss8/UtWtX+fv7q0uXLlqzZk2+98e+ffvUs2dP+fv7q0+fPtqyZYv8/Px05MiRfLdR1EgGAAAAAAAAAEApM2/ePL3//vsaPXq0Nm3apLlz58rb21uS5ObmpvDwcG3cuFGTJk3Sp59+qhUrVlgtf+bMGX399ddasGCB1q9fbyn//PPPZW9vr08++USTJk3SBx98oE8//dQyPywsTIcOHdKiRYv08ccfyzAMjRgxwirZkJKSouXLl+v111/X6tWrdf78eUVEREiSWrRooRo1auiLL76w1M/IyNCGDRvUp08fSdKvv/6qiRMn6h//+IfWr1+vli1bWhIdeW3DtWvXNGTIEK1du1YrVqyQyWTSmDFjlJmZKUmWbVmxYoV27typBQsWSJI++eQTzZ8/X88++6w2bdqkCRMm6O2339bnn3+e575ITEzUqFGj1KBBA33++ecaN26c5syZk+dyxY1uggAAAAAAAACgFElMTNTKlSs1depU9e7dW5JUs2ZNywC7o0ePttStUaOGTpw4oU2bNmn48OGW8vT0dM2ZM0cVK1a0artq1aqaOHGiTCaT6tatq99//10rVqxQ//79derUKW3dulX//Oc/1bRpU0nS3Llz9dBDD2nLli3q2rWrpe1p06apZs2akqQnnnhC7777rmUdjz76qNatW6ennnpKkrRt2zZdu3bNsvzKlSsVFBSkESNGSJLq1Kmj/fv3a8eOHVax5rQNnTt3tqrz2muvqVWrVvrjjz/UoEEDS10vLy/5+PhY6r377rsKCwtTp06dJEm+vr76448/9PHHH1te49x8+eWXkqSZM2fK2dlZ9957ry5evKjJkyffcrniRjIAAAAAAAAAAEqREydOKC0tTX/7299ynL9582Z98MEHOnPmjJKTk5WRkSF3d3erOtWqVcuWCJCkgIAAmUwmy3RgYKAiIyNlNpt1/PhxOTg4KCAgwDK/QoUKqlOnjo4fP24pK1eunCURIEmVK1dWbGysZbpPnz566623dODAAQUGBlq653F1dZUkHT9+XB07drSKKzAwMFsyIKdtOHPmjKXtK1euWLo4On/+vBo0aJDj63X58mWdP39ekyZN0pQpUyzlGRkZ8vDwyHGZG508eVJ+fn5ydna2lPn7++e5XHEjGQAAAAAAAAAApciNF51vduDAAU2YMEFjx45VUFCQPDw8tHHjRkVGRlrVK1euXIHXe+PYATeX35hAcHCwvuxsMpmslq1UqZLatWundevWydfXV9u3b9fKlSvzXM/NctqG0NBQVa1aVTNnzlTlypWVmZmp7t27W3VjdLOsLoRmzJhhleiQJDu7vHvav3n771YkAwAAAAAAAACgFKldu7ZcXFz0888/y9fX12revn37VK1aNY0aNcpSdu7cuXy3/euvv2abrlWrluzt7XXvvfcqIyNDv/76q6WboCtXrujUqVOqV69egbbh0Ucf1YQJE1SlShX5+vqqWbNmlnn33ntvjnHk5cqVKzp+/LhlAGRJ2rNnj1UdR0dHSdcHSs7i7e2tKlWq6M8//9QjjzxSoO2QpLp16+rLL79UWlqanJycJElRUVEFbqeoMYAwcrR7926FhoYqKChIfn5+2rJli9X8sLAw+fn5Wf3179/fqk5aWppmzJihli1bKjAwUKGhobpw4UJxbgYAAAAAAABgc5ydnTV8+HDNmTNH69ev15kzZ3TgwAF9+umnqlmzps6fP6+NGzfqzJkzWrlyZbZre7dy/vx5hYeH68SJE/rqq6+0evVqDRw4UNL1JESHDh00ZcoU7dmzR7/99pteeOEFValSRR06dCjQNgQHB8vDw0OLFi2yDBycJSQkRDt27NDSpUt18uRJrV69OlsXQTnx9PSUl5eXPv74Y50+fVr//ve/NXv2bKs6lSpVkouLi3bs2KFLly4pISFBkjR27Fi99957+uCDD3Ty5EkdPXpUn332WbYnKnLSo0cPGYahKVOm6Pjx49qxY4eWL18uSXfVEwMkA5Cj5ORk+fn5aerUqbnWCQ4O1s6dOy1/7733ntX8WbNm6bvvvtP8+fP14YcfKjk5WSNHjrTKugEAAAAAAAB3I09XB1XwKPo/T9fb67xl9OjRGjJkiN5++21169ZNzz77rC5fvqyOHTtq0KBBmj59unr27Kn9+/dbPSWQl169eiklJUX9+vXT9OnT9eSTT+qxxx6zzA8PD9cDDzyg0NBQPfbYYzIMQ++9957ljvv8srOzU+/evZWZmalevXpZzQsMDNTMmTO1evVq9erVSzt37szXNtjZ2Wn+/Pk6fPiwunfvrvDwcL344otWdRwcHDR58mR9/PHHCg4Otgy23K9fP82cOVOff/65evTooZCQEH3++eeqUaNGnut1d3fXokWLdOTIEfXs2VPz58/XmDFjJMnypMDdwGTktwMmlFl+fn565513rAbtCAsLU3x8vNUo4DdKSEhQq1at9Prrr6tbt26SpL/++ksPPfSQ3nvvPQUHB+e5XrPZbBlExN7evnA2BhDvrbKAfQzYhqtpV7Tx3AbFZ8TLMAzFx8erfPnyMplMKu9QXn+v9oi8nCqUdJgAANyR0nLuWlriRMGV5X2bkpKikydPqk6dOnJxcbGal5Ri1rXU4ruhtZyzvdxcytbrL0mTJ0/WpUuXtHjx4pIOpdBt2LBBEydO1J49e7K9v6Rbv/+KCmMG4Lb98ssvatWqlcqXL68WLVro2WefVaVKlSRJhw4dUnp6utq0aWOpX6VKFdWvX1/79+/PVzIgC08SoLBlvad4b9ku9jFgGwwZMnR9MK6s+1cs//53Pp9zAEBpV1rOXUtLnCg49mnO3FzK5sX54pKQkKCoqCh9+eWXud5sXNqsX79eNWrUUJUqVXT06FHNnTtXXbp0KbYL/flBMgC35cEHH1SXLl1UrVo1RUdH66233tKgQYO0bt06OTk56dKlS3J0dJSnp6fVct7e3rp06VKB1nU3DrYB28B7y/axj4HSy8nJSZV8KyoxIVHxafGW8qz+PO2c7HUt+Zqi/zyrtLS0kgoTAIBCU1rOXUtLnADubqNHj9bBgwf12GOPWd1MfLdavHixlixZkuO8Zs2a6f3331dMTIzefvttxcTEyMfHR126dNGzzz5bzJHeGskA3Jasrn8kqUGDBmrUqJHat2+vbdu2qVOnTrkudzu9Uvn7+5e5x9RQtMxms6Kionhv2TD2MWAb4s1xcvdwV2a6WYZhKCEhQR4eHjKZTHJ3dFc513Jq2LBhSYcJAMAdKS3nrqUlThRc1r4FitOqVatKOoQCGTBggLp27ZrjvKw7/4cPH67hw4cXZ1gFRjIAhaJy5cqqVq2aTp06Jen6EwDp6emKi4uzejogNjZWTZo0KVDb9vb2nGigSPDesn3sY6B0M5lNMkkymUz/KzOZrv9JMsnEZxwAYDNKy7lraYkTAAqTl5eXvLy8SjqMO2ZX0gHANly5ckXnz59X5cqVJUmNGjWSo6OjfvzxR0udixcv6tixYwVOBgAAAAAAAAAA7gxPBiBHSUlJOnPmjGU6OjpaR44ckaenpzw9PbVw4UJ16tRJPj4+Onv2rObPn68KFSqoY8eOkiQPDw/17dtXERERqlChgjw9PRUREaEGDRqodevWJbVZAAAAAAAAAFAmkQxAjg4dOqSBAwdapsPDwyVJvXv31quvvqrff/9d69evV0JCgnx8fNSyZUvNnz9f7u7ulmUmTpwoBwcHjR8/XikpKWrVqpVmz57N44QAAAAAAAAAUMxIBiBHLVu21NGjR3Odv2zZsjzbcHZ21pQpUzRlypTCDA0AAAAAAAAAUECMGQAAAAAAAAAAgI0jGQAAAAAAAAAApUhISIhmzZolSWrfvr1WrFiR72Wjo6Pl5+enI0eO5Fpn165d8vPzU3x8/J2GirsI3QQBAAAAAAAAwA2MlCQZ6deKbX0mx3Iyubjd1rJr165VuXLl8l2/atWq2rlzpypUqHBb60PpRTIAAAAAAAAAAG5gpF9T6p6vlJlc9HfG27mWl3Pz7redDKhYsWKB6tvb28vHx+e21oXSjW6CAAAAAAAAAOAmmcnxMpKuFPnfnSYcbu4myM/PTx9++KGeeuopNW7cWO3bt9fXX39tmZ9TN0H/+te/1LlzZzVu3FghISE6e/ZsgWL45JNP1LZtWwUEBGjMmDGKjIxU8+bN72i7UPhIBgAAAAAAAACADXnrrbfUuXNnffHFF3rkkUf03HPP6fjx4znWPX/+vJ5++mk9+OCDWr9+vfr166d58+ble1179+7VK6+8ooEDB2r9+vVq3bq1Fi9eXFibgkJEMgAAAAAAAAAAbEiXLl3Ur18/1alTR+PHj1ejRo20atWqHOv+85//lK+vryZOnKi6devqkUceUe/evfO9rtWrV+vBBx/UsGHDVKdOHT3xxBMKDg4urE1BISIZAAAAAAAAAAA2pEmTJlbTgYGBuT4ZcPz4cQUEBMhkMlnVz6+TJ0/K39/fqqxx48b5DxbFhmQAAAAAAAAAANi4Gy/238gwjDtq1zCMbG3faZsoGiQDAAAAAAAAAMCGHDhwwGr6119/Vd26dXOse++99+rXX3/NVj+/6tatq6ioKKuyQ4cO5Xt5FB+SAQAAAAAAAABgQzZv3qy1a9fq5MmTevvtt3Xw4EE9+eSTOdYdMGCAzpw5o/DwcJ04cUJffvmlPv/883yv68knn9S//vUvRUZG6tSpU/roo4+0ffv2XJ9EQMkhGQAAAAAAAAAAN7FzLS+TW4Ui/7NzLV/osY8dO1abNm3SI488ovXr12vu3Lm69957c6xbrVo1LViwQD/88IN69uypjz76SM8++2y+19WsWTNNmzZNkZGR6tmzp3bs2KHBgwfL2dm5sDYHhcShpAMAAAAAAAAAgLuJybGcnJt3L9b1FcSqVass/9+6dWu2+VWqVNHy5ctzXLZGjRo6evSoVVm7du3Url07q7K+ffvmO57+/furf//+lunJkyerZs2a+V4exYNkAAAAAAAAAADcwOTiJpOLW0mHUWosW7ZMbdq0Ubly5bR9+3atX79er7zySkmHhZuQDAAAAAAAAAAA5Oipp57S3r17c5w3cuRIhYaG6uDBg3r//feVlJQkX19fTZo0Sf369SvmSJEXkgEAAAAAAAAAYCNu7gLoTs2aNUspKSk5zvP09JQkvfXWW4W6ThQNkgEAAAAAAAAAgBxVqVKlpENAISEZAAAAgLuWu6OHJMmQ5OBsL1dHd5luKAcAAAAA5A/JAAAAANyVnOSgBysGW6YzfTJlZ2dnNR8AAAAAkD92eVcpe9atW6fmzZuXdBi5evPNNzVlypQCLdO3b199++23RRQRAABA4XNJS1O5A9vl/PMmOf17o8w/rJXTvzfK+edNKndgu1zS0ko6RAAAAAAoNe7qZEBYWJj8/Pz03nvvWZVv2bJFfn5+BW5r9OjR+arbrVs3ffPNNwVqPy+7du2Sn5+f4uPj76idS5cuaeXKlRo5cmSBlhs9erTmzZunzMzMO1o/YCvc3d1LOgQAQF4MQ+bLZ5UZc0qZMaeUdv4Py//Nl89KhlHSEQIAAABAqXFXJwMkydnZWUuXLlVcXFyxrC89PV0uLi6qVKlSsayvoNauXasmTZqoRo0aBVruoYceUkJCgnbs2FFEkQF3t8zUVGWmpSkzLU0ms1l1a9aUyWy2lGWmppZ0iAAAAAAAAECRueuTAa1bt5a3t7eWLFmSa50FCxaoZ8+eVmUrVqxQ+/btLfM///xzff/99/Lz85Ofn5927dql6Oho+fn5adOmTQoJCZG/v782bNiQYzdBW7duVZ8+feTv768OHTpo4cKFysjIsMz38/PTp59+qjFjxiggIECdOnXS999/L0mKjo7WwIEDJUktWrSQn5+fwsLCJEmbN29Wjx491LhxY7Vs2VKDBw9WcnJyrtu6ceNGy3ZlSUxM1HPPPafAwEAFBQVpxYoVCgkJ0axZsyx17O3t1bZtW23cuDHXtm+0e/duhYaGKigoSH5+ftqyZYvVfMMwtGDBAgUFBalx48YKCQnRsWPHrOqkpaVpxowZatmypQIDAxUaGqoLFy7ka/1AYTMnJ+vKli2K+eILxXzxhaI//tjy/ytbtsh8i88dAAAAAAAAUNrd9ckAOzs7TZgwQatXr77tC8lDhw5V165dFRwcrJ07d2rnzp1q0qSJZf7cuXMVEhKiTZs2KSgoKNvyO3bs0AsvvGCpM336dK1bt06LFy+2qrdw4UJ17dpVGzZs0IMPPqjnn39eV69eVdWqVbVgwQJJ1y/+79y5U5MmTdLFixf13HPPqW/fvtq0aZNWrlyphx9+WEYuj7zHxcXp2LFjatSokVX57NmztX//fi1atEjLly/Xnj17dPjw4WzL+/v7a8+ePfl6zZKTk+Xn56epU6fmOH/p0qWKjIzU1KlTtXbtWnl7e2vIkCFKTEy01Jk1a5a+++47zZ8/Xx9++KGSk5M1cuRImc3mfMUAFCrDUOqFC0qLjlZqdLSSTp1SanT09ekLF+hqAgAAAAAAWFwzJ+tq2pVi+7tmLt03KbZv314rVqwo6TCQB4eSDiA/Hn74Yd1///16++239dprrxV4eTc3N7m4uCgtLU0+Pj7Z5g8aNEidOnXKdfnFixdrxIgR6t27tyTJ19dX48aN05w5c/T0009b6vXu3Vvdu3eXJEsC4+DBg3rwwQfl6ekpSapUqZLKly8vSTpz5owyMjL08MMPq3r16pJ0y7EQzp07J8MwVLlyZUtZYmKi1q9fr7lz56pVq1aSpPDwcAUHB2dbvkqVKjp//rwyMzNlZ3frPFDbtm3Vtm3bHOcZhqGVK1cqNDTU8rpFRESodevW+uqrrzRgwAAlJCTos88+0+uvv67WrVtLkubMmaOHHnpIP/30U47xAQAAAAAAAHeDVHOq/hXzgxLTE4p8Xe6OHmrr007l7F2LfF15ad++vQYOHKjBgwcXaLm1a9eqXLlyRRMUCk2pSAZI0vPPP69BgwZp6NChhd72zXfa3+zw4cOKioqyehLAbDYrNTVV165ds7zRb7yQ7+rqKjc3N12+fDnXdu+77z61atVKPXr0UFBQkIKCgtS5c2dL4uBmKSkpkq6Po5AlOjpa6enpaty4saXMw8NDderUyba8i4uLMjMzlZaWJhcXl1tu861ER0crJibG6ikKJycntWjRQvv379eAAQN06NAhpaenq02bNpY6VapUUf369bV///4CJQN4kgCFwbjh36ynbwzDkEwmSznvNduRtS/Zp0ApZ1z/rs76k/73HS7DkGHwOQcAlH6l5dy1tMSJgmOf5i4xPUHxGfElHUahSEtLk5OTU5G1X7FixSJrG4Wn1CQDWrRooaCgIL3xxhvq06eP1TyTyZSta50b+/PPi6vrrbNumZmZGjt2bI5PD9x4Yd7R0TFbXJmZmbm2a29vr8jISO3bt08//vijVq1apfnz5+uTTz6Rr69vtvoVKlSQdL27oKwPWNZ2m/57QTNLTl0NxcXFqVy5cneUCJCkmJgYSco2yLK3t7fOnTsnSbp06ZIcHR2zJTa8vb116dKlAq0vKirqDqIFrieralWsqFR7e6U7XP/ac6pUSVlDBjva2yvl2jWdPntWaWlpJRcoCh3fH0Dp5eTkpDo+nkpITJA5Ic5SHp9w/ceYveEgJSfr5OnzfHcDAGxCaTl3LS1xArYuJCRE9evXlyRt2LBB9vb2GjBggMaPHy+TyaT27dvr0Ucf1ZkzZ/Tdd9+pY8eOioiI0DfffKO3335bp0+fVuXKlfXkk09abr4OCQnR2bNnFR4ervDwcEnS0aNHJUn79u3TvHnzFBUVpQoVKujhhx/WhAkTLNdVb36iwM/PTzNnztS2bdu0c+dOValSRS+99JI6dOiQr+37/vvvFRERoQsXLiggIEB9+vRRWFiYdu/ebel1BQVXapIBkvTcc8+pV69eql27tlV5xYoVdenSJRmGYbkofuTIEas6jo6Ot7wwfysNGzbUyZMnVatWrdtaPmv9UvZsq8lkUrNmzdSsWTONGTNG7dq105YtWzRkyJBsbdSsWVPu7u46fvy45c5/X19fOTo66uDBg6pataqk610HnT59Wi1atLBa/vfff1fDhg1vextulp8ExM3yU+dm/v7+sre3L/BywI3MKcmq2r2bpP8+HZCZKZOdnbLexXYuLmp4zz0lFh8Kl9lsVlRUFN8fQGmXdEVy95BhypBhGIpPiFd5j/IymUwyuXmonKurGjasXtJRAgBwR0rLuWtpiRMFl7VvUfp8/vnnevTRR/XJJ5/o0KFDmjp1qqpXr67+/ftLkpYtW6bRo0dr1KhRkqRDhw5p/Pjxevrpp9WtWzft379f06ZNk5eXl/r06aMFCxaoZ8+e6t+/v6UN6XpCYNiwYRo3bpxmzZqly5cva8aMGZoxY4YlaZCThQsX6oUXXtCLL76oVatW6fnnn9cPP/wgLy+vW25XdHS0xo0bp5CQEPXr109HjhxRRETEnb9gKF3JAD8/P/Xo0UOrV6+2Km/ZsqWmT5+upUuXqkuXLtqxY4d27Nghd3d3S53q1atr586dOnHihLy8vOTh4ZHv9Y4ZM0ahoaGqWrWqunTpIjs7Ox09elRHjx7Vs88+m682qlevLpPJpG3btqlt27ZydnbWH3/8oX//+99q06aNKlWqpF9//VWXL19W3bp1c2zDzs5OrVu31t69e9WxY0dJkru7u3r16qXXX39dnp6eqlSpkhYsWHD9R/JNF+v37t1r1W3P7coad+HSpUtW4xfExsbK29tb0vUnANLT0xUXF2f1dEBsbKzV4M35YW9vz4kG7liio1m/JOxTckaSDEnJSUlydXOTSZKrg5v+z6OlPHmf2Ry+P4DSLdP035sPbjinyTrHuf4n2fEZBwDYiNJy7lpa4gTKgqpVq2rixIkymUyqW7eufv/9d61YscJyIf9vf/ubhg0bZqn/3HPPqVWrVhozZowkqU6dOvrjjz+0bNky9enTR15eXrK3t5ebm5vVuKvLli1Tjx49LHf9165dW5MmTVJISIheffVVq55TbnSr8VVv5aOPPlKdOnX00ksvSZJl227swh2359ajyN6Fxo0bl+3u8nr16umVV17Rhx9+qJ49e+rgwYPZxhbo37+/6tSpo759+6pVq1bat29fvtcZHBysxYsX68cff9Sjjz6q/v37KzIy0jLob35UqVJFY8eO1bx589S6dWvNmDFD7u7u2r17t0aMGKHOnTvrzTffVFhYWK4D92Ztx8aNG62ecggLC1NgYKBCQ0M1ZMgQNW3aVPXq1bP6IP7111/av3+/+vbtm++Yc1OjRg35+Pjoxx9/tJSlpaVp9+7dlgv9jRo1kqOjo1Wdixcv6tixYwVOBgCFwZChiykXdC7lrM5di9aZxNM6dy1a51LO6mLKBRkq+FMrAAAAAAAAJSUgIMDqZuDAwECdPn3a0jPJzeOknjhxQk2bNrUqa9q0qdUyOTl8+LDWrVunJk2aWP6eeuopZWZmKjo6OtflCjq+apaTJ09mi/3G8VJx++7qJwNmz56drax69eo5Prr0+OOP6/HHH7cqCw0Ntfy/YsWKWr58ebblsvq9ulGfPn2yjUsQHBx8y0Fvc2pnz549VtNjxoyxZN6yLFu2LNc2cxIUFKQqVapo06ZNlsyau7u75s2bZ6mTnJyshQsXWj3Os2LFCvXu3Vv35LMblKSkJJ05c8YyHR0drSNHjsjT01PVqlXTwIEDtWTJEtWuXVu1atXSkiVL5OLiYonJw8NDffv2VUREhCpUqCBPT09FRESoQYMGat26dYG2GQAAAAAAAEDBlCtXzmr6drrvlq6PpzpgwACFhIRkm5fVbXlOCjq+apYbu4K/sQx37q5OBiA7k8mkGTNm6LfffrOU/ec//9GJEyfUuHFjJSQk6J133pEkqwE5KlWqZPVYUF4OHTqkgQMHWqaz+v/q3bu3Zs+ereHDhys1NVXTpk1TXFycAgICtHz5cquumSZOnCgHBweNHz9eKSkpatWqlWbPns3jhAAAAAAAAMAd+vXXX7NN16pVK9drb/Xq1cvWW8q+fftUu3ZtyzI5jbvasGFDHTt27I7GUy2IunXr6l//+pdV2aFDh4pl3baOZEApdN999+m+++6zKlu+fLlOnjwpR0dHPfDAA1qzZo0qVqxomf/UU08VaB0tW7bM8WmHLCaTSWPHjtXYsWNzrePs7KwpU6ZoypQpBVo3AAAAAAAAUNLcHfM/5mhJrOf8+fMKDw/XY489pv/85z9avXq1pZ/9nAwdOlSPPvqo3nnnHXXr1k0HDhzQmjVr9Morr1jqVK9eXbt379bf//53OTo6qmLFiho+fLgee+wxTZs2Tf3791e5cuV0/Phx/fTTT0Vy3e+xxx7TihUrNGfOHD366KM6cuSIPv/8c0nK9sQACoZkgA1o2LCh1q1bV9JhAAAAAAAAADbB2d5ZbX3aFev6CqpXr15KSUlRv379ZG9vryeffFKPPfZYrvUfeOABvfnmm3r77be1aNEi+fj46JlnnrHqLv2ZZ57R1KlT1bFjR6Wlpeno0aO67777tGrVKr355pv6xz/+IUny9fVVt27dCr6h+eDr66u33npLERERWrlypWWs1FdffVVOTk5Fss6ygmQAAAAAAAAAANygnL2rytm7lnQYt+Tg4KBJkyZp2rRp2eZt3bo1x2U6d+6szp0759pmYGCgNmzYkK28cePGOY7Hmtv68jO+6q106NDBqgv0RYsW6Z577pGzc8GTJvgfkgEAAAAAAAAl6Mbx9wAA0po1a+Tv768KFSpo7969WrZsmZ544omSDqvUIxkAAAAAAABQjDJTU6X/9nttklS3Zk2ZzGZlms3XKxiG7Lj7FYCNmjp1qr788ssc5/Xo0UPTp0/X6dOntWjRIsXFxalatWoaMmSIRo4cWcyR2h6SAQAAAAAAAMXInJys+H//WxlJSZKk5KQkubq5SZIc3NxUvlUrkgEAbmnVqlUlHcJtGzdunIYNG5bjvKwnpSZOnKiJEycWZ1hlAskAAAAAAACA4mQYMiclyZyQIElKT0qSOTNT0vUnBWQYJRcbABSxSpUqqVKlSiUdRplEMgAAAAAAAKA4OTuqfPuHLJNemZmys7Ozmg8AQGEjGQCgzHB39JAkGZIcnO3l6ugu0w3lAAAAAFAckh3N+iVhn5IzkmTof90EmSS5Orjp/zxayrOkgwQA2BySAQDKBCc56MGKwZbpTB/rO2+c+DoEAAAAUEwMGbqYckHxGfEyDEPxifEqb1deJpNJ5R3KyxDdBAEACh9XvwCUCS5pabKL2q7MlEQZhqGk5CS5uLrJZDLJzsVdTv4PSU4lHSUAAAAAAABQNEgGACgbDEPmy2dlJF2RYRhKi49TufKeMplMMtwqMEAXAAAAAAAAbBrJAAAAAAAAAAC4gTk5WZkpKcW2PjsXF9m7ut5xOyEhIbrvvvs0adIktW/fXgMHDtTgwYPvPMASsGXLFkVERCg6OlpPPvmk7r//fr322mvas2ePJGnBggXasmWLvvjiixKOtPQgGQAAAAAAAAAAN8hMSdGV779XRkJCka/LwcNDFTp0KJRkwI3Wrl2rcuXK5bv+3XZxferUqerTp49CQkLk5uYmBwcHtW3btqTDKtVIBgAAAAAAAADATTISEmSOiyvpMG5bxYoVS2S9ZrP5+hiNdna33UZSUpJiY2MVFBSkKlWqWMpdXFwKI8RbSk9Pl6OjY5GvpyTc/h4BAAAAAAAAAJSI5ORkvfjii2rSpImCgoK0fPlyq/nt27fXihUrLNMJCQmaMmWKWrVqpaZNm2rgwIH67bffJEnr1q3TwoUL9dtvv8nPz09+fn5at26dJCkyMlI9evRQYGCg2rZtq1dffVVJSUmWdtetW6fmzZvrhx9+ULdu3eTv7689e/bogQceUExMjFVMs2fP1hNPPHHL7dq1a5eaNm0qSRo0aJD8/Py0a9cuy3pu9tFHH6lt27YKCAjQM888o/j4eKv5n332mbp27Sp/f3916dJFa9asscyLjo6Wn5+fNm3apJCQEPn7+2vDhg23jE+SPvnkE8s6x4wZo8jIyBxju9uQDAAAAAAAAACAUub111/Xrl27tHDhQi1btky//PKLDh06lGNdwzA0YsQIxcTE6L333tO6dev0wAMPaNCgQbp69aq6deumoUOHqn79+tq5c6d27typbt26SZJMJpMmTZqkL7/8UrNnz9bPP/+sOXPmWLWfkpKiJUuWaObMmfrqq6/UqFEj1ahRw6rLoYyMDG3YsEF9+vS55XY1adJEmzdvlnS966KdO3eqSZMmOdY9c+aMvv76ay1evFjvv/++fvvtN02bNs0y/5NPPtH8+fP17LPPatOmTZowYYLefvttff7551btzJ07VyEhIdq0aZOCgoJuGd/evXv1yiuvaODAgVq/fr1at26txYsX33KZuwXJAAAAAAAAAAAoRZKSkrR27Vq99NJLatOmjfz8/DR79mxlZmbmWP/nn3/W77//rrffflv+/v6qXbu2XnrpJZUvX17ffPONXFxc5OrqKnt7e/n4+MjHx8fSJc/gwYP1t7/9Tb6+vmrVqpXGjRunr7/+2qr99PR0vfrqq2ratKnq1q0rV1dXPfroo5anCyRp27Ztunbtmrp27XrLbXNyclKlSpUkSZ6envLx8ZGTk1OOdVNTUxUREaH7779fLVq00OTJk7Vp0ybLEwnvvvuuwsLC1KlTJ/n6+qpTp04aNGiQPv74Y6t2Bg0aZKlzY7dEOVm9erUefPBBDRs2THXq1NETTzyh4ODgWy5zt2DMAAAAAAAAAAAoRf7880+lp6crMDDQUubl5aU6derkWP/w4cNKTk5Wy5YtrcpTUlJ05syZW67r559/1pIlS/THH38oMTFRZrNZqampSk5Olut/Bz12dHSUn5+f1XJ9+vTRW2+9pQMHDigwMNDSXY9rIQ6UXLVqVd1zzz2W6SZNmigzM1MnT56Uvb29zp8/r0mTJmnKlCmWOhkZGfLw8LBqp1GjRvle58mTJ9WxY0erssaNG2vbtm23txHFiGQAAAAAAABAMXN3vH4hypDk4GwvV0d3mW4oB4BbMQyjQPUzMzPl4+OjVatWZZt384XxG509e1YjRozQgAEDNG7cOHl6emrv3r2aNGmSMjIyLPVcXFxkMpmslq1UqZLatWundevWydfXV9u3b9fKlSsLFHdBZcVgMpksT0nMmDFDAQEBVvVuHty4IAkKwzCybWtB90dJIRkAAAAAAABQjJzkoAcr/q9LiUyfTKsLU05crgGQh5o1a8rR0VEHDhxQtWrVJElxcXE6deqUWrRoka3+Aw88oEuXLsne3l41atTIsU1HR8ds3QwdOnRIZrNZYWFhlu+pm7sIupVHH31UEyZMUJUqVeTr66tmzZrle9n8OH/+vP766y9L1z779++XnZ2dateuLW9vb1WpUkV//vmnHnnkkUJbZ926dRUVFWVVlttYDXcbji4AAAAAAADFyCUtTXZR25WZkijDMJSUnCQXVzeZTCbZubjLyf8hKefusQEUI4db3DFf0utxc3NT3759NWfOHFWoUEGVKlXS/Pnzs92xnqV169YKDAzUmDFj9Pzzz6tOnTq6ePGi/vWvf6ljx47y9/dX9erVFR0drSNHjqhKlSpyd3dXzZo1lZGRoVWrVql9+/bau3evPvroo3zHGRwcLA8PDy1atEjPPPNMgbczL87OzgoLC9NLL72kxMREzZw5U127dpWPj48kaezYsZo5c6bc3d314IMPKi0tTYcOHVJ8fLyGDBlyW+t88skn9eSTTyoyMlLt2rXTzz//rO3bt+f62t9NSAYAAAAAAAAUJ8OQ+fJZGUlXZBiG0uLjVK68p0wmkwy3ClIp6W4CsGV2Li6q0KFDsa6voF588UUlJydr1KhRcnNz05AhQ5SYmJhjXZPJpPfee09vvvmmJk6cqCtXrsjb21vNmzeXt7e3JKlz58767rvvNHDgQMXHxys8PFx9+vTRyy+/rKVLl+qNN95Q8+bNNWHCBL300kv52y47O/Xu3VtLlixRr169CryNealZs6YefvhhDR8+XHFxcWrbtq1eeeUVy/x+/frJxcVFy5Yt05w5c+Tq6qoGDRpo0KBBt73OZs2aadq0aVq4cKHefPNNBQUFafDgwVqzZk1hbFKRMhmlpUMj3FUWLFighQsXWpV5e3vrxx9/lHS9n6yFCxfq448/Vnx8vAICAjR16lTVr18/3+swm82WAUbs7e0LNX6UPZkJl3Rt+4eWk+24+Dh5/vdk2+RWQeUe/IfsPLxLOkwUEr4/ANvAdzcAwFaVxmMc59i2qyzv25SUFJ08eVJ16tSRy21cjEf+TJ48WZcuXdLixYtLOpQiM3nyZJ04cUIffvhhvpcpifcfTwbgttWvX1+RkZGW6RsPGEuXLlVkZKRmz56t2rVra9GiRRoyZIg2b94sd3f3kggXAAAAAAAAQDFJSEhQVFSUvvzyS7377rslHU6hWrZsmdq0aaNy5cpp+/btWr9+vdUTCXcrkgG4bfb29pb+t25kGIZWrlyp0NBQderUSZIUERGh1q1b66uvvtKAAQOKO1QAAAAAAAAAxWj06NE6ePCgHnvsMbVp08Zq3lNPPaW9e/fmuNzIkSMVGhpaHCHmKD+xHTx4UO+//76SkpLk6+urSZMmqV+/fsUcacGRDMBtO336tIKCguTk5KSAgABNmDBBvr6+io6OVkxMjIKCgix1nZyc1KJFC+3fv7/AyQCz2VzYoaMsMq4nqrL+JFn+lWHIMHiv2ZKsfck+BUo5vrsBALaqFB7jOMe2XexTFJVVq1blOm/WrFlKSUnJcZ6np2dRhZQv+YntrbfeKs6QCg3JANyWxo0bKyIiQrVr11ZsbKwWLVqkAQMG6KuvvlJMTIwkqVKlSlbLeHt769y5cwVeV1RUVKHEjLLLyclJdXw8lZCYIHNCnKU8PiFekmRvOEjJyTp5+rzS0tJKKkwUAb4/gNKL724AgK0q7cc4zrEBFIYqVaqUdAi5uptju1MkA3Bb2rZtazUdGBiohx9+WOvXr1dAQICk66OU3+h2x6r29/cvcwPYoAgkXZFd5RrKdPeQIUPJyclydXWVSSbZuXrK2dVVDRtWL+koUUjMZrOioqL4/gBKu6QrkruHDFOGDMNQfEK8ynuU/+/gih4qx3c3AKC0KoXHOM6xbVfWvgVg+0gGoFC4urqqQYMGOnXqlDp27ChJunTpkipXrmypExsbK29v7wK3bW9vz4kG7li6g4scmv7dMu2YmSk7OzvLdKaDixx5n9kcvj+A0i3T9N+bC264wcBkMt3wJ9nxGQcAlEKl+RjHOTYAlF4kA1Ao0tLSdPz4cTVr1kw1atSQj4+PfvzxRzVs2NAyf/fu3Xr++edLOFKUVfEZTvrh12QlpGTIMKTk5ES5urrLZJI8XBzUromTKuXdDAAAAAAAAFAqkQzAbYmIiFC7du1UtWpVXb58WYsWLVJiYqJ69+4tk8mkgQMHasmSJapdu7Zq1aqlJUuWyMXFRd27dy/p0FFGGYYUHZuqKwn/fQw3PknlyzvIZDKpgodZt9mLFQAAAAAAAFAqkAzAbblw4YImTJigq1evqkKFCgoMDNQnn3yi6tWv92k4fPhwpaamatq0aYqLi1NAQICWL18ud3f3Eo4cQFlRoUKFkg4BAAAAAADgrkEyALdl/vz5t5xvMpk0duxYjR07tpgiAlDWZWSmy850ve9Sk51JtWrXkslkUqaRKUnKNMxysHMsyRABAAAAAKVE6rV0padmFNv6HJ0d5Fyu8H6zRkdHq0OHDlq/fr3uv//+u6a99u3ba+DAgRo8ePAdx4SCIxkAALAJyRnJOhj3q65lXJMhKeVaslzKucokqZxDOTX2DFB5J8+SDhNAAdm5llemJBmGHE1OMrm6yWQyyc61fEmHBgAAABuWnpqhqO2nlZKUVuTrcnFzkv+DtQo1GQDkhGQAAMAmZCpTp5NOKj4j/r/jQsSrvLm8TCaTyjuUVyNP/5IOEUABme1dZN/k77L/77RDZqbs7Oys5tvlvCgAAABwx1KS0pQcn1rSYQCFht9PAAAAuCvFZzhpw6+G1uxK1+qf0/X+tjit/jlda3ala8OvhuIznEo6RAAAAKDEbN++XY8//riaN2+uli1bauTIkTpz5kyu9Y8dO6YRI0aoadOmatKkif7xj39Y6mdmZmrhwoV68MEH1ahRI/Xs2VPbt2/P1saff/6pkJAQBQQE6JFHHtH+/fut5n/zzTf6+9//rkaNGql9+/Zavnz5bW/f8ePH9fjjj8vf31/dunXTTz/9JD8/P23ZsuW22yzrSAYAAADgrmQYUnRsqk5dSNWpCyn6IzpJpy6k6NSFVEXHpsowSjpCAAAAoORcu3ZNQ4YM0dq1a7VixQqZTCaNGTNGmZmZ2er+9ddfevLJJ+Xs7KwPPvhA69atU9++fZWRcX1chJUrVyoyMlIvvfSSNmzYoKCgII0ePVqnTp2yamf+/PkaNmyY1q9fr9q1a+u5556ztHHo0CGNHz9e3bp105dffqmnn35ab731ltatW1fgbcvMzNSYMWNUrlw5ffrpp5o+fXqeY5gib3QTBAAAAAAAUMwYFwfAnercubPV9GuvvaZWrVrpjz/+kKurq9W8NWvWyN3dXW+88YYcHa+PTVCnTh3L/GXLlmn48OH6+9//Lkl64YUXtGvXLn3wwQd65ZVXLPWGDh2qhx56SJL0zDPP6O9//7tOnz6tevXqKTIyUq1atdKYMWMs7f/xxx9atmyZ+vTpU6Bt27lzp/7880+tWrVKPj4+kqRnn31WQ4YMKVA7sEYyAAAAAAAAoBgxLg6AwnDmzBm99dZbOnDggK5cuSLjv4/Onj9/XvXq1bOqe+TIETVv3tySCLhRYmKiLl68qKZNm1qVN23aVL/99ptVmZ+fn+X/WRfpL1++rHr16unEiRPq0KFDtjZWrlwps9kse3t75dfJkyd1zz33WNYhSY0bN8738sgZyQAAAAAAAIBiFJ/hpB9+TVZCSoYMQ0pOTpSrq7tMJsnDxUHtmjipUkkHCeCuFxoaqqpVq2rmzJmqXLmyMjMz1b17d6Wnp2er6+Likmd7JpPJatowjGxlNyYTsuZldUtkFGI/njmtG3eORDMAAAAAAEAxYlwcAHfqypUrOn78uEaNGqVWrVqpXr16iouLy7W+n5+f9uzZk2OiwN3dXZUrV9bevXutyvfv35/tCYNbqVevnvbt22dVtm/fPtWuXbtATwVIUt26dXX+/HldunTJUhYVFVWgNpAdTwYAAAAAAAAAwE1c3Jzu2vV4enrKy8tLH3/8sXx8fHTu3DnNmzcv1/pPPPGEVq1apQkTJmjEiBHy8PDQgQMH1LhxY9WtW1fDhg3TggULVLNmTd13331at26dfvvtN82dOzffMQ0dOlSPPvqo3nnnHXXr1k0HDhzQmjVrrMYcyK82bdrI19dXL730kl544QUlJSUxgHAhIBkAAAAAAAAAADdwdHaQ/4O1inV9BWFnZ6f58+dr5syZ6t69u+rUqaPJkycrJCQkx/oVKlTQBx98oDlz5igkJER2dna6//771axZM0nSwIEDlZiYqNmzZ1vGAHj33XdVu3btfMf0wAMP6M0339Tbb7+tRYsWycfHR88880yBBw+WJHt7e73zzjuaPHmyHn30Ufn6+urFF19UaGionJ2dC9weriMZAAAAAAAAgDy5u7uXdAhAsXEu5yjnctkH272btG7dWps2bbIqO3r0aI7/l6T77rtPy5Yty7EtOzs7Pf3003r66adznF+jRo1s7ZUvXz5bWefOndW5c+dcY966dWuu825Wr149/fOf/7RMZ3VjVKtW8SVpbA3JAAAAAAAAAGSTmZoq/XcAT5OkurVqyWQ2K9Nsvl7BMGTHHboAish3330nV1dX1apVS2fOnNGsWbPUtGlT1axZs6RDK7VIBgAAAAAAACAbc0aaMtPSLNOZmYYy7UyWaTsnJ5IBAG7Lhg0bch1LoFq1atq4caOSkpI0Z84cnT9/XhUqVFDr1q310ksvFXOktoVkAAAAAAAAALJJdjTrUPJ/lGK+JklKSUmRi4uLJMnFvpwaufnLsyQDBFBqtW/fXgEBATnOc3C4fsm6V69e6tWrVzFGZftIBgAAAAAAACAbR9mroft9lulMj0zZ2dlZzQeA2+Hu7s44JCWAZAAAAAAAAACycUlLk13UdmWmJMowDCUlJ8nF1U0mk0l2Lu5y8n9IcirpKIE7ZxhGSYeAMqgk3nckAwAAAAAAAJCdYch8+ayMpCsyDENp8XEqV95TJpNJhlsFiQuoKOUcHR0lScnJySpXrlwJR4OyJjk5WdL/3ofFgWQAAAAAAAAAgDLH3t5eXl5eunjxoiTJ1dVVJpMpj6WAO2MYhpKTk3Xx4kV5eXnJ3r74ulwjGQAAAAAAAACgTLrnnnskyZIQAIqLl5eX5f1XXEgGAAAAAAAAACiTTCaTqlatqsqVKys9Pb2kw0EZ4ejoWKxPBGQhGQAAsBnujh6SJEOSg7O9XB3dZbqhHAAAAACAnNjb25fIxVmgOJEMAADYBCc56MGKwZbpTJ9M2dnZWc0HAAAAAAAoq7gygiK3Zs0aLVu2TDExMapfv74mTpyo5s2bl3RYAGyMS1qa7KK2KzMlUYZhKCk5SS6ubjKZTLJzcZeT/0OSU0lHCQAAAAAAUDLs8q4C3L5NmzYpPDxco0aN0vr169WsWTMNHz5c586dK+nQANgaw5D58lllxpxSZswppZ3/w/J/8+WzkmGUdIQAAAAAAAAlhmQAilRkZKT69u2rfv36qV69epo0aZLuuece/fOf/yzp0ADYIDvX8jK5VZDJrYIcPX0s/7dzLV/SoQEAAAClEufYAGA76CYIRSYtLU2HDx/WiBEjrMrbtGmj/fv357m88d+7eNPS0hjABXfMnGmWl5tJdjJJhlTO3lFuribJZFJ5N5PMmWalpaWVdJi4A5lylAK6Xs9yG5K7kSk7k51kuj4/TY6yYx8DpQrf3QAAW1VajnGcY5cNZrNZ0v+uwwCwXSQDUGSuXLkis9msSpUqWZV7e3srJiYmz+UzMzMlSf/5z3+KJD6UPf7ekrxvLEm1/C/6xF+KLu6AAAB54rsbAGCrOMbhbpN1HQaA7SIZgCJnMpmspg3DyFaWEwcHB/n7+8vOzi5f9QEAAAAAAFAwhmEoMzNTDg5cJgRsHZ9yFJkKFSrI3t5ely5dsiqPjY2Vt7d3Lkv9j52dnZycnIoqPAAAAAAAAAAoMxhAGEXGyclJDzzwgH788Uer8p9++klNmjQpoagAAAAAAAAAoOzhyQAUqSFDhujFF19Uo0aN1KRJE3388cc6f/68BgwYUNKhAQAAAAAAAECZQTIARapbt266cuWK3n33XV28eFENGjTQe++9p+rVq5d0aAAAAAAAAABQZpgMwzBKOggAAAAAAAAAAFB0GDMAAAAAAAAAAAAbRzIAAAAAAAAAAAAbRzIAAAAAAAAAAAAbRzIAAAAAAAAAAAAbRzIAAAAAAAAAAAAbRzIAQKmxZMkS9e3bV02aNFGrVq00evRonThxwjI/PT1dc+bMUY8ePRQYGKigoCC9+OKL+uuvv3Jsr3379tq+fbsk6ejRo3ryySfVuHFjBQcHa+HChTIMw6p+Wlqa5s+fr3bt2qlRo0bq2LGj1q5dW3QbXAaxjwHbw+caAGCr8jrGSdKCBQvUpUsXBQYGqkWLFho8eLB+/fXXHNsrqmNcaYkTAFD0HEo6AADIr19++UVPPPGE/P39ZTabNX/+fA0bNkwbN26Uq6urUlJS9J///EejRo3Sfffdp/j4eL322msaNWqU1q1bZ9XWb7/9pqtXr+pvf/ubEhMTNXToULVs2VJr167VqVOnFBYWJldXVw0dOtSyzLhx4xQbG6tZs2apZs2aunz5sjIyMor7ZbBp7GPA9vC5BgDYqryOcZJUu3ZtTZ06Vb6+vkpJSdGKFSs0dOhQfffdd6pYsaKlraI8xpWWOAEAxcAAgFIqNjbWaNCggfHLL7/kWufXX381GjRoYJw9e9aqfOHChcbYsWMNwzCMNWvWGM2aNTNSU1Mt85csWWIEBQUZmZmZhmEYxr/+9S+jWbNmxpUrVwp/Q5Ar9jFge/hcAwBsVX6OcQkJCUaDBg2Mn376yaq8OI9xpSVOAEDho5sgAKVWQkKCJMnT0zPXOomJiTKZTCpfvrxV+datW9WhQwdJ0oEDB9SiRQs5OTlZ5gcFBenixYuKjo621G/UqJHef/99BQcHq3PnzoqIiFBKSkphbxZuwD4GbA+fawCArcrrGJeWlqaPP/5YHh4e8vPzs5pXnMe40hInAKDw0U0QgFLJMAyFh4erWbNmatCgQY51UlNTNXfuXHXv3l3u7u6W8r/++ktHjx5V27ZtJUmXLl1S9erVrZatVKmSZZ6vr6/+/PNP7d27V87OznrnnXd05coVTZs2TVevXlV4eHgRbWXZxj4GbA+fawCArbrVMe6HH37QhAkTdO3aNfn4+Gj58uVWXe8U5zGutMQJACgaPBkAoFSaPn26fv/9d73xxhs5zk9PT9ezzz4rwzD06quvWs37/vvv1aRJE3l5eVnKTCZTju1klRuGIZPJpLlz56px48Zq27atwsLC9Pnnn3NXSxFhHwO2h881AMBW3eoY17JlS61fv14fffSRgoODNX78eMXGxlrmF+cxrrTECQAoGiQDAJQ6M2bM0NatW/XBBx/onnvuyTY/PT1d48ePV3R0tJYvX251Z6lk/WirJHl7eysmJsaqTtZJb9adLT4+PqpSpYo8PDwsderVqyfDMHThwoVC2zZcxz4GbA+fawCArcrrGOfq6qpatWopMDBQr732mhwcHLR27VrL/OI6xpWWOAEARYdkAIBSwzAMTZ8+Xd9++60++OAD+fr6ZquTdTHp9OnTWrFihSpUqGA1PykpSbt27bI6iQ0MDNSePXuUlpZmKdu5c6cqV66sGjVqSJKaNm2qixcvKikpyVLn5MmTsrOzy/FEGreHfQzYHj7XAABblZ9jXG7LZR2/iuMYV1riBAAUPZIBAEqNadOmacOGDZo3b57c3NwUExOjmJgYy+OlGRkZeuaZZ3To0CHNnTtXZrPZUifrBHXHjh2qXbu21Qlwjx495OTkpJdfflm///67vvvuOy1ZskRDhgyxPN7avXt3eXl56eWXX9Yff/yh3bt3a86cOerbt69cXFyK/8WwUexjwPbwuQYA2Kq8jnHJycl64403dODAAZ09e1aHDx/WpEmTdOHCBXXp0kVS8RzjSkucAICiZzIMwyjpIAAgP/z8/HIsDw8PV58+fRQdHW11p8qNVq5cqZYtW+qFF15QtWrV9Oyzz1rNP3r0qKZPn66DBw/K09NTAwYM0JgxY6z6wDx+/Lhmzpypffv2ycvLS127dtX48eM5iS1E7GPA9vC5BgDYqryOcampqXruuef066+/6sqVK/Ly8pK/v79GjRqlxo0bS1KxHONKS5wAgKJHMgBAmWE2m9W6dWstXbrUclIL28I+BmwPn2sAgK0qLce40hInACBvdBMEoMy4evWqBg0aJH9//5IOBUWEfQzYHj7XAABbVVqOcaUlTgBA3ngyAAAAAAAAAAAAG8eTAQAAAAAAAAAA2DiSAQAAAAAAAAAA2DiSAQAAAAAAAAAA2DiSAQBKjd27dys0NFRBQUHy8/PTli1brOYbhqEFCxYoKChIjRs3VkhIiI4dO3bLNnft2qVRo0YpKChIgYGB6tmzpzZs2JCtXlpamubPn6927dqpUaNG6tixo9auXVuo24e89/GNpk6dKj8/P61YsSLPdo8ePaonn3xSjRs3VnBwsBYuXKibh8z55Zdf1KdPH/n7+6tDhw765z//eaebA0DSkiVL1LdvXzVp0kStWrXS6NGjdeLECas63377rYYNG6aWLVvKz89PR44cybPd1NRUhYWFqUePHmrYsKFGjx6drc6uXbvk5+eX7e/48eOFtn0AgLKtKH6jFMUxLq84b+dYnN/fUmvWrFHXrl3VuHFjde7cWevXr8+zbQBA0XAo6QAAIL+Sk5Pl5+enPn36aOzYsdnmL126VJGRkZo9e7Zq166tRYsWaciQIdq8ebPc3d1zbHP//v3y8/PT8OHD5e3trW3btumll16Su7u72rdvb6k3btw4xcbGatasWapZs6YuX76sjIyMItvWsiqvfZxly5Yt+vXXX1W5cuU820xMTNTQoUPVsmVLrV27VqdOnVJYWJhcXV01dOhQSdKff/6pESNGqF+/fpozZ4727dunadOmqWLFiurcuXOhbR9QFv3yyy964okn5O/vL7PZrPnz52vYsGHauHGjXF1dJV3/7Ddp0kRdunTR5MmT89Wu2WyWs7OzQkJC9M0339yy7s3HgYoVK97+BgEAcIOi+I1SFMe4vOK8nWNxfn5Lffjhh5o3b55mzpwpf39/HTx4UJMnT1b58uWtfm8BAIoHyQAApUbbtm3Vtm3bHOcZhqGVK1cqNDRUnTp1kiRFRESodevW+uqrrzRgwIAclwsNDbWaHjhwoHbu3KnvvvvOcnK6fft27d69W1u2bJGXl5ckqUaNGoW0VbjRrfZxlr/++kvTp0/XsmXLNHLkyDzb3LBhg1JTUzV79mw5OTmpQYMGOnXqlCIjIzVkyBCZTCZ99NFHqlq1qiZNmiRJqlevnqKiorR8+XKSAcAdWrZsmdV0eHi4WrVqpcOHD6tFixaSpF69ekmSoqOj892uq6urpk2bJknat2+f4uPjc61bqVIllS9fvoCRAwCQt6L4jVIUx7i8zrNv51icn99SGzZs0GOPPaZu3bpJknx9fXXgwAEtXbqUZAAAlAC6CQJgE6KjoxUTE6OgoCBLmZOTk1q0aKH9+/dbysLCwhQSEnLLthISEiwX/SVp69atatSokd5//30FBwerc+fOioiIUEpKSqFvB24tMzNTL7zwgoYNG6b69evnWOfmfXzgwAG1aNFCTk5OlrKgoCBdvHjR8mPnwIEDatOmjVU7wcHBOnTokNLT04tgS4CyKyEhQZLk6elZoOXy8/2dm169eikoKEiDBg3Szz//fFttAABQUIX5GyU3xXmMu53fUmlpaXJ2draq4+LioqioKM6zAaAEkAwAYBNiYmIkXb8z5kbe3t66dOmSZdrHx0dVq1bNtZ3NmzcrKipKffr0sZT9+eef2rt3r44dO6Z33nlHEydO1DfffGO5WwfFZ+nSpXJwcNDAgQNzrXPzPr506ZK8vb2t6mS9T7LeG7nVycjI0JUrVworfKDMMwxD4eHhatasmRo0aFCgZfP6/s5tmRkzZmjBggVasGCB6tSpo8GDB2v37t0FagcAgNtRWL9RclISx7jb+S0VFBSktWvX6tChQzIMQ1FRUfrss8+Unp7OeTYAlAC6CQJgU0wmk9X0zYPEPvfcc7kuu2vXLr388suaOXOm1V3nhmHIZDJp7ty58vDwkHT9rphnnnlGr7zyilxcXApxC5CbQ4cOaeXKlVq3bl22/XyjnPZxbvVvLM/tvXOrdQEomOnTp+v333/Xhx9+WOBlb/X9nZu6deuqbt26lukmTZrowoULWrZsmaWLIgAAitqd/EbJTUkc427nt9To0aMVExOjxx57TIZhqFKlSurdu7fef/992dvbF0mcAIDc8WQAAJvg4+MjSVZ32EhSbGxstju+c/LLL78oNDRUYWFhlv4yb2y7SpUqlkSAdL1PecMwdOHChTsPHvmyZ88excbGql27dmrYsKEaNmyos2fPKiIi4pb9jXp7e1vuysoSGxsr6X93aeVU5/Lly3JwcLB6zBnA7ZsxY4a2bt2qDz74QPfcc0+JxREQEKDTp0+X2PoBAGXHnf5GKaiSOsbd6reUi4uLwsPDdeDAAW3dulXbtm1T9erV5ebmpgoVKhR7rABQ1pEMAGATatSoIR8fH/3444+WsrS0NO3evVtNmjS55bK7du3SyJEj9fzzz+uxxx7LNr9p06a6ePGikpKSLGUnT56UnZ1diV7QKmt69uypDRs2aP369Za/ypUra9iwYXr//fdzXS4wMFB79uxRWlqapWznzp2qXLmyZSDowMBA/fTTT1bL7dy5U40aNZKjo2PRbBBQRhiGoenTp+vbb7/VBx98IF9f3xKN58iRI5aLMwAAFKU7+Y1yO0riGJfXb6ksjo6Ouueee2Rvb69NmzapXbt2srPjkhQAFDe6CQJQaiQlJenMmTOW6ejoaB05ckSenp6qVq2aBg4cqCVLlqh27dqqVauWlixZIhcXF3Xv3t2yzLx58/TXX3/p9ddfl/S/k9eBAweqU6dOlrvDHR0dLXeEd+/eXe+++65efvllPfPMM7py5YrmzJmjvn370kVQIctrH99895Cjo6O8vb2tHpG+eR/36NFD77zzjl5++WWNHDlSp0+f1pIlSzRmzBjLI9sDBgzQmjVrFB4erv79+2v//v367LPPNG/evGLYasC2TZs2TV999ZXeffddubm5Wb5nPTw8LN+hV69e1fnz53Xx4kVJ1xOu0vWndrIuatz82ZakP/74Q+np6bp69aqSkpJ05MgRSdL9998vSVqxYoVq1Kihe++9V+np6dqwYYO++eYbLViwoHg2HgBg84riN4pU+Me4vOK8nWNxfn5LnTx5UgcPHlRAQIDi4+MVGRmpY8eOafbs2bf/ogMAbpvJuLmzOgC4S+3atSvHgWN79+6t2bNnyzAMLVy4UB9//LHi4uIUEBCgqVOnWg1SGRYWprNnz2rVqlWW6c8//zxbm//3f/9nqSNJx48f18yZM7Vv3z55eXmpa9euGj9+PMmAQpbXPr5Z+/btNXDgQA0ePNhSdvM+lqSjR49q+vTpOnjwoDw9PTVgwACrZIB0/fHm8PBwHTt2TJUrV9bw4cP1+OOPF+4GAmWQn59fjuXh4eGWAQbXrVunl19+OVudp59+WmPHjpWU82e7ffv2Onv2bLbljh49Kun6oOOffPKJ/vrrL7m4uOjee+/VyJEj1bZt2zveLgAApKL5jSIV/jEurzhv51icn99Sx48f13PPPaeTJ0/KwcFBLVu21PPPP291Mw8AoPiQDAAAAAAAAAAAwMbRQRsAAAAAAAAAADaOZAAAAAAAAAAAADaOZAAAAAAAAAAAADaOZAAAAAAAAAAAADaOZAAAAAAAAAAAADaOZAAAAAAAAAAAADaOZAAAAAAAAAAAADaOZAAAAAAAAAAAADaOZAAAAAAAAAAAADaOZAAAAAAAAAAAADaOZAAAAAAAAAAAADaOZAAAAAAAAAAAADaOZAAAAAAAAAAAADaOZAAAAAAAAAAAADaOZAAAAAAAAAAAADaOZAAAAAAAAAAAADbOoaQDAHKTmZmpjIwM2dnZyWQylXQ4AAAAAAAANscwDGVmZsrBwUF2dtw3DNgykgG4a2VkZCgqKqqkwwAAAAAAALB5/v7+cnJyKukwSozZbFZ6enpJh4G7lJOTk00ky0gG4K6V9QHz9/eXvb19CUcDW2I2mxUVFcV7y4axjwHbw+caAGCrSssxrrTEiYLL2re2cKHzdhiGoQsXLujq1aslHQruYnZ2dqpTp06pT5iRDMBdK6trIHt7e040UCR4b9k+9jFge/hcAwBsVWk5xpWWOFFwZbWL5qxEQOXKleXq6lpmXwfkLjMzU+fOndP58+dVs2bNUv0eIRkAAAAAAAAAoMwxm82WREClSpVKOhzcxXx8fHTu3DllZGTI0dGxpMO5bWXz+R8AAAAAAAAAZVrWGAGurq4lHAnudlndA5nN5hKO5M6QDAAAAECpUNr75wQAAMDdqTR3+4LiYSvvEboJAgAAwF0pNTlRaanXrk8YhipXLK/kuFjpvyfiTs7l5OzqXoIRAgAAAEDpwZMBAAAAuCulpV7Tge/X6d9fLNdPXyzXznVL9dMXy/XvL5brwPfr/pcoAAAAAFAgCxYsUM+ePe+4nXXr1ql58+aFEFHe2rdvrxUrVhRZ+4X1mtzNeDIAAAAAd61riVeVFHdZhmEoIT5eJnOazTyiCwAAgLuX1VOqxaC0PvXarVs3tW3btqTDQD6RDAAAAAAAAACAG2Q9pXot8WqRr6ucu5cCO/QpdcmA9PR0ubi4yMXFpaRDQT7RTRAAAAAAAAAA3CTrKdWi/rvdhENmZqbee+89Pfzww2rUqJEeeughLVq0SJI0Z84cde7cWQEBAerQoYPefPNNpaen37KthQsX6sEHH1SjRo3Us2dPbd++3TI/Ojpafn5+2rRpk0JCQuTv768NGzbk2E3Q1q1b1adPH/n7+6tDhw5auHChMjIyLPMXLFighx56SI0aNVJQUJBmzpx5W9v/2WefqVmzZvrxxx/zfD1u5zWxRTwZUAbt3r1by5Yt06FDhxQTE6N33nlHHTt2tMw3DEMLFy7Uxx9/rPj4eAUEBGjq1KmqX7++pU5aWpoiIiL01VdfKTU1VX/729/06quv6p577rHUiYuL08yZM7V161ZJ1/v1mjJlisqXL198GwsAAAAAAADYoHnz5unTTz/Vyy+/rGbNmunixYs6efKkJMnNzU3h4eGqXLmyfv/9d02ZMkVubm4aPnx4jm2tXLlSkZGRmj59uu6//3599tlnGj16tL766ivVrl3bUm/u3LkKCwvTa6+9JicnJ8uF+Cw7duzQCy+8oMmTJ6t58+Y6c+aMpkyZIkl6+umntXnzZq1YsUJvvPGG6tevr0uXLum3334r8LYvW7ZM7733npYtW6bAwMA8X4/beU1sEU8GlEHJycny8/PT1KlTc5y/dOlSRUZGaurUqVq7dq28vb01ZMgQJSYmWurMmjVL3333nebPn68PP/xQycnJGjlypMxms6XOc889p99++03vv/++3n//ff3222968cUXi3z7AAAAAAAAAFuWmJiolStX6oUXXlDv3r1Vs2ZNNW/eXP369ZMkjR49Wk2bNlWNGjXUvn17DRkyRF9//XWu7S1btkzDhw/X3//+d9WtW1cvvPCC7rvvPn3wwQdW9QYNGqROnTrJ19dXVapUydbO4sWLNWLECPXu3Vu+vr5q06aNxo0bp48++kiSdP78eXl7e6t169aqVq2aGjdurP79+xdo2+fNm6fIyEitXLnSkgjI6/W4ndfEFvFkQBnUtm3bXAf2MAxDK1euVGhoqDp16iRJioiIUOvWrfXVV19pwIABSkhI0GeffabXX39drVu3lnT9MZuHHnpIP/30k4KDg3X8+HHt2LFDn3zyiQICAiRJM2bM0GOPPaYTJ06obt26xbOxAAAAAAAAgI05ceKE0tLS9Le//S3H+Zs3b9YHH3ygM2fOKDk5WRkZGXJ3z3lMgsTERF28eFFNmza1Km/atGm2u/YbNWp0y7gOHz6sqKgoLV682FJmNpuVmpqqa9euqUuXLvrggw/UsWNHBQcHq23btmrXrp0cHPJ3mToyMlLXrl3TZ599Jl9fX0t5Xq+HVLDXxFaRDICV6OhoxcTEKCgoyFLm5OSkFi1aaP/+/RowYIAOHTqk9PR0tWnTxlKnSpUqql+/vvbv36/g4GDt379fHh4elkSAJAUGBsrDw0P79+8vUDLgxqcNgMKQ9Z7ivWW72MeAjTAMGTf8XS+64V/D4HMOACj1Ssu5a2mJEwXHPi2dnJ2dc5134MABTZgwQWPHjlVQUJA8PDy0ceNGRUZG3rJNk8lkNW0YRrYyV1fXW7aRmZmpsWPHWm4yvjnmqlWravPmzfrxxx/173//W9OmTdOyZcu0atUqOTo63rJtSWrevLm2bdumr7/+WiNGjLBq+1Zu9zWxNSQDYCUmJkaSVKlSJatyb29vnTt3TpJ06dIlOTo6ytPTM1udS5cuWerc3EZWu1l18isqKqpA9YH84r1l+9jHQOnl5OSkyhXLKzExUQnx8ZbyhIQESZJh76Tka9d06ux/lJaWVlJhAgBQaErLuWtpiROwdbVr15aLi4t+/vlnqzvkJWnfvn2qVq2aRo0aZSnLuq6XE3d3d1WuXFl79+5VixYtLOX79+9X48aNCxRXw4YNdfLkSdWqVSvXOi4uLurQoYM6dOigf/zjH+ratat+//13PfDAA3m27+/vryeffFLDhg2TnZ2dnnrqKUm3fj2kgr8mtopkAHKUUyYwL/mtc3PbefH395e9vX2BlgFuxWw2KyoqiveWDWMfA7YhOS5W7u7uMpnTZBiGEhIS5OHhIZPJJDd3d7mWK6eGDWuUdJgAANyR0nLuWlriRMFl7VuULs7Ozho+fLjmzJkjR0dHNW3aVJcvX9axY8dUs2ZNnT9/Xhs3bpS/v7+2bdumLVu23LK9YcOGacGCBapZs6buu+8+rVu3Tr/99pvmzp1boLjGjBmj0NBQVa1aVV26dJGdnZ2OHj2qo0eP6tlnn9W6detkNpsVEBCgcuXK6YsvvpCLi4uqVauW73U0adJES5cu1VNPPSUHBwcNHjz4lq9Hv379bus1sUUkA2DFx8dH0vU7+ytXrmwpj42Nlbe3t6TrTwCkp6crLi7O6umA2NhYNWnSxFInNjY2W/uXL1/O8YmBW7G3t+dEA0WC95btYx8DpZzJJNN///5XdEOZycRnHABgM0rLuWtpiRMoDOXcve7q9YwePVr29vZ6++23dfHiRfn4+GjAgAHq16+fBg0apOnTpystLU0PPfSQRo0apYULF+ba1sCBA5WYmKjZs2fr8uXLqlevnt59913Vrl27QDEFBwdr8eLFeuedd/T+++/LwcFBdevWtQzkW758eb333nuaPXu2MjMz1aBBAy1evFgVKlQo0HqaNWum9957TyNGjJCdnZ0GDhyY6+shSR07dizwa2KLTEZ+bueGzfLz89M777yjjh07Srp+535wcLAGDRqk4cOHS5LS0tLUunVrPf/885YBhFu1aqXXX39d3bp1kyRdvHhRbdu21XvvvWcZQLhbt2769NNPLY8T/frrr+rfv7++/vrrfI0ZYDabdeDAAQUGBnKigULFe8v2sY8B25BwJUb//mK5kuIuyzAMxcfHq3z58tefDPCsqFY9h8qjgk9JhwkAwB0pLeeupSVOFFxZ3rcpKSk6efKk6tSpIxcXF6t5qcmJSku9VmyxODmXk7Nr2RrMtjS51XulNOHJgDIoKSlJZ86csUxHR0fryJEj8vT0VLVq1TRw4EAtWbJEtWvXVq1atbRkyRK5uLioe/fukiQPDw/17dtXERERqlChgjw9PRUREaEGDRqodevWkqR69eopODhYkydP1vTp0yVJU6ZMUbt27Qo0eDAAAAAAAABQ3Jxd3bk4D5tDMqAMOnTokAYOHGiZDg8PlyT17t1bs2fP1vDhw5Wamqpp06YpLi5OAQEBWr58udzd//cFOHHiRDk4OGj8+PFKSUlRq1atNHv2bKsM8ty5czVz5kwNHTpUktS+fXtNnTq1mLYSAAAAAAAAQGmwZ88eSy8lOdm/f38xRmO7SAaUQS1bttTRo0dznW8ymTR27FiNHTs21zrOzs6aMmWKpkyZkmsdLy+vAg8yAgAAAAAAAKBsadSokdavX1/SYdg8kgEAAAAAAAAAgBLj4uKiWrVqlXQYNs+upAMAAAAAAAAAAABFi2QAAAAAAAAAgDIrMzOzpEPAXc4wjJIOoVDQTRAAAAAAAACAMsfJyUl2dnY6d+6cfHx85OTkJJPJVNJh4S5jGIZiYmJkMpnk6OhY0uHcEZIBAAAAAAAAAMocOzs71alTR+fPn9e5c+dKOhzcxUwmk2rUqCF7e/uSDuWOkAwAAAAAAAAAUCY5OTmpZs2aysjIkNlsLulwcJdydHQs9YkAiWQAAAAAAAAAgDIsq/uX0t4FDJAXBhAGAAAAAAAAAMDGkQwAAAAAAAAAAMDGkQwAAAAAAAAAAMDGkQwAAAAAAAAAAMDGkQwAAAAAAAAAAMDGkQwAAAAAAAAAAMDGkQwAAAAAAAAAAMDGkQwAAAAAAAAAAMDGkQwAAAAAAAAAAMDGkQwAAAAAAAAAAMDGkQwAAAAAAAAAAMDGkQwAAAAAAAAAAMDGkQwAAAAAAAAAAMDGkQwAAAAAAAAAAMDGkQwAAAAAAAAAAMDGkQwAAAAAAAAAAMDGkQwAAAAAAAAAAMDGkQwAAAAAAAAAAMDGlYpkwLp169S8efOSDiNXb775pqZMmWKZDgkJ0axZs4psfTe/HqtXr1ZoaGiRrQ8AAAAAAAAAULoVKBkQFhYmPz8/vffee1blW7ZskZ+fX4FWHBYWptGjR+erbrdu3fTNN98UqP287Nq1S35+foqPj7+jdi5duqSVK1dq5MiRhRRZwfXv31+HDh3Snj17SiwGAAAAAAAAAMDdq8BPBjg7O2vp0qWKi4sriniySU9Pl4uLiypVqlQs6yuotWvXqkmTJqpRo0aJxeDk5KTu3btr9erVJRYDAAAAAAAAAODuVeBkQOvWreXt7a0lS5bkWmfBggXq2bOnVdmKFSvUvn17y/zPP/9c33//vfz8/OTn56ddu3YpOjpafn5+2rRpk0JCQuTv768NGzbk2E3Q1q1b1adPH/n7+6tDhw5auHChMjIyLPP9/Pz06aefasyYMQoICFCnTp30/fffS5Kio6M1cOBASVKLFi3k5+ensLAwSdLmzZvVo0cPNW7cWC1bttTgwYOVnJyc67Zu3LjRsl252b59u5o1a6b169dbytauXau///3vatSokYKCgjR9+nTLvMjISPXo0UOBgYFq27atXn31VSUlJd1yHe3bt9eWLVuUkpJyy3oAAAAAAAAAgLKnwMkAOzs7TZgwQatXr9aFCxdua6VDhw5V165dFRwcrJ07d2rnzp1q0qSJZf7cuXMVEhKiTZs2KSgoKNvyO3bs0AsvvGCpM336dK1bt06LFy+2qrdw4UJ17dpVGzZs0IMPPqjnn39eV69eVdWqVbVgwQJJ1y/+79y5U5MmTdLFixf13HPPqW/fvtq0aZNWrlyphx9+WIZh5LgdcXFxOnbsmBo1apTrtm7cuFHjx49XRESEevXqJUn68MMPNX36dPXv319ffvml3n33XdWsWdOyjMlk0qRJk/Tll19q9uzZ+vnnnzVnzpxbvqaNGjVSRkaGDh48eMt6AAAAAAAAAICy57YGEH744Yd1//336+23376tlbq5ucnFxUVOTk7y8fGRj4+PnJycLPMHDRqkTp06ydfXV1WqVMm2/OLFizVixAj17t1bvr6+atOmjcaNG6ePPvrIql7v3r3VvXt31apVSxMmTNC1a9d08OBB2dvby9PTU5JUqVIl+fj4yMPDQzExMcrIyNDDDz+sGjVqyM/PT0888YTc3Nxy3I5z587JMAxVrlw5x/lr1qzRK6+8onfffVcdO3a0lC9atEhDhgzRoEGDVKdOHTVu3FiDBw+2zB88eLD+9re/ydfXV61atdK4ceP09ddf3/I1dXV1Vfny5XX27Nlb1gMAAAAAAAAAlD0Ot7vg888/r0GDBmno0KGFGY8k3fJOe0k6fPiwoqKirJ4EMJvNSk1N1bVr11SuXDlJshrU2NXVVW5ubrp8+XKu7d53331q1aqVevTooaCgIAUFBalz586WxMHNsrrkcXZ2zjbv22+/VWxsrD788EM1btzYUh4bG6uLFy+qVatWucbx888/a8mSJfrjjz+UmJho2bbk5GS5urrmupyzs7OuXbuW63wAAAAAAAAAQNl028mAFi1aKCgoSG+88Yb69OljNc9kMmXrWufG/vzzcqsL3pKUmZmpsWPHqlOnTtnm3Xhh3tHRMVtcmZmZubZrb2+vyMhI7du3Tz/++KNWrVql+fPn65NPPpGvr2+2+hUqVJB0vbugihUrWs27//77dfjwYX322Wfy9/eXyWTKFl9Ozp49qxEjRmjAgAEaN26cPD09tXfvXk2aNCnP1zCnOAAAAAAAAAAAuK1ugrI899xz+uGHH7Rv3z6r8ooVK+rSpUtWCYEjR45Y1XF0dLzlhflbadiwoU6ePKlatWpl+7Ozy98mZSUKzGazVbnJZFKzZs30zDPPaP369XJ0dNSWLVtybKNmzZpyd3fX8ePHs83z9fXVypUr9f3332vGjBmWcnd3d1WvXl3//ve/c2zz0KFDMpvNCgsLU2BgoOrUqaOLFy/muT1nzpxRamqqGjZsmGddAAAAAAAAAEDZckfJAD8/P/Xo0UOrV6+2Km/ZsqUuX76spUuX6syZM1qzZo127NhhVad69eo6evSoTpw4ocuXLys9PT3f6x0zZoy++OILLViwQMeOHdPx48e1adMmzZ8/P99tVK9eXSaTSdu2bdPly5eVlJSkX3/9VYsXL1ZUVJTOnTunb7/9VpcvX1bdunVzbMPOzk6tW7fW3r17c5xfp04drVy5Ut9++61mzZplKR87dqwiIyO1cuVKnTp1SocPH9aqVaskXU8wZGRkaNWqVfrzzz+1fv36bGMh5GTPnj3y9fW1GogYAAAAAAAAAADpDpMBkjRu3LhsXQLVq1dPr7zyij788EP17NlTBw8ezDa2QP/+/VWnTh317dtXrVq1yvZ0wa0EBwdr8eLF+vHHH/Xoo4+qf//+ioyMVPXq1fPdRpUqVTR27FjNmzdPrVu31owZM+Tu7q7du3drxIgR6ty5s958802FhYWpbdu2ubbTv39/bdy4MdenHOrWrasPPvhAGzdu1OzZsyVdH9h44sSJ+vDDD9W9e3eNHDlSp0+flnS9e6GXX35ZS5cuVffu3fXll19qwoQJeW7Pxo0b1b9//3xvPwAAAAAAAACg7DAZN1/JR4EYhqH+/ftr0KBB6t69e4nE8Pvvv2vw4MH65ptv5OHhUSIxFAWz2awDBw4oMDBQ9vb2JR0ObAjvLdvHPgZsQ8KVGP37i+VKirsswzAUHx+v8uXLy2Qyyc2zolr1HCqPCj4lHSYAAHektJy7lpY4UXDsW6DsuOMnA8o6k8mkGTNmFGiA5MJ28eJFRURE2FQiAAAAAAAAAABQeBxKOgBbcN999+m+++4rsfUHBQWV2LqB0srJyamkQwAAAAAAAACKDckAAGVCanKi0lKvXZ8wDFWuWF7JcbGSySRJcnIuJ2dX9xKMEAAAAAAAACg6JAMAlAlpqdd04Pt1upZ4VYZhKDExUe7u7jKZTCrn7qXADn1IBgAAAAAAAMBmMWYAslmwYIH8/Pys/tq0aWOZbxiGFixYoKCgIDVu3FghISE6duyYVRtpaWmaMWOGWrZsqcDAQIWGhurChQvFvSmAlWuJV5UUd1lJcZeVcOWS5f/XEq+WdGgAAAAAAABAkSIZgBzVr19fO3futPx9+eWXlnlLly5VZGSkpk6dqrVr18rb21tDhgxRYmKipc6sWbP03Xffaf78+frwww+VnJyskSNHymw2l8TmAAAAAAAAAECZRjIAObK3t5ePj4/lr2LFipKuPxWwcuVKhYaGqlOnTmrQoIEiIiKUkpKir776SpKUkJCgzz77TGFhYWrdurUaNmyoOXPm6Pfff9dPP/1UkpsFAAAAAAAAAGUSYwYgR6dPn1ZQUJCcnJwUEBCgCRMmyNfXV9HR0YqJiVFQUJClrpOTk1q0aKH9+/drwIABOnTokNLT0626FqpSpYrq16+v/fv3Kzg4uECx8DQBCoVhyLjh73rRDf8aBu81G5K1L9mnQCnHdzcAoAwoLeeupSVOFBz7FCg7SAYgm8aNGysiIkK1a9dWbGysFi1apAEDBuirr75STEyMJKlSpUpWy3h7e+vcuXOSpEuXLsnR0VGenp7Z6ly6dKnA8URFRd3mlgDXOTk5qXLF8kpMTFRCfLylPCEhQZJk2Dsp+do1nTr7H6WlpZVUmCgCfH8ApRff3QCAsqa0nLuWljgBANmRDEA2bdu2tZoODAzUww8/rPXr1ysgIECSZDKZrOpk3aV3K/mpkxN/f3/Z29vf1rJAluS4WLm7u8tkTpNhGEpISJCHh4dMJpPc3N3lWq6cGjasUdJhopCYzWZFRUXx/QGUcnx3AwDKgtJy7lpa4kTBZe1bALaPZADy5OrqqgYNGujUqVPq2LGjpOt3/1euXNlSJzY2Vt7e3pKuPwGQnp6uuLg4q6cDYmNj1aRJkwKv397enhMN3DmTSab//v2v6IYyk4n3mQ3i+wMo5fjuBgCUEU5OTqXm3LW0xAkAyI4BhJGntLQ0HT9+XD4+PqpRo4Z8fHz0448/Ws3fvXu35UJ/o0aN5OjoaFXn4sWLOnbs2G0lAwAAAAAAsCWpyYlKuBKjhCsxSo6LVeWK5ZUcF2spS01OLOkQAQA2iCcDkE1ERITatWunqlWr6vLly1q0aJESExPVu3dvmUwmDRw4UEuWLFHt2rVVq1YtLVmyRC4uLurevbskycPDQ3379lVERIQqVKggT09PRUREqEGDBmrdunUJbx0AAAAAACUrLfWaDny/TtcSr8owDCUmJl7vGs9kUjl3LwV26CNnV/eSDhMAYGNIBiCbCxcuaMKECbp69aoqVKigwMBAffLJJ6pevbokafjw4UpNTdW0adMUFxengIAALV++XO7u/ztRmThxohwcHDR+/HilpKSoVatWmj17No8SAgAAAAAg6VriVSXFXb4+Lk58vEzmtGzj8wEAUJhIBiCb+fPn33K+yWTS2LFjNXbs2FzrODs7a8qUKZoyZUphhwcAAAAAAAAAKCDGDAAAAAAAAAAAwMaRDAAAAAAAAAAAwMaRDAAAAAAAAAAAwMaRDAAAAAAAAAAAwMaRDAAAAAAAAAAAwMaRDAAAAAAAAAAAwMaRDAAAAAAAAAAAwMaRDAAAAAAAAAAAwMaRDAAAAAAAAAAAwMaRDAAAAAAAAAAAwMaRDAAAAAAAAAAAwMaRDAAAAAAAAAAAwMaRDAAAAAAAAAAAwMaRDAAAAAAAAAAAwMaRDAAAAAAAAAAAwMaRDAAAAAAAAAAAwMaRDAAAAPj/9u4+KKrrjOP4bxGRIgoqEBMlsTGF1gJCGEpNlmEkmagZnSQwqXQSicIYxVRjapJCzdiCJqtV4x+oHeq7HZPYIcZhkkx8CU1T4xQwim+xaIxaoREQIQpGFvH2D+vWFRBElu1evp8ZZ9xzzz08h8Pdc88+994FAAAAAMDkSAYAAAAAAAAAAGByJAMAAAAAAAAAADA5kgEAAAAAAAAAAJgcyQAAAAAAAAAAAEyOZAAAAAAAAAAAACZHMgAAAAAAAAAAAJMjGQAAAAAAAAAAgMmRDAAAmJKPj4+7QwAAAAAAAPi/4e3uAAAA6A5Nlxtkb/r++gvDUMjggbr8Xa1ksUiSfPr9QP38/N0YIQAAAAAAgPuQDAAAmIK96XuVfbpN3zfUyzAMNTQ0yN/fXxaLRT/wD1T0Y8kkAwAAAAAAQK9FMgAAYBrfN9Sr8bsLMgxDly5elKXFLst/7wwAAAAAcHd4FCcAeDaSAQAAAAAAAGiFR3ECgLmQDAAAAAAAAEArPIoTAMyFZAAAAAAAAADaxKM4AcA8vNwdAAAAAAAAAAAAcC2SAQAAAAAAAAAAmBzJAAAAAAAAAAAATI5kAAAAAAAAAAAAJkcyAAAAAAAAAAAAkyMZAAAAAAAAAACAyZEMAAAAAAAAAADA5EgGAAAAAAAAAABgciQDAAAAAAAAAAAwOZIBAAAAAAAAAACYHMkAuNyWLVuUlJSkyMhIJScna9++fe4OCQAAAAAAAAB6FZIBcKmPP/5YNptNmZmZ2r59u2JjYzV9+nT9+9//dndoAAAAAAAAANBrkAyAS23YsEEpKSl69tlnNXLkSM2fP19Dhw7Vu+++6+7QAAAAAAAAAKDX8HZ3ADAvu92uo0eP6sUXX3Qqf/TRR3XgwIEO9zcMw9FOnz59XBIjeo+Wlhb5DhgkWbxkGJJ8/NTfr78sFsnXP0AtLS2y2+3uDhN3gTEGzIfjGgBgVp4yx3lKnLg7LS0tkv73OQwA8yIZAJepq6tTS0uLhgwZ4lQeFBSkmpqaDve/du2aJOmrr75ySXzoffqPiFX///4/6JZtJ89USqrs4YjQ3RhjwHw4rgEAZuUpc5ynxIm7d+NzGADmRTIALmexWJxeG4bRqqwt3t7eioyMlJeXV6fqAwAAAAAA4M4YhqFr167J25uPCQGz4yiHywwaNEh9+vTR+fPnncpra2sVFHTr9QSteXl5ycfHx1XhAQAAAAAAAECvwRcIw2V8fHz005/+VF988YVT+d69exUTE+OmqAAAAAAAAACg9+HOALjUtGnT9PrrrysiIkIxMTHaunWrvv32W6Wmpro7NAAAAAAAAADoNUgGwKWefPJJ1dXVafXq1aqurlZYWJj+9Kc/adiwYe4ODQAAAGIaHmYAABDpSURBVAAAAAB6DYthGIa7gwAAAAAAAAAAAK7DdwYAAAAAAAAAAGByJAMAAAAAAAAAADA5kgEAAAAAAAAAAJgcyQAAAAAAAAAAAEyOZAAAAAAAAAAAACZHMgCAx8jPz1dKSopiYmI0ZswYzZo1S998841je3Nzs5YuXapJkyYpOjpaVqtVr7/+uqqqqtpsLykpSZ9//rkkqby8XM8//7yioqKUkJCglStXyjAMp/p2u10rVqzQ2LFjFRERoccff1wFBQWu63AvxBgD5sNxDQAwq47mOEnKy8vT+PHjFR0drbi4OE2dOlUHDx5ssz1XzXGeEicAwPW83R0AAHRWSUmJnnvuOUVGRqqlpUUrVqxQRkaGPvroI/n5+enKlSv66quvlJmZqR//+Me6ePGi3nrrLWVmZmrbtm1Obf3zn/9UfX29fv7zn6uhoUHp6emKj49XQUGBTp8+raysLPn5+Sk9Pd2xz8svv6za2lq9+eabuv/++3XhwgVdvXq1p38NpsYYA+bDcQ0AMKuO5jhJGjFihBYsWKDQ0FBduXJFGzduVHp6unbt2qXBgwc72nLlHOcpcQIAeoABAB6qtrbWCAsLM0pKStqtc/DgQSMsLMyorKx0Kl+5cqUxe/ZswzAMY8uWLUZsbKzR1NTk2J6fn29YrVbj2rVrhmEYxt/+9jcjNjbWqKur6/6OoF2MMWA+HNcAALPqzBx36dIlIywszNi7d69TeU/OcZ4SJwCg+/GYIAAe69KlS5KkgICAdus0NDTIYrFo4MCBTuVFRUV67LHHJEllZWWKi4uTj4+PY7vValV1dbUqKioc9SMiIrR27VolJCRo3LhxWrJkia5cudLd3cJNGGPAfDiuAQBm1dEcZ7fbtXXrVg0YMEDh4eFO23pyjvOUOAEA3Y/HBAHwSIZhyGazKTY2VmFhYW3WaWpq0rJlyzRx4kT5+/s7yquqqlReXq7ExERJ0vnz5zVs2DCnfYcMGeLYFhoaqrNnz+rLL79Uv379tGrVKtXV1SknJ0f19fWy2Wwu6mXvxhgD5sNxDQAwq9vNcX/961/161//Wt9//72Cg4O1fv16p0fv9OQc5ylxAgBcgzsDAHik3NxcHT9+XG+//Xab25ubm/XKK6/IMAz9/ve/d9r26aefKiYmRoGBgY4yi8XSZjs3yg3DkMVi0bJlyxQVFaXExERlZWXpgw8+4KoWF2GMAfPhuAYAmNXt5rj4+Hht375d7733nhISEjR37lzV1tY6tvfkHOcpcQIAXINkAACPs3DhQhUVFWnTpk0aOnRoq+3Nzc2aO3euKioqtH79eqcrSyXnW1slKSgoSDU1NU51bpz03riyJTg4WPfcc48GDBjgqDNy5EgZhqFz5851W99wHWMMmA/HNQDArDqa4/z8/PTAAw8oOjpab731lry9vVVQUODY3lNznKfECQBwHZIBADyGYRjKzc3Vzp07tWnTJoWGhraqc+PDpDNnzmjjxo0aNGiQ0/bGxkYVFxc7ncRGR0dr3759stvtjrI9e/YoJCREw4cPlyQ9/PDDqq6uVmNjo6POqVOn5OXl1eaJNLqGMQbMh+MaAGBWnZnj2tvvxvzVE3Ocp8QJAHA9kgEAPEZOTo4KCwu1fPly9e/fXzU1NaqpqXHcXnr16lXNmTNHR44c0bJly9TS0uKoc+ME9e9//7tGjBjhdAI8adIk+fj4KDs7W8ePH9euXbuUn5+vadOmOW5vnThxogIDA5Wdna2vv/5apaWlWrp0qVJSUuTr69vzvwyTYowB8+G4BgCYVUdz3OXLl/X222+rrKxMlZWVOnr0qObPn69z585p/PjxknpmjvOUOAEArmcxDMNwdxAA0Bnh4eFtlttsNiUnJ6uiosLpSpWbbd68WfHx8Xrttdd033336ZVXXnHaXl5ertzcXB06dEgBAQFKTU3VSy+95PQMzJMnT2rRokXav3+/AgMDNWHCBM2dO5eT2G7EGAPmw3ENADCrjua4pqYmzZs3TwcPHlRdXZ0CAwMVGRmpzMxMRUVFSVKPzHGeEicAwPVIBgDoNVpaWvTII49ozZo1jpNamAtjDJgPxzUAwKw8ZY7zlDgBAB3jMUEAeo36+nq98MILioyMdHcocBHGGDAfjmsAgFl5yhznKXECADrGnQEAAAAAAAAAAJgcdwYAAAAAAAAAAGByJAMAAAAAAAAAADA5kgEAAAAAAAAAAJgcyQAAHqO0tFQzZ86U1WpVeHi4du/e7bTdMAzl5eXJarUqKipKU6ZM0YkTJ27bZnFxsTIzM2W1WhUdHa2nnnpKhYWFrerZ7XatWLFCY8eOVUREhB5//HEVFBR0a//Q8RjfbMGCBQoPD9fGjRs7bLe8vFzPP/+8oqKilJCQoJUrV+rWr8wpKSlRcnKyIiMj9dhjj+ndd9+92+4AkJSfn6+UlBTFxMRozJgxmjVrlr755hunOjt37lRGRobi4+MVHh6uY8eOddhuU1OTsrKyNGnSJI0aNUqzZs1qVae4uFjh4eGt/p08ebLb+gcA6N1csUZxxRzXUZxdmYs7u5basmWLJkyYoKioKI0bN07bt2/vsG0AgGt4uzsAAOisy5cvKzw8XMnJyZo9e3ar7WvWrNGGDRu0ePFijRgxQn/84x81bdo0ffLJJ/L392+zzQMHDig8PFzTp09XUFCQPvvsM/3mN7+Rv7+/kpKSHPVefvll1dbW6s0339T999+vCxcu6OrVqy7ra2/V0RjfsHv3bh08eFAhISEdttnQ0KD09HTFx8eroKBAp0+fVlZWlvz8/JSeni5JOnv2rF588UU9++yzWrp0qfbv36+cnBwNHjxY48aN67b+Ab1RSUmJnnvuOUVGRqqlpUUrVqxQRkaGPvroI/n5+Um6fuzHxMRo/PjxeuONNzrVbktLi/r166cpU6Zox44dt6176zwwePDgrncIAICbuGKN4oo5rqM4uzIXd2Yt9c4772j58uVatGiRIiMjdejQIb3xxhsaOHCg03oLANAzSAYA8BiJiYlKTExsc5thGNq8ebNmzpypJ554QpK0ZMkSPfLII/rwww+Vmpra5n4zZ850ep2WlqY9e/Zo165djpPTzz//XKWlpdq9e7cCAwMlScOHD++mXuFmtxvjG6qqqpSbm6t169ZpxowZHbZZWFiopqYmLV68WD4+PgoLC9Pp06e1YcMGTZs2TRaLRe+9957uvfdezZ8/X5I0cuRIHT58WOvXrycZANyldevWOb222WwaM2aMjh49qri4OEnS008/LUmqqKjodLt+fn7KycmRJO3fv18XL15st+6QIUM0cODAO4wcAICOuWKN4oo5rqPz7K7MxZ1ZSxUWFmry5Ml68sknJUmhoaEqKyvTmjVrSAYAgBvwmCAAplBRUaGamhpZrVZHmY+Pj+Li4nTgwAFHWVZWlqZMmXLbti5duuT40F+SioqKFBERobVr1yohIUHjxo3TkiVLdOXKlW7vB27v2rVreu2115SRkaEf/ehHbda5dYzLysoUFxcnHx8fR5nValV1dbVjsVNWVqZHH33UqZ2EhAQdOXJEzc3NLugJ0HtdunRJkhQQEHBH+3Xm/bs9Tz/9tKxWq1544QX94x//6FIbAADcqe5co7SnJ+e4rqyl7Ha7+vXr51TH19dXhw8f5jwbANyAZAAAU6ipqZF0/cqYmwUFBen8+fOO18HBwbr33nvbbeeTTz7R4cOHlZyc7Cg7e/asvvzyS504cUKrVq3Sb3/7W+3YscNxtQ56zpo1a+Tt7a20tLR269w6xufPn1dQUJBTnRt/Jzf+Ntqrc/XqVdXV1XVX+ECvZxiGbDabYmNjFRYWdkf7dvT+3d4+CxcuVF5envLy8vTDH/5QU6dOVWlp6R21AwBAV3TXGqUt7pjjurKWslqtKigo0JEjR2QYhg4fPqz3339fzc3NnGcDgBvwmCAApmKxWJxe3/olsfPmzWt33+LiYmVnZ2vRokVOV50bhiGLxaJly5ZpwIABkq5fFTNnzhz97ne/k6+vbzf2AO05cuSINm/erG3btrUa55u1Ncbt1b+5vL2/ndv9LAB3Jjc3V8ePH9c777xzx/ve7v27PQ8++KAefPBBx+uYmBidO3dO69atczyiCAAAV7ubNUp73DHHdWUtNWvWLNXU1Gjy5MkyDENDhgzRM888o7Vr16pPnz4uiRMA0D7uDABgCsHBwZLkdIWNJNXW1ra64rstJSUlmjlzprKyshzPy7y57XvuuceRCJCuP1PeMAydO3fu7oNHp+zbt0+1tbUaO3asRo0apVGjRqmyslJLliy57fNGg4KCHFdl3VBbWyvpf1dptVXnwoUL8vb2drrNGUDXLVy4UEVFRdq0aZOGDh3qtjhGjx6tM2fOuO3nAwB6j7tdo9wpd81xt1tL+fr6ymazqaysTEVFRfrss880bNgw9e/fX4MGDerxWAGgtyMZAMAUhg8fruDgYH3xxReOMrvdrtLSUsXExNx23+LiYs2YMUOvvvqqJk+e3Gr7ww8/rOrqajU2NjrKTp06JS8vL7d+oNXbPPXUUyosLNT27dsd/0JCQpSRkaG1a9e2u190dLT27dsnu93uKNuzZ49CQkIcXwQdHR2tvXv3Ou23Z88eRUREqG/fvq7pENBLGIah3Nxc7dy5U5s2bVJoaKhb4zl27JjjwxkAAFzpbtYoXeGOOa6jtdQNffv21dChQ9WnTx99/PHHGjt2rLy8+EgKAHoajwkC4DEaGxv1r3/9y/G6oqJCx44dU0BAgO677z6lpaUpPz9fI0aM0AMPPKD8/Hz5+vpq4sSJjn2WL1+uqqoq/eEPf5D0v5PXtLQ0PfHEE46rw/v27eu4InzixIlavXq1srOzNWfOHNXV1Wnp0qVKSUnhEUHdrKMxvvXqob59+yooKMjpFulbx3jSpElatWqVsrOzNWPGDJ05c0b5+fl66aWXHLdsp6amasuWLbLZbPrFL36hAwcO6P3339fy5ct7oNeAueXk5OjDDz/U6tWr1b9/f8f77IABAxzvofX19fr2229VXV0t6XrCVbp+186NDzVuPbYl6euvv1Zzc7Pq6+vV2NioY8eOSZJ+8pOfSJI2btyo4cOH66GHHlJzc7MKCwu1Y8cO5eXl9UznAQCm54o1itT9c1xHcXZlLu7MWurUqVM6dOiQRo8erYsXL2rDhg06ceKEFi9e3PVfOgCgyyzGrQ+rA4D/U8XFxW1+cewzzzyjxYsXyzAMrVy5Ulu3btV3332n0aNHa8GCBU5fUpmVlaXKykr9+c9/drz+4IMPWrX5s5/9zFFHkk6ePKlFixZp//79CgwM1IQJEzR37lySAd2sozG+VVJSktLS0jR16lRH2a1jLEnl5eXKzc3VoUOHFBAQoNTUVKdkgHT99mabzaYTJ04oJCRE06dP1y9/+cvu7SDQC4WHh7dZbrPZHF8wuG3bNmVnZ7eq86tf/UqzZ8+W1PaxnZSUpMrKylb7lZeXS7r+peN/+ctfVFVVJV9fXz300EOaMWOGEhMT77pfAABIrlmjSN0/x3UUZ1fm4s6spU6ePKl58+bp1KlT8vb2Vnx8vF599VWni3kAAD2HZAAAAAAAAAAAACbHA9oAAAAAAAAAADA5kgEAAAAAAAAAAJgcyQAAAAAAAAAAAEyOZAAAAAAAAAAAACZHMgAAAAAAAAAAAJMjGQAAAAAAAAAAgMmRDAAAAAAAAAAAwORIBgAAAAAAAAAAYHIkAwAAAAAAAAAAMDmSAQAAAAAAAAAAmBzJAAAAAAAAAAAATO4/e6sVLkfj/FYAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "#| eval: false\n",
+ "from pheno_utils.timeseries_plots import TimeSeriesFigure\n",
+ "\n",
+ "g = TimeSeriesFigure(figsize=(14, 7))\n",
+ "\n",
+ "time_range = ('2020-06-22 06:00', '2020-06-23 15:00')\n",
+ "# Each call to the plot() methods adds a new time-synced subplot to the figure\n",
+ "g.plot(plot_nutrient_lollipop, diet_df, size_scale=15,\n",
+ " time_range=time_range,\n",
+ " name='diet_pie')\n",
+ "g.plot(plot_meals_hbars, diet_df,\n",
+ " time_range=time_range,\n",
+ " name='diet_meals', height=2)\n",
+ "g.plot(plot_nutrient_bars, diet_df,\n",
+ " time_range=time_range,\n",
+ " label=None, n_axes=2, nut_exclude=['sodium'],\n",
+ " name='diet_bars')\n",
+ "g.set_axis_padding(0.03)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#| hide\n",
+ "import nbdev; nbdev.nbdev_export()"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "python3",
+ "language": "python",
+ "name": "python3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/nbs/examples/cgm/cgm.parquet b/nbs/examples/cgm/cgm.parquet
index e65f5c5..1a59e82 100644
Binary files a/nbs/examples/cgm/cgm.parquet and b/nbs/examples/cgm/cgm.parquet differ
diff --git a/nbs/examples/diet_logging/diet_logging.parquet b/nbs/examples/diet_logging/diet_logging.parquet
index ae2d2b4..370e4ab 100644
Binary files a/nbs/examples/diet_logging/diet_logging.parquet and b/nbs/examples/diet_logging/diet_logging.parquet differ
diff --git a/nbs/examples/diet_logging/metadata/diet_logging_data_dictionary.csv b/nbs/examples/diet_logging/metadata/diet_logging_data_dictionary.csv
index fd2ea07..2611d14 100644
--- a/nbs/examples/diet_logging/metadata/diet_logging_data_dictionary.csv
+++ b/nbs/examples/diet_logging/metadata/diet_logging_data_dictionary.csv
@@ -1,19 +1,13 @@
tabular_field_name,field_string,description_string,parent_dataframe,relative_location,value_type,units,field_type,array,cohorts,data_type,debut,pandas_dtype,sampling_rate
collection_timestamp,Collection timestamp,Collection timestamp,,diet_logging/diet_logging.parquet,Time,Time,Data,Single,10K,Time Series,2019-01-29,"datetime64[ns, Asia/Jerusalem]",
-collection_date,Date,Datetime column relecting the time food item was logged,,diet_logging/diet_logging.parquet,Time,Time,Data,Single,10K,Time Series,2019-09-01,datetime64[ns],
food_id,Food ID,IDs in the diet logging app representing specific food ,,diet_logging/diet_logging.parquet,Categorical (single) ,None,Data,Single,10K,Time Series,2019-09-01,integer,
-logging_day,Logging day per participant,Integer indicating which day of logging period ,,diet_logging/diet_logging.parquet,Integer,None ,Data,Single,10K,Time Series,2019-09-01,float,
-weight,Weight,Weight of food item logged,,diet_logging/diet_logging.parquet,Continuous,g,Data,Single,10K,Time Series,2019-09-01,float,
short_food_name,Short food name,Classifcation of food item logged into a short food name category,,diet_logging/diet_logging.parquet,Categorical (single) ,None,Data,Single,10K,Time Series,2019-09-01,object,
food_category,Food category,Classifcation of food item logged into a food category,,diet_logging/diet_logging.parquet,Categorical (single) ,None,Data,Single,10K,Time Series,2019-09-01,object,
-product_name,Product name ,Product name of food logged,,diet_logging/diet_logging.parquet,Categorical (single) ,None,Data,Single,10K,Time Series,2019-09-01,object,
-calories,Calories,Calories of food item logged,,diet_logging/diet_logging.parquet,Continuous,kcal,Data,Single,10K,Time Series,2019-09-01,float,
+weight_g,Weight,Weight of food item logged,,diet_logging/diet_logging.parquet,Continuous,g,Data,Single,10K,Time Series,2019-09-01,float,
+calories_kcal,Calories,Calories of food item logged,,diet_logging/diet_logging.parquet,Continuous,kcal,Data,Single,10K,Time Series,2019-09-01,float,
carbohydrate_g,Carbohydrate intake per food logged,Carbohydrate intake per food logged,,diet_logging/diet_logging.parquet,Continuous,g,Data,Single,10K,Time Series,2019-09-01,float,
-llipid_g,Fat intake per food logged,Fat intake per food logged,,diet_logging/diet_logging.parquet,Continuous,g,Data,Single,10K,Time Series,2019-09-01,float,
+lipid_g,Fat intake per food logged,Fat intake per food logged,,diet_logging/diet_logging.parquet,Continuous,g,Data,Single,10K,Time Series,2019-09-01,float,
protein_g,Protein intake per food logged,Protein intake per food logged,,diet_logging/diet_logging.parquet,Continuous,g,Data,Single,10K,Time Series,2019-09-01,float,
-sodium_mg ,Sodium intake per food logged,Sodium intake per food logged,,diet_logging/diet_logging.parquet,Continuous,mg,Data,Single,10K,Time Series,2019-09-01,float,
+sodium_mg,Sodium intake per food logged,Sodium intake per food logged,,diet_logging/diet_logging.parquet,Continuous,mg,Data,Single,10K,Time Series,2019-09-01,float,
alcohol_g ,Alcohol intake per food logged,Alcohol intake per food logged,,diet_logging/diet_logging.parquet,Continuous,g,Data,Single,10K,Time Series,2019-09-01,float,
dietary_fiber_g,Dietary fiber intake per food logged,Dietary fiber intake per food logged,,diet_logging/diet_logging.parquet,Continuous,g,Data,Single,10K,Time Series,2019-09-01,float,
-local_timestamp,Local timestamp,Local timestamp of food logging,,diet_logging/diet_logging.parquet,Time,Time,Data,Single,10K,Time Series,2019-09-01,datetime64[ns],
-eaten_in_restaurant,Eaten at restaurant indication,Indication if food was eatn at home or at a restaurant,,diet_logging/diet_logging.parquet,Boolean,None,Data,Single,10K,Time Series,2019-09-01,bool,
-total_logging_days,Total number of days logged,Total number of days diet was logged per research stage,,diet_logging/diet_logging.parquet,Integer,None,Data,Single,10K,Time Series,2019-09-01,integer,
diff --git a/nbs/examples/sleep/metadata/sleep_data_dictionary.csv b/nbs/examples/sleep/metadata/sleep_data_dictionary.csv
index f5d6693..55c9018 100644
--- a/nbs/examples/sleep/metadata/sleep_data_dictionary.csv
+++ b/nbs/examples/sleep/metadata/sleep_data_dictionary.csv
@@ -1,3 +1,5 @@
-tabular_field_name,field_string,description_string,parent_dataframe,relative_location,value_type,units,sampling_rate,item_type,array,cohorts,field_type,debut,pandas_dtype
-ahi,AHI,AHI (Apnea-Hypopnea Index),,sleep/sleep.parquet,Continuous,Events / Hour,,Data,Multiple,10K,Continuous,2020-01-15,float64
-total_sleep_time,Total sleep time,Total sleep time,,sleep/sleep.parquet,Integer,Seconds,,Data,Multiple,10K,Continuous,2020-01-15,float64
+tabular_field_name,field_string,description_string,parent_dataframe,relative_location,units,sampling_rate,array,cohorts,field_type,debut,pandas_dtype
+ahi,AHI,AHI (Apnea-Hypopnea Index),,sleep/sleep.parquet,Events / Hour,,Multiple,10K,Continuous,2020-01-15,float
+total_sleep_time,Total sleep time,Total sleep time,,sleep/sleep.parquet,Seconds,,Multiple,10K,Continuous,2020-01-15,int
+channels_time_series,Channels time series,Sensor and derived channels time series parquet files,,sleep/sleep.parquet,,,Multiple,10K,Time series file (individual),2020-01-15,string
+events_time_series,Events time series,"Events during sleep derived from the raw channels, such as sleep stages, respiratory events, pulse rate events, and others",,sleep/sleep.parquet,,Data,Multiple,10K,Time series file (group),2020-01-15,string
\ No newline at end of file
diff --git a/nbs/examples/sleep/sleep.parquet b/nbs/examples/sleep/sleep.parquet
index 02a77e3..0b1d5f3 100644
Binary files a/nbs/examples/sleep/sleep.parquet and b/nbs/examples/sleep/sleep.parquet differ
diff --git a/nbs/examples/sleep/time_series/channels.parquet b/nbs/examples/sleep/time_series/channels.parquet
new file mode 100644
index 0000000..74c77e8
Binary files /dev/null and b/nbs/examples/sleep/time_series/channels.parquet differ
diff --git a/nbs/examples/sleep/time_series/events.parquet b/nbs/examples/sleep/time_series/events.parquet
new file mode 100644
index 0000000..2e91199
Binary files /dev/null and b/nbs/examples/sleep/time_series/events.parquet differ
diff --git a/nbs/sidebar.yml b/nbs/sidebar.yml
index 1213d18..15712ba 100644
--- a/nbs/sidebar.yml
+++ b/nbs/sidebar.yml
@@ -15,6 +15,7 @@ website:
- 01_basic_plots.ipynb
- 02_blandaltman_plots.ipynb
- 03_age_reference_plots.ipynb
+ - 15_timeseries_plots.ipynb
- 04_date_plots.ipynb
- 06_sleep_plots.ipynb
- 08_cgm_plots.ipynb
diff --git a/pheno_utils/cgm_plots.py b/pheno_utils/cgm_plots.py
index 87f6131..8b6e8f9 100644
--- a/pheno_utils/cgm_plots.py
+++ b/pheno_utils/cgm_plots.py
@@ -28,7 +28,7 @@ def __init__(
cgm_date_col: str = "collection_timestamp",
gluc_col: str = "glucose",
diet_date_col: str = "collection_timestamp",
- diet_text_col: str = "shortname_eng",
+ diet_text_col: str = "short_food_name",
ax: Optional[plt.Axes] = None,
smooth: bool = False,
sleep_tuples: Optional[List[Tuple[pd.Timestamp, pd.Timestamp]]] = None,
@@ -39,15 +39,15 @@ def __init__(
Args:
cgm_df (pd.DataFrame): DataFrame containing the glucose measurements.
diet_df (Optional[pd.DataFrame], optional): DataFrame containing the diet data. Defaults to None.
- cgm_date_col (str, optional): Name of the date column in cgm_df. Defaults to "Date".
+ cgm_date_col (str, optional): Name of the date column in cgm_df. Defaults to "collection_timestamp".
gluc_col (str, optional): Name of the glucose column in cgm_df. Defaults to "glucose".
- diet_date_col (str, optional): Name of the date column in diet_df. Defaults to "Date".
- diet_text_col (str, optional): Name of the text column in diet_df. Defaults to "shortname_eng".
+ diet_date_col (str, optional): Name of the date column in diet_df. Defaults to "collection_timestamp".
+ diet_text_col (str, optional): Name of the text column in diet_df. Defaults to "short_food_name".
ax (Optional[plt.Axes], optional): Matplotlib Axes object to plot on. Defaults to None.
smooth (bool, optional): Apply smoothing to the glucose curve. Defaults to False.
sleep_tuples (Optional[List[Tuple[pd.Timestamp, pd.Timestamp]]], optional): List of sleep start and end times. Defaults to None.
"""
- self.cgm_df = cgm_df
+ self.cgm_df = cgm_df.reset_index()
self.diet_df = diet_df
self.cgm_date_col = cgm_date_col
self.gluc_col = gluc_col
@@ -110,7 +110,7 @@ def plot_diet(self) -> None:
for i, (food_datetime, group) in enumerate(
self.diet_df.groupby(self.diet_date_col)
):
- food_str = "\n".join(group[self.diet_text_col])
+ food_str = "\n".join(group[self.diet_text_col].dropna())
txt_x = food_datetime - pd.to_timedelta(7.5, "m")
if i % 2 == 0:
diff --git a/pheno_utils/config.py b/pheno_utils/config.py
index 4e87367..469731c 100644
--- a/pheno_utils/config.py
+++ b/pheno_utils/config.py
@@ -1,11 +1,11 @@
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/00_config.ipynb.
# %% auto 0
-__all__ = ['REF_COLOR', 'FEMALE_COLOR', 'MALE_COLOR', 'ALL_COLOR', 'GLUC_COLOR', 'FOOD_COLOR', 'DATASETS_PATH', 'COHORT',
- 'EVENTS_DATASET', 'ERROR_ACTION', 'CONFIG_FILES', 'BULK_DATA_PATH', 'PREFERRED_LANGUAGE', 'config_found',
- 'DICT_PROPERTY_PATH', 'DATA_CODING_PATH', 'copy_tre_config', 'get_dictionary_properties_file_path',
- 'get_data_coding_file_path', 'generate_synthetic_data', 'generate_synthetic_data_like',
- 'generate_categorical_synthetic_data']
+__all__ = ['DEFAULT_PALETTE', 'REF_COLOR', 'FEMALE_COLOR', 'MALE_COLOR', 'ALL_COLOR', 'GLUC_COLOR', 'FOOD_COLOR', 'LEGEND_SHIFT',
+ 'TIME_FORMAT', 'DATASETS_PATH', 'COHORT', 'EVENTS_DATASET', 'ERROR_ACTION', 'CONFIG_FILES', 'BULK_DATA_PATH',
+ 'PREFERRED_LANGUAGE', 'config_found', 'DICT_PROPERTY_PATH', 'DATA_CODING_PATH', 'copy_tre_config',
+ 'get_dictionary_properties_file_path', 'get_data_coding_file_path', 'generate_synthetic_data',
+ 'generate_synthetic_data_like', 'generate_categorical_synthetic_data']
# %% ../nbs/00_config.ipynb 3
import os
@@ -16,6 +16,7 @@
from glob import glob
# %% ../nbs/00_config.ipynb 4
+DEFAULT_PALETTE = 'muted'
REF_COLOR = "k"
FEMALE_COLOR = "C1"
MALE_COLOR = "C0"
@@ -24,6 +25,9 @@
GLUC_COLOR = "C0"
FOOD_COLOR = "C1"
+LEGEND_SHIFT = (1.05, 1.05)
+TIME_FORMAT = '%d/%m\n%H:%M'
+
DATASETS_PATH = '/home/ec2-user/studies/hpp_datasets/'
COHORT = None
EVENTS_DATASET = 'events'
@@ -34,8 +38,6 @@
config_found = False
-
-
# %% ../nbs/00_config.ipynb 5
def copy_tre_config():
default_config_found = False
diff --git a/pheno_utils/diet_plots.py b/pheno_utils/diet_plots.py
new file mode 100644
index 0000000..1ca0022
--- /dev/null
+++ b/pheno_utils/diet_plots.py
@@ -0,0 +1,633 @@
+# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/16_diet_plots.ipynb.
+
+# %% auto 0
+__all__ = ['SHORT_FOOD_CATEGORIES', 'plot_nutrient_bars', 'plot_nutrient_lollipop', 'prepare_meals', 'extract_units',
+ 'draw_pie_chart', 'plot_meals_hbars', 'add_size_legend', 'plot_diet_cgm_sleep']
+
+# %% ../nbs/16_diet_plots.ipynb 3
+from typing import List, Tuple
+
+import pandas as pd
+import numpy as np
+
+import seaborn as sns
+import matplotlib.pyplot as plt
+import matplotlib.dates as mdates
+from matplotlib.ticker import FuncFormatter
+import matplotlib.patches as mpatches
+import matplotlib.lines as mlines
+import matplotlib.patches as Patch
+
+# %% ../nbs/16_diet_plots.ipynb 4
+from .timeseries_plots import format_timeseries, format_xticks, plot_events_bars
+from .config import DEFAULT_PALETTE, LEGEND_SHIFT
+
+
+def plot_nutrient_bars(
+ diet_log: pd.DataFrame,
+ x: str='collection_timestamp',
+ label: str='short_food_name',
+ participant_id: int=None,
+ array_index: int = None,
+ time_range: Tuple[str, str]=None,
+ meals: bool=True,
+ summary: bool=False,
+ nut_include: List[str]=None,
+ nut_exclude: List[str]=None,
+ agg_units: dict={'kcal': 'sum', 'g': 'sum', 'mg': 'sum'},
+ legend: bool=True,
+ bar_width=np.timedelta64(15, 'm'),
+ palette: str=DEFAULT_PALETTE,
+ alpha: float=0.7,
+ ax: plt.Axes=None,
+ figsize: Tuple[float, float]=(14, 3),
+):
+ """
+ Plot a stacked bar chart representing nutrient intake for each meal over time.
+
+ Args:
+ diet_log (pd.DataFrame): The dataframe containing the diet log data, with columns for timestamps, nutrients, and other measurements.
+ x (str): The name of the column in `diet_log` representing the x-axis variable, such as timestamps. Default is 'collection_timestamp'.
+ label (str): The name of the column in `diet_log` representing the labels for each meal. Default is 'short_food_name'.
+ participant_id (Optional[int]): The participant's ID to filter the diet log. If None, no filtering is done. Default is None.
+ array_index (Optional[int]): The array index to filter the diet log. If None, no filtering is done. Default is None.
+ time_range (Optional[Tuple[str, str]]): A tuple of strings representing the start and end dates for filtering the data. Format should be 'YYYY-MM-DD'. Default is None.
+ meals (bool): If True, includes individual meals in the plot. Default is True.
+ summary (bool): If True, includes a daily summary in the plot. Default is False.
+ nut_include (List[str]): A list of nutrients to include in the plot. Default is None.
+ nut_exclude (List[str]): A list of nutrients to exclude from the plot. Default is None.
+ agg_units (dict): A dictionary mapping nutrient units to aggregation functions. Only nutrients with units in this dictionary are plotted.
+ legend (bool): If True, includes a legend in the plot. Default is True.
+ bar_width (np.timedelta64): The width of the bars representing each meal on the time axis. Default is 15 minutes.
+ palette (str): The color palette to use for the stacked bars.
+ alpha (float): The transparency of the stacked bars. Default is 0.7.
+ ax (Optional[plt.Axes]): The Matplotlib axis on which to plot the bar chart. If None, a new axis is created. Default is None.
+ figsize (Tuple[float, float]): The size of the figure to create. Default is (14, 3).
+
+ Returns:
+ None: The function creates a stacked bar chart on the specified or newly created axis.
+ """
+ # Prepare the data for plotting
+ df, grouped_nutrients = prepare_meals(
+ diet_log,
+ participant_id=participant_id,
+ array_index=array_index,
+ time_range=time_range,
+ label=label,
+ return_meals=meals,
+ return_summary=summary,
+ y_include=nut_include,
+ y_exclude=nut_exclude,
+ agg_units=agg_units,
+ x_col=x,
+ )
+
+ if ax is None:
+ fig, ax = plt.subplots(
+ len(grouped_nutrients), 1,
+ figsize=(figsize[0], figsize[1] * len(grouped_nutrients)),
+ sharex=True)
+ if len(grouped_nutrients) == 1:
+ ax = [ax]
+
+ colors = sns.color_palette(
+ palette, sum([len(g) for g in grouped_nutrients.values()]))
+
+ # Calculate the width in time units
+ bar_width_in_days = bar_width / np.timedelta64(1, 'D')
+
+ unit_list = [g for g in grouped_nutrients if g != 'kcal']
+ if 'kcal' in grouped_nutrients:
+ # kcal is last to keep colours synced with the lollipop plot
+ unit_list.append('kcal')
+
+ # Stacked bar plots for grouped nutrients
+ c = 0
+ for idx, unit in enumerate(unit_list):
+ bottom = pd.Series([0] * len(df))
+ for nut in grouped_nutrients[unit]:
+ if nut in ['weight_g']:
+ continue
+ ax[idx].bar(
+ df[x], df[nut], bottom=bottom, width=bar_width_in_days,
+ color=colors[c], alpha=alpha, label=nut)
+ bottom += df[nut]
+ c += 1
+ ax[idx].set_ylabel(f'Nutrients ({unit})', rotation=0, horizontalalignment='right')
+ if legend:
+ ax[idx].legend(loc='upper left', bbox_to_anchor=LEGEND_SHIFT)
+ ax[idx].grid(True)
+
+ # Set x-tick labels for the bottom and top axes
+ format_xticks(ax[-1], df[x])
+ if label is not None:
+ secax = ax[0].secondary_xaxis('top')
+ secax.set_xticks(df[x])
+ secax.set_xticklabels(df[label], ha='center', fontsize=9)
+
+ return ax
+
+
+def plot_nutrient_lollipop(
+ diet_log: pd.DataFrame,
+ x: str='collection_timestamp',
+ y: str='calories_kcal',
+ size: str='total_g',
+ label: str='short_food_name',
+ participant_id: int=None,
+ array_index: int=None,
+ time_range: Tuple[str, str]=None,
+ meals: bool=True,
+ summary: bool=False,
+ nut_include: List[str]=None,
+ nut_exclude: List[str]=None,
+ legend: bool=True,
+ size_scale: float=5,
+ palette: str=DEFAULT_PALETTE,
+ alpha: float=0.7,
+ ax: plt.Axes=None,
+ figsize: Tuple[float, float] = (12, 3),
+):
+ """
+ Plot a lollipop chart with pie charts representing nutrient composition for each meal.
+
+ NOTE: The y-axis is scaled to match the units of the x-axis, to avoid distortion of the pie charts.
+ Due to scaling, if you intend to change `xlim` after plotting, you must also provide `date_range`.
+ Use the `second_y` of g.plot() option to plot it with other y-axis data.
+
+ Args:
+ diet_log (pd.DataFrame): The dataframe containing the diet log data, with columns for timestamps, nutrients, and other measurements.
+ x (str): The name of the column in `diet_log` representing the x-axis variable, such as timestamps. Default is 'collection_timestamp'.
+ y (str): The name of the column in `diet_log` representing the y-axis variable, such as calories. Default is 'calories_kcal'.
+ size (str): The name of the column in `diet_log` representing the size of the pie charts. Default is 'total_g'.
+ label (str): The name of the column in `diet_log` representing the labels for each meal. Default is 'short_food_name'.
+ participant_id (Optional[int]): The participant's ID to filter the diet log. If None, no filtering is done. Default is None.
+ time_range (Optional[Tuple[str, str]]): A tuple of strings representing the start and end dates for filtering the data. Format should be 'YYYY-MM-DD'. Default is None.
+ meals (bool): If True, includes individual meals in the plot. Default is True.
+ summary (bool): If True, includes a daily summary in the plot. Default is False.
+ nut_include (List[str]): A list of nutrients to include in the plot. Default is None.
+ nut_exclude (List[str]): A list of nutrients to exclude from the plot. Default is None.
+ legend (bool): If True, includes a legend in the plot. Default is True.
+ size_scale (float): The scaling factor for the size of the pie charts. Default is 5.
+ palette (str): The color palette to use for the pie slices. Default is DEFAULT_PALETTTE.
+ alpha (float): The transparency of the pie slices. Default is 0.7.
+ ax (Optional[plt.Axes]): The Matplotlib axis on which to plot the lollipop chart. If None, a new axis is created. Default is None.
+ figsize (Tuple[float, float]): The size of the figure to create. Default is (12, 6).
+
+ Returns:
+ None: The function creates a lollipop plot with pie charts on the specified or newly created axis.
+ """
+ # Prepare the data for plotting
+ df, grouped_nutrients = prepare_meals(
+ diet_log,
+ participant_id=participant_id,
+ array_index=array_index,
+ time_range=time_range,
+ return_meals=meals,
+ return_summary=summary,
+ y_include=nut_include,
+ y_exclude=nut_exclude,
+ x_col=x,
+ )
+
+ if ax is None:
+ fig, ax = plt.subplots(nrows=1, ncols=1, figsize=figsize)
+
+ # Convert nutrients in mg to grams
+ for nut in grouped_nutrients['mg']:
+ df[nut.replace('_mg', '_g')] = df[nut] / 1000
+ grouped_nutrients['g'] += [nut.replace('_mg', '_g')]
+
+ pie_nuts = [nut for nut in grouped_nutrients['g']
+ if nut not in ['weight_g']]
+ df['total_g'] = df[pie_nuts].sum(axis=1)
+
+ # Calculate unknown component and ensure all values are non-negative
+ df['other_g'] = (df['weight_g'] - df[pie_nuts].sum(axis=1)).clip(lower=0)
+ # pie_nuts += ['other_g']
+
+ # Pre-set the x-axis limits based on the range of timestamps
+ if time_range is None:
+ min_x = mdates.date2num(df[x].min())
+ max_x = mdates.date2num(df[x].max())
+ else:
+ min_x = mdates.date2num(pd.to_datetime(time_range[0]))
+ max_x = mdates.date2num(pd.to_datetime(time_range[1]))
+
+ # Pre-set the y-axis limits based on the range of the y-axis column
+ min_y = 0 # df[y_col].min()
+ max_y = df[y].max()
+
+ # Calculate the aspect ratio between the x and y axes
+ # This is necessary to avoid distortion of the (circular) pie charts
+ x_range = max_x - min_x
+ y_range = max_y - min_y
+ aspect_ratio = x_range / y_range
+ y_delta = 0.1 * y_range
+
+ # Scale the y-axis to match the aspect ratio of the x-axis
+ ax.set_xlim(min_x, max_x)
+ ax.set_ylim(min_y * aspect_ratio, (max_y + y_delta) * aspect_ratio)
+
+ # Custom formatter to adjust the y-ticks back to the original scale
+ def ytick_formatter(y, pos):
+ return f'{y / aspect_ratio:.0f}'
+
+ # Plotting the lollipop plot with pies using absolute figure coordinates
+ for idx, row in df.iterrows():
+ # Pie chart parameters
+ size_value = np.sqrt(row[size]) * aspect_ratio * size_scale
+ position = mdates.date2num(row[x])
+ y_value = row[y] * aspect_ratio # Scale y-value
+
+ # Plot the stem (lollipop stick)
+ ax.plot([position, position], [0, y_value], color='gray', lw=1, zorder=1)
+
+ # Plot the pie chart in figure coordinates (no distortion)
+ wedges = draw_pie_chart(ax, position, y_value, row[pie_nuts].fillna(0.).values, size_value, palette, alpha)
+
+ if legend:
+ # Create a custom legend
+ ax.legend(handles=wedges, labels= pie_nuts, loc='upper left', bbox_to_anchor=LEGEND_SHIFT)
+
+ # Format x-axis to display dates properly
+ ax.set_ylabel(y.replace('_', ' ').title(), rotation=0, horizontalalignment='right')
+ ax.grid(True)
+
+ # Set y-ticks and x-ticks
+ ax.yaxis.set_major_formatter(FuncFormatter(ytick_formatter))
+ ylim = ax.get_ylim()
+ yticks = np.arange(0, ylim[1] / aspect_ratio, 100, dtype=int)
+ ax.set_yticks(yticks * aspect_ratio)
+ ax.set_yticklabels(yticks)
+
+ format_xticks(ax, df[x])
+ if label is not None:
+ secax = ax.secondary_xaxis('top')
+ secax.set_xticks(df[x])
+ secax.set_xticklabels(df[label], ha='center', fontsize=9)
+
+ return ax
+
+
+def prepare_meals(
+ diet_log: pd.DataFrame,
+ participant_id: int=None,
+ array_index: int=None,
+ time_range: Tuple[str, str]=None,
+ label: str='short_food_name',
+ return_meals: bool = True,
+ return_summary: bool = False,
+ y_include: List[str] = None,
+ y_exclude: List[str] = None,
+ agg_units: dict={'kcal': 'sum', 'g': 'sum', 'mg': 'sum', 'unknown': 'first'},
+ x_col: str='collection_timestamp'
+) -> pd.DataFrame:
+ """
+ Prepare the diet log data for plotting meals and/or daily summaries.
+
+ Args:
+ diet_log (pd.DataFrame): The dataframe containing the diet log data, with columns for timestamps, nutrients, and other measurements.
+ participant_id (Optional[int]): The participant's ID to filter the diet log. If None, no filtering is done. Default is None.
+ array_index (Optional[int]): The array index to filter the diet log. If None, no filtering is done. Default is None.
+ time_range (Optional[Tuple[str, str]]): A tuple of strings representing the start and end dates for filtering the data. Format should be 'YYYY-MM-DD'. Default is None.
+ label (str): The name of the column in `diet_log` representing the labels for each meal. Default is 'short_food_name'.
+ return_meals (bool): If True, includes individual meals in the plot. Default is True.
+ return_summary (bool): If True, includes a daily summary in the plot. Default is False.
+ y_include (List[str]): A list of nutrients (regex) to include in the plot. Default is None.
+ y_exclude (List[str]): A list of nutrients (regex) to exclude from the plot. Default is None.
+ agg_units (dict): A dictionary mapping nutrient units to aggregation functions.
+ x_col (str): The name of the column in `diet_log` representing the x-axis variable, such as timestamps. Default is 'collection_timestamp'.
+
+ Returns:
+ pd.DataFrame: A dataframe containing the prepared data for plotting.
+ """
+ diet_log = format_timeseries(
+ diet_log, participant_id, array_index, time_range,
+ x_start=x_col, x_end=x_col, unique=True)
+
+ units = extract_units(diet_log.columns)
+ grouped_nutrients = {}
+ import re # Add this line to import the re module
+
+ agg_dict = {}
+ for nut, unit in units.items():
+ if unit not in agg_units:
+ continue
+ if y_include is not None and not any([re.match(inc, nut) for inc in y_include]):
+ continue
+ if y_exclude is not None and any([re.match(exc, nut) for exc in y_exclude]):
+ continue
+ if unit not in grouped_nutrients:
+ grouped_nutrients[unit] = []
+ grouped_nutrients[unit].append(nut)
+ agg_dict[nut] = agg_units[unit]
+ nut_list = list(agg_dict.keys())
+ if label is not None:
+ agg_dict[label] = lambda x: '\n'.join(x)
+
+ df = diet_log\
+ .dropna(subset=['short_food_name'])\
+ .drop_duplicates()\
+ .groupby([x_col])\
+ .agg(agg_dict)\
+ .reset_index()
+
+ if return_summary:
+ # Add daily summary by grouping by date and summing up the nutrients
+ daily_df = df.groupby(df[x_col].dt.date)[nut_list]\
+ .sum().reset_index()
+ if label is not None:
+ daily_df[label] = daily_df[x_col].astype('string') + '\nDaily Summary'
+ daily_df[x_col] = pd.to_datetime(daily_df[x_col] + pd.Timedelta(hours=24))
+ if time_range is not None:
+ daily_df = daily_df[(time_range[0] <= daily_df[x_col]) & (daily_df[x_col] <= time_range[1])]
+ if return_meals:
+ # God knows why, but the two refuse to concat without this
+ df = pd.DataFrame(np.vstack([df, daily_df]), columns=df.columns)
+ else:
+ df = daily_df
+
+ return df, grouped_nutrients
+
+
+def extract_units(column_names: List[str]) -> dict:
+ units = {}
+ for col in column_names:
+ if '_' in col:
+ unit = col.split('_')[-1]
+ units[col] = unit
+ else:
+ units[col] = 'unknown'
+ return units
+
+
+def draw_pie_chart(
+ ax: plt.Axes,
+ x: float,
+ y: float,
+ data: List[float],
+ size: float,
+ palette: str = DEFAULT_PALETTE,
+ alpha: float = 0.7,
+):
+ """
+ Draw a pie chart as an inset (in absolute figure coordinates) within the given axes
+ at the specified data coordinates.
+ What this solves is the issue of y-axis and x-axis scaling being different, which
+ distorts the pie chart when drawn directly on the axes.
+
+ Args:
+ ax (plt.Axes): The axis on which to draw the pie chart.
+ x (float): The x-coordinate in data coordinates where the pie chart's center will be placed.
+ y (float): The y-coordinate in data coordinates where the pie chart's center will be placed.
+ data (List[float]): The data values to be represented in the pie chart.
+ size (float): The size (radius) of the pie chart in axes-relative coordinates.
+ palette (str): The color palette to use for the pie slices.
+
+ Returns:
+ List[plt.Patch]: A list of wedge objects representing the pie chart slices.
+ """
+ # Convert the position from data coordinates to axes coordinates
+ axes_coords = ax.transData.transform((x, y))
+ axes_coords = ax.transAxes.inverted().transform(axes_coords)
+
+ # Create a new inset axis to draw the pie, using axes-relative coordinates
+ inset_ax = ax.inset_axes([axes_coords[0] - size, axes_coords[1] - size, 2 * size, 2 * size])
+
+ # Plot the pie chart using the calculated position and scaled radius
+ colors = [(r, g, b, alpha) for r, g, b in sns.color_palette(palette, len(data))]
+ wedges, _ = inset_ax.pie(data, radius=1, startangle=90, wedgeprops=dict(edgecolor='none'), normalize=True,
+ colors=colors)
+
+ # Hide the axes for the inset (pie chart)
+ inset_ax.set_axis_off()
+
+ return wedges
+
+
+# %% ../nbs/16_diet_plots.ipynb 5
+SHORT_FOOD_CATEGORIES = {
+ 'beef, veal, lamb, and other meat products': 'meat products',
+ 'milk, cream cheese and yogurts': 'milk products',
+ 'nuts, seeds, and products': 'nuts and seeds',
+ 'eggs and their products': 'eggs',
+ 'pulses and products': 'pulses',
+ 'fruit juices and soft drinks': 'juices and soft drinks',
+ 'low calories and diet drinks': 'low cal. drinks',
+ 'poultry and its products': 'poultry',
+ 'pasta, grains and side dishes': 'grains',
+ 'industrialized vegetarian food ready to eat': 'industrialized veg.',
+}
+
+def plot_meals_hbars(
+ diet_log: pd.DataFrame,
+ x: str='collection_timestamp',
+ y: str='short_food_category',
+ size: str='weight_g',
+ hue: str='short_food_category',
+ participant_id: int=None,
+ array_index: int=None,
+ time_range: Tuple[str, str]=None,
+ y_include: List[str] = None,
+ y_exclude: List[str] = None,
+ rename_categories: dict=SHORT_FOOD_CATEGORIES,
+ legend: bool=True,
+ size_legend: List[int]=[100, 200, 500],
+ size_scale: float=5,
+ palette: str=DEFAULT_PALETTE,
+ alpha: float=0.7,
+ ax: plt.Axes=None,
+ figsize: Tuple[float, float] = (12, 6),
+):
+ """
+ Plot a diet chart with bars representing meals and their size over time.
+
+ Args:
+ diet_log (pd.DataFrame): The dataframe containing the diet log data, with columns for timestamps, nutrients, and other measurements.
+ x (str): The name of the column in `diet_log` representing the x-axis variable, such as timestamps. Default is 'collection_timestamp'.
+ y (str): The name of the column in `diet_log` representing the y-axis variable, such as food categories. Default is 'short_food_category'.
+ size (str): The name of the column in `diet_log` representing the size of the bars. Default is 'weight_g'.
+ hue (str): The name of the column in `diet_log` representing the color of the bars. Default is 'short_food_category'.
+ participant_id (Optional[int]): The participant's ID to filter the diet log. If None, no filtering is done. Default is None.
+ time_range (Optional[Tuple[str, str]]): A tuple of strings representing the start and end dates for filtering the data. Format should be 'YYYY-MM-DD'. Default is None.
+ y_include (List[str]): A list of strings representing the categories to include in the plot. Default is None.
+ y_exclude (List[str]): A list of strings representing the categories to exclude from the plot. Default is None.
+ rename_categories (dict): A dictionary mapping original food categories to shorter names. Default is SHORT_FOOD_CATEGORIES.
+ legend (bool): If True, includes a legend in the plot. Default is True.
+ size_legend (List[int]): A list of integers representing the sizes to include in the size legend. Default is [100, 200, 500].
+ size_scale (float): The scaling factor for the size of the bars. Default is 5.
+ palette (str): The palette to use for the bars.
+ alpha (float): The transparency of the bars. Default is 0.7.
+ ax (Optional[plt.Axes]): The Matplotlib axis on which to plot the lollipop chart. If None, a new axis is created. Default is None.
+ figsize (Tuple[float, float]): The size of the figure to create. Default is (12, 6).
+ """
+ diet_log = format_timeseries(
+ diet_log, participant_id, array_index,
+ time_range, x_start=x, x_end=x, unique=True)
+
+ diet_log['event_end'] = diet_log[x] \
+ + size_scale * pd.to_timedelta(diet_log[size], unit='s')
+
+ # Categories
+ diet_log['short_food_category'] = diet_log['food_category'].str.lower()
+ for s, t in rename_categories.items():
+ diet_log['short_food_category'] = diet_log['short_food_category'].str.replace(s, t, regex=False)
+ diet_log['short_food_category'] = diet_log['short_food_category']\
+ .str.replace(' and ', ' & ', regex=False)\
+ .str.replace('_wholewheat', ' (whole/w)', regex=False)
+
+ # User events plot to plot meals
+ ax = plot_events_bars(
+ diet_log,
+ x_start=x, x_end='event_end',
+ y=y, hue=hue,
+ y_include=y_include, y_exclude=y_exclude, alpha=alpha,
+ ax=ax, figsize=figsize, palette=palette, legend=legend)
+
+ format_xticks(ax, diet_log[x].drop_duplicates())
+
+ add_size_legend(ax, size_legend, size_scale, alpha)
+
+ return ax
+
+
+def add_size_legend(ax: plt.Axes, sizes: List[int], size_scale: float, alpha: float, shift: int=0):
+ """
+ Add a size legend to a plot_meals_hbars plot using broken_barh.
+ """
+ if len(sizes) == 0:
+ return
+
+ # Manually add size legend using broken_barh
+ sec2day = 1 / (60 * 60 * 24) # Convert seconds to days
+ size_durations = [
+ s * size_scale * sec2day
+ for s in sizes]
+ max_duration = max(size_durations)
+
+ # Calculate the xlim to place the legend bars right at the end
+ xlim = ax.get_xlim() # These are in days
+ y_start_legend = ax.get_ylim()[0] - 1 - shift
+ x_bar_start = \
+ xlim[1] - \
+ 1.5 * max_duration
+
+ # Add a bounding box around the text and bars
+ ax.add_patch(mpatches.Rectangle(
+ (x_bar_start - 1.5*(max_duration + 10 * sec2day), y_start_legend - len(sizes) + 0.25),
+ 3 * (max_duration + 10 * sec2day), len(sizes) + 0.5,
+ edgecolor='gray', facecolor='white', lw=1))
+
+ for i, (s, duration) in enumerate(zip(sizes, size_durations)):
+ # Plot the bar
+ ax.broken_barh(
+ xranges=[(x_bar_start, duration)],
+ yrange=(y_start_legend - i - 0.4, 0.8),
+ facecolors='gray', alpha=alpha
+ )
+
+ # Add text next to the bar
+ ax.annotate(f'{s}g',
+ (x_bar_start - 10 * sec2day, y_start_legend - i),
+ va='center', ha='right', fontsize=10)
+
+# %% ../nbs/16_diet_plots.ipynb 6
+from .timeseries_plots import TimeSeriesFigure, plot_events_fill
+from .sleep_plots import plot_sleep_channels, get_sleep_period
+
+def plot_diet_cgm_sleep(
+ diet: pd.DataFrame=None,
+ cgm: pd.DataFrame=None,
+ sleep_events: pd.DataFrame=None,
+ sleep_channels: pd.DataFrame=None,
+ cgm_grid: List[int] = [0, 54, 70, 100, 140, 180],
+ channel_filter: List[str]=['heart_rate', 'actigraph', 'spo2'],
+ participant_id=None,
+ array_index=None,
+ time_range: Tuple[str, str]=None,
+ figsize=(14, 10),
+ nutrient_kws: dict={},
+ meals_kws: dict={},
+ cgm_kws: dict={},
+ events_kws: dict={},
+ channels_kws: dict={},
+) -> TimeSeriesFigure:
+ """
+ Plot diet, CGM and sleep data together.
+
+ Arg:
+ diet (pd.DataFrame): Diet logging data. Set to None to remove from figure.
+ cgm (pd.DataFrame): CGM data. Set to None to remove from figure.
+ sleep_events (pd.DataFrame): Sleep events data. Set to None to remove from figure.
+ sleep_channels (pd.DataFrame): Sleep channels data. Set to None to remove from figure.
+ cgm_grid (List[int]): CGM grid lines. Default: [0, 54, 70, 100, 140, 180].
+ channel_filter (List[str]): Which sleep channels to include in the plot. Default: ['heart_rate', 'actigraph', 'spo2'].
+ participant_id (int): Participant ID.
+ array_index (int): Array index.
+ time_range (Tuple[str, str]): Time range to plot.
+ figsize (Tuple[int, int]): Figure size.
+ nutrient_kws (dict): Keyword arguments for diet nutrients lollipop plot.
+ meals_kws (dict): Keyword arguments for diet meals plot.
+ cgm_kws (dict): Keyword arguments for CGM plot.
+ events_kws (dict): Keyword arguments for sleep events plot.
+ channels_kws (dict): Keyword arguments for sleep channels plot.
+
+ Returns:
+ TimeSeriesFigure: Plot.
+ """
+ g = TimeSeriesFigure(figsize=figsize)
+
+ # Add diet
+ if diet is not None:
+ g.plot(plot_nutrient_lollipop, diet,
+ second_y=True if cgm is not None else False,
+ participant_id=participant_id, array_index=array_index, time_range=time_range,
+ size_scale=10, name='diet_glucose', height=1.5, **nutrient_kws)
+ g.plot(plot_meals_hbars, diet,
+ participant_id=participant_id, array_index=array_index, time_range=time_range,
+ name='diet_bars', sharex='diet_glucose', height=3, **meals_kws)
+
+ # Add CGM
+ if cgm is not None:
+ if diet is None:
+ g.add_axes(name='diet_glucose')
+ cgm = format_timeseries(
+ cgm,
+ participant_id=participant_id, array_index=array_index, time_range=time_range,
+ )
+ ax = g.get_axes('diet_glucose', squeeze=True)
+ ax.plot(cgm['collection_timestamp'], cgm['glucose'], label='glucose', color='#4c72b0', **cgm_kws)
+ ax.scatter(cgm['collection_timestamp'], cgm['glucose'], s=10, color='#4c72b0', **cgm_kws)
+ ax.set_ylabel('Glucose', rotation=0, horizontalalignment='right')
+ ax.set_yticks(cgm_grid)
+ ax.yaxis.grid(True)
+
+ # Add sleep
+ if sleep_channels is not None:
+ plot_sleep_channels(
+ sleep_channels,
+ x='collection_timestamp', y='values', row='source', hue=None,
+ participant_id=participant_id, array_index=array_index, time_range=time_range,
+ y_include=channel_filter,
+ fig=g, height=1, **channels_kws,
+ )
+ if sleep_events is not None:
+ g.plot(plot_events_fill, sleep_events,
+ participant_id=participant_id, array_index=array_index, time_range=time_range,
+ y_include=["Wake", "REM", "Light Sleep", "Deep Sleep", "Sleep"],
+ hue='event', ax=['sleep_channels'], sharex='sleep_channels', alpha=0.3, **events_kws)
+ if cgm is not None or diet is not None:
+ g.plot(plot_events_fill, get_sleep_period(sleep_events),
+ participant_id=participant_id, array_index=array_index, time_range=time_range,
+ y_include=["Wake", "REM", "Light Sleep", "Deep Sleep", "Sleep"], legend=False,
+ hue=None, palette='gray', label='event',
+ ax=['diet_glucose'], sharex='sleep_channels', alpha=0.3, **events_kws)
+
+ # Tidy up
+ g.set_axis_padding(0.03)
+ if time_range is not None:
+ g.set_time_limits(*time_range)
+ g.set_periodic_ticks('2H', ax='sleep_channels')
+
+ return g
diff --git a/pheno_utils/sleep_plots.py b/pheno_utils/sleep_plots.py
index c6411f8..50029ae 100644
--- a/pheno_utils/sleep_plots.py
+++ b/pheno_utils/sleep_plots.py
@@ -1,18 +1,17 @@
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/06_sleep_plots.ipynb.
# %% auto 0
-__all__ = ['CHANNELS', 'DEFAULT_CHANNELS', 'COLOR_GROUPS', 'ENUMS', 'CHANNEL_LIMS', 'plot_sleep', 'plot_events', 'plot_channels',
- 'format_xticks', 'get_legend_colors']
+__all__ = ['CHANNELS', 'DEFAULT_CHANNELS', 'COLOR_GROUPS', 'ENUMS', 'CHANNEL_LIMS', 'plot_sleep', 'plot_sleep_channels',
+ 'get_channels_colors', 'get_sleep_period']
# %% ../nbs/06_sleep_plots.ipynb 3
-from typing import Iterable, Optional
+from typing import Iterable, Tuple, List
-import numpy as np
import pandas as pd
-import seaborn as sns
import matplotlib.pyplot as plt
-import matplotlib.dates as mdates
+
+from .timeseries_plots import TimeSeriesFigure, plot_events_bars, get_events_period, format_xticks, prep_to_plot_timeseries, DEFAULT_PALETTE
# %% ../nbs/06_sleep_plots.ipynb 4
CHANNELS = {
@@ -32,6 +31,7 @@
DEFAULT_CHANNELS = ['actigraph', 'pat_infra', 'body_position', 'snore_db', 'heart_rate', 'spo2']
+# Color groups are designed to match events and raw channels
COLOR_GROUPS= {
'actigraph': ['actigraph', 'sleep_stage'],
'general': ['body_position'],
@@ -48,262 +48,197 @@
CHANNEL_LIMS = {'spo2': [0, 100]}
# %% ../nbs/06_sleep_plots.ipynb 5
-def plot_sleep(events: pd.DataFrame, channels: pd.DataFrame,
- array_index: Optional[int] = None,
- trim_to_events: Optional[bool] = True,
- add_events: Optional[pd.DataFrame] = None,
- event_filter: Optional[Iterable[str]] = None,
- channel_filter: Optional[Iterable[str]] = DEFAULT_CHANNELS,
- event_height: float=2, channel_height: float=0.45, width: float=10, aspect: float=0.2,
- style: str='whitegrid',
- xlim: Iterable[float]=None, **kwargs):
+def plot_sleep(
+ events: pd.DataFrame,
+ channels: pd.DataFrame,
+ participant_id: int=None,
+ array_index: int=None,
+ time_range: Tuple[str, str]=None,
+ event_filter: Iterable[str]=None,
+ channel_filter: Iterable[str]=DEFAULT_CHANNELS,
+ event_height: float=1,
+ channel_height: float=0.5,
+ padding: float=-0.02,
+ figsize: Tuple[float, float]=None,
+ palette: str=DEFAULT_PALETTE,
+) -> TimeSeriesFigure:
"""
Plot sleep events and channels data.
Args:
-
- events (pd.DataFrame): A pandas dataframe containing sleep events data.
- channels (pd.DataFrame): A pandas dataframe containing raw channels data.
- array_index (int, optional): The index of the array. Defaults to None.
- trim_to_events (bool, optional): Whether to trim the plot to the start and end of the events. Defaults to True.
- add_events (pd.DataFrame, optional): Additional events data to include in the plot. Defaults to None.
- event_filter (Iterable[str], optional): A list of events to include in the plot. Defaults to None.
- channel_filter (Iterable[str], optional): A list of channels to include in the plot. Defaults to DEFAULT_CHANNELS.
- event_height (float, optional): The height of the event plot in inches. Defaults to 2.
- channel_height (float, optional): The height of each channel plot in inches. Defaults to 0.45.
- width (float, optional): The width of the plot in inches. Defaults to 10.
- aspect (float, optional): The aspect ratio of the plot. Defaults to 0.2.
- style (str, optional): The seaborn style to use. Defaults to 'whitegrid'.
- xlim (List[float], optional): The x-axis limits of the plot. Defaults to None.
- **kwargs: Additional arguments to be passed to plot_channels().
+ events (pd.DataFrame): The sleep events dataframe.
+ channels (pd.DataFrame): The sleep channels dataframe.
+ participant_id (int): The participant id to filter the data.
+ array_index (int): The array index to filter the data.
+ time_range (Tuple[str, str]): The time range to filter the data.
+ event_filter (Iterable[str]): The events to include in the plot.
+ channel_filter (Iterable[str]): The channels to include in the plot.
+ event_height (float): The relative height of the events subplot.
+ channel_height (float): The relative height of each channel's subplot.
+ padding (float): The padding between subplots.
+ figsize (Tuple[float, float]): The size of the figure.
+ palette (str): The color palette to use.
Returns:
-
- None
+ TimeSeriesFigure: The figure with the sleep events and channels data.
"""
- nC = min([len(channel_filter), channels.index.get_level_values('source').nunique()])
- if xlim is not None:
- trim_to_events = True
-
- fig, ax = plt.subplots(nrows=nC+1, ncols=1, sharex=True, squeeze=False,
- height_ratios=nC*[channel_height] + [event_height],
- figsize=(width, width*aspect*(nC*channel_height + event_height)),
- facecolor='white')
-
- with sns.axes_style(style):
- try:
- plot_channels(channels, array_index=array_index, y_filter=channel_filter, ax=ax[:-1],
- **kwargs)
- plot_events(events, array_index=array_index, y_include=event_filter, y_exclude=['Gross Trunc'],
- ax=ax[-1,0],
- set_xlim=trim_to_events, add_events=add_events,
- xlim=xlim)
- except Exception as err:
- print(f'plot_channels failed due to:\n{err}')
- fig.clf()
- plot_events(events, array_index, y_include=event_filter, y_exclude=['Gross Trunc'],
- set_xlim=trim_to_events, add_events=add_events,
- xlim=xlim)
-
-
-def plot_events(events: pd.DataFrame, array_index: Optional[int]=None,
- x_start: str='collection_timestamp', x_end: str='event_end',
- y: str='event', color: str='channel', cmap: str='muted', set_xlim: bool=True,
- xlim: Iterable[float]=None, figsize: Iterable[float]=[10, 4],
- y_include: Optional[Iterable[str]] = None,
- y_exclude: Optional[Iterable[str]] = None,
- ax: plt.Axes=None,
- add_events: Optional[pd.DataFrame] = None,
- rename_channels: dict={'PAT Amplitude': 'PAT', 'PulseRate': 'Heart Rate'},
- rename_events: dict={}):
- """ plot an events timeline for a given participant and array_index """
- # slice to night
- if (array_index is not None) and (('array_index' in events.columns) or ('array_index' in events.index.names)):
- plot_df = events.query('array_index == @array_index').copy()
- else:
- plot_df = events.copy()
- # extract start and end times
- if x_start in plot_df.index.names:
- plot_df = plot_df.reset_index(x_start)
- if x_end in plot_df.index.names:
- plot_df = plot_df.reset_index(x_end)
- # remove timezone for correct matplotlib labeling
- plot_df[x_start] = plot_df[x_start].dt.tz_localize(None)
- plot_df[x_end] = plot_df[x_end].dt.tz_localize(None)
-
- # filter events
- if y_include is not None:
- plot_df = plot_df.query(f'{y} in {y_include}')
- if y_exclude is not None:
- plot_df = plot_df.query(f'{y} not in {y_exclude}')
- # additional user-provided events (application logging, etc.)
- if add_events is not None:
- tlim = plot_df[x_start].min(), plot_df[x_end].max()
- add_events = add_events.loc[
- (tlim[0] < add_events[x_end]) & (add_events[x_start] < tlim[1])]
- if len(add_events):
- add_events = add_events.set_index(plot_df.index[[0]])
- plot_df = pd.concat([plot_df, add_events[
- plot_df.columns.intersection(add_events.columns)]], axis=0)
-
- # rename channels and events
- plot_df = plot_df.copy()
- plot_df['channel'] = plot_df['channel'].replace(rename_channels)
- plot_df['event'] = plot_df['event'].replace(rename_events)
-
- # set x limits
- if xlim is not None:
- if type(xlim[0]) is str:
- xlim = (pd.to_datetime(xlim[0]), xlim[1])
- if type(xlim[0]) is not pd.Timestamp:
- xlim = plot_df.loc[plot_df['start'] < xlim[0], x_start].iloc[-1], xlim[1]
- if type(xlim[1]) is str:
- xlim = (xlim[0], pd.to_datetime(xlim[1]))
- if type(xlim[1]) is not pd.Timestamp:
- xlim = xlim[0], plot_df.loc[plot_df['end'] > xlim[1], x_end].iloc[0]
- else:
- xlim = plot_df[x_start].min(), plot_df[x_end].max()
-
- if ax is None:
- fig, ax = plt.subplots(figsize=figsize)
-
- # set colors
- colors = sorted(plot_df[color].unique())
- colors = pd.DataFrame({color: colors, 'color': sns.color_palette(cmap, len(colors))})\
- .set_index(color)['color']
-
- # plot events
- plot_df = plot_df.assign(diff=lambda x: x[x_end] - x[x_start]).sort_values([color, y])
- labels = []
- legend = []
- for i, (y_label, y) in enumerate(plot_df.groupby(y, observed=True, sort=False)):
- if len(y) == 0:
- continue
- labels.append(y_label)
- for c, r in y.groupby(color, observed=True):
- data = r[[x_start, 'diff']]
- if not len(data):
- continue
- h = ax.broken_barh(data.values, (i-0.4,0.8), color=colors[c], alpha=0.7)
- legend.append({'label': c, 'handle': h})
-
- # format plot
- legend = pd.DataFrame.from_dict(legend).drop_duplicates(subset='label')
- ax.legend(legend['handle'], legend['label'],
- bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0.)
-
- str_title = ''
- if 'participant_id' in events.index.names:
- str_title += events.index.get_level_values('participant_id')[0].astype(str)
- if array_index is not None:
- str_title += f' / {array_index}'
- plt.suptitle(str_title, fontsize=14, weight='bold')
- ax.set_yticks(np.arange(len(labels)), labels)
- plt.tight_layout()
- ax.set_xlabel('Time')
- if set_xlim:
- ax.set_xlim(*xlim)
- format_xticks(ax)
-
- return ax
-
-
-def plot_channels(channels: pd.DataFrame, array_index: Optional[int]=None,
- y_filter: Optional[Iterable[str]]=None, ax: plt.Axes=None,
- discrete_events: Optional[Iterable[str]]=['sleep_stage', 'body_position'],
- time_col='collection_timestamp', height=1.5, resample='1s', cmap='muted',
- rename_channels=CHANNELS, **kwargs):
+ # Create figure
+ if figsize is None:
+ if 'source' in channels.index.names:
+ nC = channels.index.get_level_values('source').nunique()
+ else:
+ nC = channels['source'].nunique()
+ figsize = 2 * (nC * channel_height + event_height)
+ figsize = (8 * 2 * channel_height, figsize)
+ g = TimeSeriesFigure(figsize=figsize)
+
+ # Set colors
+ channels, color_map = get_channels_colors(
+ channels, events,
+ participant_id=participant_id, array_index=array_index, time_range=time_range,
+ event_filter=event_filter, palette=palette,
+ )
+
+ # Plot
+ plot_sleep_channels(
+ channels,
+ x='collection_timestamp', y='values', row='source', hue='channel_group',
+ participant_id=participant_id, array_index=array_index, time_range=time_range,
+ y_include=channel_filter,
+ fig=g, height=channel_height,
+ color_map=color_map, palette=palette,
+ )
+ g.plot(plot_events_bars,
+ events,
+ x_start='collection_timestamp', x_end='event_end', y='event', hue='channel',
+ participant_id=participant_id, array_index=array_index, time_range=time_range,
+ y_include=event_filter, y_exclude=['Gross Trunc'],
+ palette=palette,
+ name='sleep_events', height=event_height, sharex='sleep_channels',
+ )
+ g.set_axis_padding(padding)
+
+ return g
+
+
+def plot_sleep_channels(
+ channels: pd.DataFrame,
+ x: str='collection_timestamp',
+ y: str='values',
+ row: str='source',
+ hue: str='channel_group',
+ participant_id: int=None,
+ array_index: int=None,
+ time_range: Tuple[str, str]=None,
+ y_include: Iterable[str]=None,
+ y_exclude: Iterable[str]=None,
+ rename_channels: dict=CHANNELS,
+ discrete_events: Iterable[str]=['sleep_stage', 'body_position'],
+ resample: str='1s',
+ color_map: pd.Series=None,
+ palette: str=DEFAULT_PALETTE,
+ fig: TimeSeriesFigure=None,
+ ax: List[plt.Axes]=None,
+ height=1,
+ **kwargs
+) -> List[plt.Axes]:
""" plot channels data for a given participant and array_index """
- # set colors
- colors = get_legend_colors(cmap).explode('source')
- colors['source'] = pd.Categorical(colors['source'])
- colors = colors.set_index('source')
-
- # filter data
- if (array_index is not None) and (('array_index' in channels.columns) or ('array_index' in channels.index.names)):
- data = channels.query('array_index == @array_index').copy()
- else:
- data = channels.copy()
- # extract time and channel name
- if time_col in channels.index.names:
- data = data.reset_index(time_col)
- if 'source' not in data.index.names:
- data = data.set_index('source')
- data[time_col] = data[time_col].dt.tz_localize(None)
-
- # grouping and coloring sources by event "channels"
- data = data.join(colors[['channel']])\
- .sort_values(['channel', time_col], ascending=[False, True])
-
- if ax is None:
- n = data.index.unique().size
- fig, ax = plt.subplots(nrows=n, figsize=(10, n*height), sharex=True, squeeze=False)
-
- # plot data
- ax_shift = 0
- for i, (source, d) in enumerate(data.groupby('source', observed=True, sort=False)):
- if (source not in CHANNELS) or (y_filter is not None and source not in y_filter):
- print(f'plot_channels: skipping {source}')
- ax_shift += 1
- continue
- iax = i - ax_shift
- if resample is not None:
- d = d.resample(resample, on=time_col).mean(numeric_only=True).reset_index()
- if source in colors.index:
- c = colors.loc[source, 'color']
+ # Filter data and prepare channels
+ channels, colors = prep_to_plot_timeseries(
+ channels, x, x, row, row,
+ participant_id, array_index, time_range,
+ y_include, y_exclude,
+ add_columns=[y, hue], palette=palette
+ )
+ if color_map is not None:
+ colors = color_map
+
+ # Create axes if necessary
+ n = channels[row].nunique()
+ if ax is None and fig is None:
+ fig, ax = plt.subplots(nrows=n, figsize=(12, n*height), sharex=True, squeeze=True)
+ elif ax is None:
+ ax = fig.add_axes(n_axes=n, height=height, name='sleep_channels')
+
+ # Plot data
+ for i, (source, d) in enumerate(channels.groupby(row, observed=True, sort=False)):
+ if colors is not None and hue is not None:
+ c = colors.get(d[hue].iloc[0], 'grey')
else:
- c = 'grey'
+ c = '#4c72b0'
+ if resample is not None:
+ d = d.resample(resample, on=x).mean(numeric_only=True).reset_index()
+
+ # Set channel value limits
if source in CHANNEL_LIMS:
- d = d.loc[(CHANNEL_LIMS[source][0] <= d['values']) & (d['values'] <= CHANNEL_LIMS[source][1])]
- ax[iax, 0].scatter(d[time_col].dt.tz_localize(None).values, d['values'].values, s=0.1, color=c)
+ d = d.loc[
+ (CHANNEL_LIMS[source][0] <= d[y]) &
+ (d[y] <= CHANNEL_LIMS[source][1])
+ ]
+ ax[i].scatter(d[x].values, d[y].values, s=0.1, color=c)
if source not in CHANNEL_LIMS:
- ylim = d['values'].quantile([0.001, 0.999]).tolist()
+ ylim = d[y].quantile([0.001, 0.999]).tolist()
ylim[0] = 0.95*ylim[0] if ylim[0] >= 0 else 1.1*ylim[0]
ylim[1] = 1.1*ylim[1] if ylim[1] >= 0 else 0.95*ylim[1]
- ax[iax,0].set_ylim(*ylim)
+ ax[i].set_ylim(*ylim)
+
if source in rename_channels:
- ax[iax, 0].set_ylabel(rename_channels[source], rotation=0, horizontalalignment='right')
+ ax[i].set_ylabel(rename_channels[source], rotation=0, horizontalalignment='right')
else:
- ax[iax,0].set_ylabel(source, rotation=0, horizontalalignment='right')
+ ax[i].set_ylabel(source, rotation=0, horizontalalignment='right')
if source in discrete_events:
if source in ENUMS:
- ax[iax, 0].set_yticks(ENUMS[source][0],labels=ENUMS[source][1])
+ ax[i].set_yticks(ENUMS[source][0],labels=ENUMS[source][1])
else:
- ax[iax, 0].set_yticks(d['values'].drop_duplicates().sort_values().values)
- ylabels = ax[iax, 0].get_yticklabels()
+ ax[i].set_yticks(d[y].drop_duplicates().sort_values().values)
+ ylabels = ax[i, 0].get_yticklabels()
for label in ylabels[1:-1]:
label.set_text('')
- ax[iax, 0].set_yticklabels(ylabels)
-
- # format plot
- for i in range(len(ax)):
- ax[i,0].set_xlabel('')
- ax[i,0].set_xticklabels([])
- if ax is None:
- print('entered')
- ax[-1,0].set_xlabel('Time')
- ax[-1,0].set_xlim(data[time_col].min(), data[time_col].max())
- format_xticks(ax[-1,0])
+ ax[i].set_yticklabels(ylabels)
+ format_xticks(ax[-1])
return ax
-def format_xticks(ax, format='%m/%d %H:%M'):
- """ format datestrings on x axis """
- xticks = ax.get_xticks()
- ax.set_xticks(xticks)
- ax.set_xticklabels(xticks, rotation=25, ha='right')
- xfmt = mdates.DateFormatter(format)
- ax.xaxis.set_major_formatter(xfmt)
-
-
-def get_legend_colors(cmap='muted'):
- # the following dict keys should correspond to sleep event channels
- colors = pd.Series(COLOR_GROUPS, name='source').to_frame().reset_index()\
- .rename(columns={'index': 'channel'}).sort_values('channel')
- colors['color'] = sns.color_palette(cmap, len(colors))
+def get_channels_colors(
+ channels: pd.DataFrame,
+ events: pd.DataFrame,
+ participant_id: int=None,
+ array_index: int=None,
+ time_range: Tuple[str, str]=None,
+ event_filter: Iterable[str]=None,
+ palette: str=DEFAULT_PALETTE,
+) -> Tuple[pd.DataFrame, pd.Series]:
+ # Group channels like events do
+ channel_groups = pd.Series(COLOR_GROUPS, name='source')\
+ .reset_index()\
+ .rename(columns={'index': 'channel_group'})\
+ .explode('source').set_index('source')
+ channels = channels.join(channel_groups)
+ # Simulate events colors
+ _, color_map = prep_to_plot_timeseries(
+ events,
+ x_start='collection_timestamp', x_end='event_end', label='event', hue='channel',
+ participant_id=participant_id, array_index=array_index, time_range=time_range,
+ y_include=event_filter, y_exclude=['Gross Trunc'],
+ palette=palette)
+
+ return channels, color_map
+
+# %% ../nbs/06_sleep_plots.ipynb 6
+def get_sleep_period(events: pd.DataFrame) -> pd.DataFrame:
+ """
+ Get the sleep period from the sleep events dataframe.
- return colors
+ Args:
+ events (pd.DataFrame): The sleep events dataframe.
+ Returns:
+ pd.DataFrame: The sleep period dataframe.
+ """
+ return events.groupby(['participant_id', 'research_stage', 'array_index'])\
+ .apply(get_events_period, 'Wake', 'Wake', 'Sleep',
+ first_start=True, first_end=False, include_start=False, include_end=False)
+
diff --git a/pheno_utils/timeseries_plots.py b/pheno_utils/timeseries_plots.py
new file mode 100644
index 0000000..22e1eb0
--- /dev/null
+++ b/pheno_utils/timeseries_plots.py
@@ -0,0 +1,763 @@
+# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/15_timeseries_plots.ipynb.
+
+# %% auto 0
+__all__ = ['TimeSeriesFigure', 'format_xticks', 'format_timeseries', 'plot_events_bars', 'plot_events_fill',
+ 'prep_to_plot_timeseries', 'get_events_period', 'get_color_map']
+
+# %% ../nbs/15_timeseries_plots.ipynb 3
+from typing import Callable, Iterable, Optional, Union, Tuple
+import warnings
+
+import numpy as np
+import pandas as pd
+
+import seaborn as sns
+import matplotlib.pyplot as plt
+import matplotlib.dates as mdates
+
+from .config import DEFAULT_PALETTE, TIME_FORMAT, LEGEND_SHIFT
+
+# %% ../nbs/15_timeseries_plots.ipynb 4
+class TimeSeriesFigure:
+ def __init__(self, figsize: tuple = (10, 6), padding: float = 0.05):
+ """
+ Initialize a TimeSeriesFigure instance. This class is used to create and manage
+ a figure with multiple axes for time series data.
+
+ Args:
+ figsize (tuple): Size of the figure (width, height) in inches.
+ """
+ self.fig = plt.figure(figsize=figsize)
+ self.axes: Iterable[tuple] = []
+ self.axis_names: dict = {}
+ self.padding = padding
+ self.custom_paddings = {} # To store custom padding for specific axes
+ self.shared_x_groups = [] # To keep track of shared x-axis groups
+
+ def plot(
+ self,
+ plot_function: Callable,
+ *args,
+ n_axes: int = 1,
+ height: float = 1,
+ sharex: Union[str, int, plt.Axes] = None,
+ second_y: bool = False,
+ name: str = None,
+ ax: Union[str, int, plt.Axes] = None,
+ adjust_time: Optional[str] = 'union',
+ adjust_by_axis: Union[str, int, plt.Axes, Iterable[Union[str, int, plt.Axes]]] = None,
+ **kwargs
+ ) -> Union[plt.Axes, Iterable[plt.Axes]]:
+ """
+ Plot using a dataset-specific function, creating a new axis if needed.
+ The plot function should accept the axis object as the argument `ax`, or
+ a list of axes if multiple axes are used.
+
+ Args:
+ plot_function (Callable): The dataset-specific function to plot the data.
+ *args: Arguments to pass to the plot function.
+ n_axes (int): The number of axes required. Default is 1.
+ height (float): The proportional height of the axes relative to a single unit axis.
+ sharex (str, int, or plt.Axes): Index or name of the axis to share the x-axis with. If None, the x-axis is independent.
+ second_y (bool): If True, plot will be done on a secondary y-axis in the plot. Default is False.s
+ name (str): Name or ID to assign to the axis.
+ ax (plt.Axes, str, int): Pre-existing axis (object, name, or index) or list of axes to plot on.
+ adjust_time (str, None): Method to adjust the time limits of all axes to match the data.
+ adjust_by_axis (str, int, plt.Axes): Axes (single or multiple) to use as a reference for adjusting the time limits.
+ **kwargs: Keyword arguments to pass to the plot function.
+
+ Returns:
+ Union[plt.Axes, Iterable[plt.Axes]]: A single axis object or a list of axis objects if multiple axes are used.
+ """
+ if ax is None:
+ ax = self.add_axes(height=height, n_axes=n_axes, sharex=sharex, name=name)
+ else:
+ ax = self.get_axes(ax, squeeze=True)
+
+ if second_y:
+ ax.yaxis.grid(False)
+ ax = ax.twinx()
+
+ plot_function(*args, ax=ax, **kwargs)
+ if adjust_time:
+ self.set_time_limits(None, None, method=adjust_time, reference_axis=adjust_by_axis)
+ if second_y:
+ ax.yaxis.grid(False)
+ ax.yaxis.label.set_rotation(90)
+ ax.yaxis.label.set_ha('center')
+
+ return ax
+
+ def add_axes(
+ self,
+ height: float = 1,
+ n_axes: int = 1,
+ sharex: Optional[Union[str, int, plt.Axes]] = None,
+ name: Optional[str] = None,
+ ) -> Union[plt.Axes, Iterable[plt.Axes]]:
+ """
+ Add one or more axes with a specific proportional height to the figure.
+
+ Args:
+ height (float): The proportional height of each new axis relative to a single unit axis.
+ n_axes (int): The number of axes to create.
+ sharex (str, int, or plt.Axes): Index or name of the axis to share the x-axis with. If None, the x-axis is independent.
+ name (Optional[str]): Name or ID to assign to the axis (only valid if num_axes=1).
+
+ Returns:
+ Union[plt.Axes, Iterable[plt.Axes]]: A single axis object or a list of axis objects if multiple axes are created.
+ """
+ new_axes = []
+ shared_group = []
+
+ if sharex is not None:
+ sharex = self.get_axes(sharex)[0]
+ shared_group.append(sharex)
+
+ for _ in range(n_axes):
+ ax = self.fig.add_subplot(len(self.axes) + 1, 1, len(self.axes) + 1, sharex=sharex)
+ new_axes.append(ax)
+ self.axes.append((ax, height))
+ shared_group.append(ax)
+ # When creating mulitple axes, always share their x-axis with the first one
+ if sharex is None:
+ sharex = ax
+
+ if shared_group:
+ self.shared_x_groups.append(shared_group)
+
+ if name is not None:
+ self.axis_names[name] = new_axes
+
+ self._adjust_axes()
+
+ return new_axes if n_axes > 1 else new_axes[0]
+
+ def _adjust_axes(self) -> None:
+ """
+ Adjust the positions and sizes of all axes based on their proportional height and apply padding.
+ """
+ total_height = sum(height for _, height in self.axes)
+ total_padding = self.padding * (len(self.axes) - 1)
+ bottom = 1 - total_padding # Start from the top of the figure
+
+ for i, (ax, height) in enumerate(self.axes):
+ ax_height = height / total_height * (1 - total_padding)
+ # Adjust for any custom padding before this axis
+ custom_pad = self.custom_paddings.get(i, 0)
+ ax.set_position([0.1, bottom - ax_height, 0.8, ax_height])
+ bottom -= ax_height + self.padding + custom_pad # Move down, considering padding
+
+ def _get_axis_by_name(self, name: str) -> Optional[plt.Axes]:
+ """
+ Retrieve an axis by its name or ID.
+
+ Args:
+ name (str): The name or ID of the axis to retrieve.
+
+ Returns:
+ Optional[plt.Axes]: The corresponding axis object if found, otherwise None.
+ """
+ return self.axis_names.get(name, [])
+
+ def get_axes(self, ax: Union[str, int, plt.Axes, Iterable[Union[str, int, plt.Axes]]]=None, squeeze=False) -> Iterable[plt.Axes]:
+ """
+ Retrieve the axis object(s) based on the input type.
+
+ Args:
+ ax: The axis object, index, name, or list of those to retrieve.
+ squeeze (bool): Whether to return a single axis object if only one is found.
+
+ Returns:
+ Iterable[plt.Axes]: A list of axis objects.
+ """
+ if ax is None:
+ return [a for a, _ in self.axes]
+ elif not isinstance(ax, list):
+ ax = [ax]
+
+ ax_list = []
+ for a in ax:
+ if isinstance(a, str):
+ by_name = self._get_axis_by_name(a)
+ if len(by_name) == 0:
+ warnings.warn(f"No axis found with name '{a}'")
+ ax_list.extend(by_name)
+ elif isinstance(a, int):
+ ax_list.append(self.axes[a][0])
+
+ if squeeze and len(ax_list) == 1:
+ return ax_list[0]
+ else:
+ return ax_list
+
+ def print_shared_axes(self):
+ """
+ Print which axes in the figure share their x-axis.
+
+ Returns:
+ None
+ """
+ shared_groups = {}
+ for i, (ax, _) in enumerate(self.axes):
+ for j, (other_ax, _) in enumerate(self.axes):
+ if i != j and ax.get_shared_x_axes().joined(ax, other_ax):
+ if i not in shared_groups:
+ shared_groups[i] = []
+ shared_groups[i].append(j)
+
+ for ax_idx, shared_with in shared_groups.items():
+ print(f"Axis {ax_idx} shares its x-axis with: {shared_with}")
+
+ def get_axis_properties(self, ax: Union[str, int, plt.Axes, Iterable[Union[str, int, plt.Axes]]]=None) -> dict:
+ """
+ Get the properties of a specific axis or axes.
+
+ Args:
+ ax (str, int, plt.Axes, or a list of those): The axis or axes to get the properties for.
+
+ Returns:
+ dict: A dictionary of properties for the axis or axes.
+ """
+ ax_list = self.get_axes(ax)
+ properties = {}
+ for a in ax_list:
+ properties = {key: properties.get(key, []) + [value] for key, value in a.properties().items()}
+
+ for k, v in properties.items():
+ if len(v) == 1:
+ properties[k] = v[0]
+
+ return properties
+
+ def set_axis_properties(self, ax: Union[str, int, plt.Axes, Iterable[Union[str, int, plt.Axes]]]=None, **kwargs) -> None:
+ """
+ Set properties for a specific axis or axes.
+
+ Args:
+ ax (str, int, plt.Axes, or a list of those): The axis or axes to set the properties for.
+ **kwargs: Additional keyword arguments to pass to the axis object.
+ """
+ ax_list = self.get_axes(ax)
+ for a in ax_list:
+ a.set(**kwargs)
+
+ def set_axis_padding(self, padding: float, ax: Union[str, int, plt.Axes, Iterable[Union[str, int, plt.Axes]]]=None, above: bool = True) -> None:
+ """
+ Set custom padding for a specific axis.
+
+ Args:
+ padding (float): The amount of padding to add as a fraction of the figure height.
+
+ above (bool): Whether to add padding above the axis (default) or below.
+ """
+ ax_list = self.get_axes(ax)
+ all_axes = [a for a, _ in self.axes]
+
+ for ax in ax_list:
+ axis_index = all_axes.index(ax)
+ if axis_index < 0:
+ warnings.warn("Axis not found in the figure.")
+ continue
+ if above:
+ self.custom_paddings[axis_index] = padding
+ elif axis_index == len(self.axes) - 1:
+ continue
+ else:
+ self.custom_paddings[axis_index + 1] = padding
+ self._adjust_axes()
+
+ def set_time_limits(
+ self, start_time: Union[float, str, pd.Timestamp, None],
+ end_time: Union[float, str, pd.Timestamp, None],
+ method: str='union',
+ reference_axis: Union[str, int, plt.Axes, Iterable[Union[str, int, plt.Axes]]] = None
+ ) -> None:
+ """
+ Set the time limits for all axes in the figure. Calling with None will adjust the limits to the data.
+
+ Args:
+ start_time (Union[float, str, pd.Timestamp, None]): The start time for the x-axis.
+ end_time (Union[float, str, pd.Timestamp, None]): The end time for the x-axis.
+ """
+ # Default values
+ xlim = np.array(self.get_axis_properties(reference_axis)['xlim']).reshape((-1, 2))
+ if method == 'union':
+ xlim = xlim[:, 0].min(), xlim[:, 1].max()
+ elif method == 'intersect':
+ xlim = xlim[:, 0].max(), xlim[:, 1].min()
+ else:
+ raise ValueError(f"Invalid method: {method} not in ['union', 'intersect']")
+
+ # Convert string inputs to pandas Timestamp objects
+ if start_time is not None:
+ start_time = pd.to_datetime(start_time)
+ else:
+ start_time = xlim[0]
+ if end_time is not None:
+ end_time = pd.to_datetime(end_time)
+ else:
+ end_time = xlim[1]
+
+ self.set_axis_properties(xlim=(start_time, end_time))
+
+ def set_periodic_ticks(
+ self,
+ interval: Union[str, pd.Timedelta],
+ start_time: str = '2018-01-01 00:00',
+ end_time: str = None,
+ fmt=TIME_FORMAT,
+ ax: Union[str, int, plt.Axes, Iterable[Union[str, int, plt.Axes]]] = None
+ ) -> None:
+ """
+ Set periodic x-ticks at a regular interval throughout the day.
+
+ Args:
+ interval (Union[str, pd.Timedelta]): The interval between ticks (e.g., '1H' for hourly ticks, '30T' for 30 minutes).
+ start_time (str): The time of day to start the ticks from (default is '00:00').
+ end_time (str): The time of day to end the ticks at (default is None).
+ fmt (str): The date format string to be used for the tick labels.
+ ax (str, int, plt.Axes, or a list of those): The axis (or axes) to apply the ticks to.
+ Can be an axis object, a list of axes, an index, or a name. If None, applies to all axes.
+ """
+ # Convert interval to pandas Timedelta if it's a string
+ if isinstance(interval, str):
+ interval = pd.to_timedelta(interval)
+
+ # Convert start_time to a datetime object with today's date
+ if start_time is not None:
+ start_time = pd.to_datetime(start_time).tz_localize(None)
+ if end_time is not None:
+ end_time = pd.to_datetime(end_time).tz_localize(None)
+
+ # Determine which axes to apply this to
+ axes = self.get_axes(ax)
+
+ for a in axes:
+ if a is not None:
+ # Get the x-axis limits
+ min_x, max_x = a.get_xlim()
+
+ # Convert limits to datetime if they are in float format
+ if isinstance(min_x, (float, int)):
+ min_x = mdates.num2date(min_x).replace(tzinfo=None)
+ if isinstance(max_x, (float, int)):
+ max_x = mdates.num2date(max_x).replace(tzinfo=None)
+
+ # Set the ticks to align with the start_datetime
+ ticks = pd.date_range(start=start_time if start_time else min_x,
+ end=end_time if end_time else max_x,
+ freq=interval)
+
+ # Make sure ticks are within the limits
+ ticks = [tick for tick in ticks if min_x <= tick and tick <= max_x]
+
+ # Set the locator and formatter
+ format_xticks(a, ticks, fmt)
+
+ plt.setp(a.get_xticklabels(), rotation=0, ha='center')
+
+ def add_legend(self, ax: Union[str, int, plt.Axes, Iterable[Union[str, int, plt.Axes]]], **kwargs) -> None:
+ """
+ Add a legend to a specific axis.
+
+ Args:
+ axis (str, int, plt.Axes, or a list of those): The axis to add the legend to.
+ """
+ ax_list = self.get_axes(ax)
+ for a in ax_list:
+ a.legend(**kwargs)
+
+ def set_legend(self, ax: Union[str, int, plt.Axes, Iterable[Union[str, int, plt.Axes]]]=None, bbox_to_anchor: tuple=None, **kwargs):
+ """
+ Update the legend properties for all axes in the figure, or a subset of them, if the legend exists.
+
+ Args:
+ axis (str, int, plt.Axes, or a list of those): The name or list of names of axes to update the legend for.
+ bbox_to_anchor (tuple, optional): The bounding box coordinates for the legend.
+ **kwargs: Additional keyword arguments passed to the legend object.
+ """
+ ax_list = self.get_axes(ax)
+
+ for a in ax_list:
+ legend = a.get_legend()
+ if legend is None:
+ continue
+ if bbox_to_anchor is not None:
+ legend.set_bbox_to_anchor(bbox_to_anchor)
+ legend.set(**kwargs)
+
+ def show(self) -> None:
+ """
+ Display the figure.
+ """
+ plt.show()
+
+
+def format_xticks(ax: plt.Axes, xticks: Iterable=None, format: str=TIME_FORMAT, **kwargs):
+ """ format datestrings on x axis """
+ if xticks is None:
+ xticks = ax.get_xticks()
+ ax.set_xticks(xticks)
+ ax.set_xticklabels(xticks, **kwargs)
+ xfmt = mdates.DateFormatter(format)
+ ax.xaxis.set_major_formatter(xfmt)
+
+
+def format_timeseries(
+ df: pd.DataFrame,
+ participant_id: int=None,
+ array_index: int=None,
+ time_range: Tuple[str, str]=None,
+ x_start: str='collection_timestamp',
+ x_end: str='collection_timestamp',
+ unique: bool=False,
+) -> pd.DataFrame:
+ """
+ Reformat and filter a time series DataFrame based on participant ID, array index, and date range.
+
+ Args:
+ df (pd.DataFrame): The DataFrame to filter.
+ participant_id (int): The participant ID to filter by.
+ array_index (int): The array index to filter by.
+ time_range: The date range to filter by. Can be a tuple of two dates / times or two strings.
+ x_start (str): The name of the column containing the start time.
+ x_end (str): The name of the column containing the end time.
+
+ Returns:
+ pd.DataFrame: The filtered DataFrame
+ """
+ if participant_id is not None:
+ df = df.query('participant_id == @participant_id')
+ if array_index is not None:
+ df = df.query('array_index == @array_index')
+
+ # Reset index to avoid issues with slicing and indexing
+ x_ind = np.unique([c for c in [x_start, x_end] if c in df.index.names])
+ if len(x_ind):
+ if np.isin(x_ind, df.index.names).any():
+ df = df.reset_index(x_ind)
+ df[x_start] = df[x_start].dt.tz_localize(None)
+ if x_start != x_end:
+ df[x_end] = df[x_end].dt.tz_localize(None)
+ if time_range is not None:
+ time_range = pd.to_datetime(time_range)
+ df = df.loc[(time_range[0] <= df[x_start]) & (df[x_end] <= time_range[1])]
+ if unique:
+ df = df.drop_duplicates()
+
+ return df.sort_values(x_start)
+
+# %% ../nbs/15_timeseries_plots.ipynb 5
+def plot_events_bars(
+ events: pd.DataFrame,
+ x_start: str = 'collection_timestamp',
+ x_end: str = 'event_end',
+ y: str = 'event',
+ hue: str = 'channel',
+ participant_id: Optional[int] = None,
+ array_index: Optional[int] = None,
+ time_range: Optional[Tuple[str, str]] = None,
+ y_include: Optional[Iterable[str]] = None,
+ y_exclude: Optional[Iterable[str]] = None,
+ legend: bool = True,
+ palette: str = DEFAULT_PALETTE,
+ alpha: Optional[float] = 0.7,
+ ax: Optional[plt.Axes] = None,
+ figsize: Tuple[float, float] = (12, 6),
+) -> plt.Axes:
+ """
+ Plot events as bars on a time series plot.
+
+ Args:
+ events (pd.DataFrame): The events dataframe.
+ x_start (str): The column name for the start time of the event.
+ x_end (str): The column name for the end time of the event.
+ y (str): The column name for the y-axis values.
+ hue (str): The column name for the color of the event.
+ participant_id (int): The participant ID to filter events by.
+ array_index (int): The array index to filter events by.
+ time_range (Tuple[str, str]): The time range to filter events by.
+ y_include (Iterable[str]): The list of values to include in the plot.
+ y_exclude (Iterable[str]): The list of values to exclude from the plot.
+ legend (bool): Whether to show the legend.
+ palette (str): The name of the colormap to use for coloring events.
+ alpha (float): The transparency of the bars. Default is 0.7.
+ ax (plt.Axes): The axis to plot on. If None, a new figure is created.
+ figsize (Tuple[float, float]): The size of the figure (width, height) in inches.
+ """
+ events, color_map = prep_to_plot_timeseries(
+ events, x_start, x_end,
+ hue, y,
+ participant_id, array_index, time_range,
+ y_include, y_exclude,
+ palette=palette)
+ if hue is None:
+ hue = 'hue'
+
+ if ax is None:
+ fig, ax = plt.subplots(figsize=figsize)
+
+ # Plot events
+ events = events.assign(diff=lambda x: x[x_end] - x[x_start]).sort_values([hue, y])
+ y_labels = []
+ legend_dicts = []
+ for i, (y_label, events) in enumerate(events.groupby(y, observed=True, sort=False)):
+ if len(y) == 0:
+ continue
+ y_labels.append(y_label)
+ for c, r in events.groupby(hue, observed=True):
+ data = r[[x_start, 'diff']]
+ if not len(data):
+ continue
+ h = ax.broken_barh(data.values, (i-0.4,0.8), color=color_map[c], alpha=alpha)
+ legend_dicts.append({'label': c, 'handle': h})
+
+ # format plot
+ if legend:
+ legend_df = pd.DataFrame.from_dict(legend_dicts).drop_duplicates(subset='label')
+ ax.legend(
+ legend_df['handle'],
+ legend_df['label'],
+ loc='upper left',
+ bbox_to_anchor=LEGEND_SHIFT)
+
+ ax.set_yticks(np.arange(len(y_labels)), y_labels)
+ format_xticks(ax)
+ ax.invert_yaxis() # Invert y-axis to match the order of the legend
+
+ return ax
+
+
+def plot_events_fill(
+ events: pd.DataFrame,
+ x_start: str = 'collection_timestamp',
+ x_end: str = 'event_end',
+ hue: str = 'channel',
+ label: str = None,
+ participant_id: Optional[int] = None,
+ array_index: Optional[int] = None,
+ time_range: Optional[Tuple[str, str]] = None,
+ y_include: Optional[Iterable[str]] = None,
+ y_exclude: Optional[Iterable[str]] = None,
+ legend: bool = True,
+ palette: str = DEFAULT_PALETTE,
+ alpha: Optional[float] = 0.5,
+ ax: Optional[plt.Axes] = None,
+ figsize: Iterable[float] = [12, 6],
+) -> plt.Axes:
+ """
+ Plot events as filled regions on a time series plot.
+
+ Args:
+ events (pd.DataFrame): The events dataframe.
+ x_start (str): The column name for the start time of the event.
+ x_end (str): The column name for the end time of the event.
+ hue (str): The column name for the color of the event.
+ label (str): The column name for the label of the event.
+ participant_id (int): The participant ID to filter events by.
+ array_index (int): The array index to filter events by.
+ time_range (Iterable[str]): The time range to filter events by.
+ y_include (Iterable[str]): The list of values to include in the plot.
+ y_exclude (Iterable[str]): The list of values to exclude from the plot.
+ legend (bool): Whether to show the legend.
+ palette (str): The name of the palette to use for coloring events.
+ alpha (float): The transparency of the filled regions.
+ ax (plt.Axes): The axis to plot on. If None, a new figure is created.
+ figsize (Tuple[float, float]): The size of the figure (width, height) in inches.
+ """
+ events, color_map = prep_to_plot_timeseries(
+ events, x_start, x_end,
+ hue, label,
+ participant_id, array_index, time_range,
+ y_include, y_exclude,
+ palette=palette)
+ if hue is None:
+ hue = 'hue'
+
+ if ax is None:
+ fig, ax = plt.subplots(figsize=figsize)
+ if type(ax) is not list:
+ ax = [ax]
+
+ for a in ax:
+ # Plotting events
+ this_color = hue if hue is not None else '#4c72b0'
+ for _, row in events.iterrows():
+ if color_map is not None:
+ this_color = color_map[row[hue]]
+ # Plot the event as a filled region, with zorder to ensure it's behind other elements
+ a.axvspan(
+ row[x_start], row[x_end], 0, 1,
+ color=this_color, alpha=alpha, zorder=0,
+ transform=a.get_xaxis_transform())
+
+ # Add labels as xticks on the top secondary x-axis
+ if label:
+ secax = a.secondary_xaxis('top')
+ secax.set_xticks(events[x_start])
+ secax.set_xticklabels(events[label], rotation=0, ha='center')
+
+ # Add legend
+ if legend:
+ # Get existing handles from existing legends in the axes
+ handles, labels = a.get_legend_handles_labels()
+ if color_map is not None:
+ handles += [plt.Rectangle((0, 0), 1, 1, color=c, alpha=alpha) for c in color_map]
+ labels += color_map.index.tolist()
+ else:
+ handles += [plt.Rectangle((0, 0), 1, 1, color=this_color, alpha=alpha)]
+ labels += ['events']
+ a.legend(handles, labels, loc='upper left', bbox_to_anchor=LEGEND_SHIFT)
+
+ format_xticks(a)
+
+ return ax
+
+
+def prep_to_plot_timeseries(
+ data: pd.DataFrame,
+ x_start: str,
+ x_end: str,
+ hue: str,
+ label: str,
+ participant_id: int,
+ array_index: int,
+ time_range: Tuple[str, str],
+ y_include: Iterable[str],
+ y_exclude: Iterable[str],
+ add_columns: Iterable[str]=None,
+ palette=DEFAULT_PALETTE,
+) -> Tuple[pd.DataFrame, pd.DataFrame]:
+ """
+ Prepare timeseries / events data for plotting.
+
+ Args:
+ events (pd.DataFrame): The timeseries / events dataframe.
+ x_start (str): The column name for the start time of the event.
+ x_end (str): The column name for the end time of the event.
+ hue (str): The column name for the color of the event.
+ label (str): The column name for the label of the event.
+ participant_id (int): The participant ID to filter events by.
+ array_index (int): The array index to filter events by.
+ time_range (Iterable[str]): The time range to filter events by.
+ y_include (Iterable[str]): The list of values to include in the plot.
+ y_exclude (Iterable[str]): The list of values to exclude from the plot.
+ add_columns (Iterable[str]): Additional columns to include in the plot.
+ palette (str): The name of the colormap to use for coloring events.
+
+ Returns:
+ Tuple[pd.DataFrame, pd.DataFrame]: The filtered events dataframe and the color map.
+ """
+ if type(add_columns) is str:
+ add_columns = [add_columns]
+
+ data = format_timeseries(data, participant_id, array_index, time_range, x_start, x_end)
+
+ # Filter events based on y_include and y_exclude
+ data = data.dropna(subset=[x_start, x_end])
+ if hue is not None and hue in data.index.names:
+ data = data.reset_index(hue)
+ if label is not None and label in data.index.names:
+ data = data.reset_index(label)
+ if y_include is not None:
+ ind = pd.Series(False, index=data.index)
+ if hue is not None:
+ ind |= data[hue].isin(y_include)
+ if label is not None:
+ ind |= data[label].isin(y_include)
+ data = data.loc[ind]
+ if y_exclude is not None:
+ ind = pd.Series(False, index=data.index)
+ if hue is not None:
+ ind |= data[hue].isin(y_exclude)
+ if label is not None:
+ ind |= data[label].isin(y_exclude)
+ data = data.loc[~ind]
+ if hue is None:
+ hue = 'hue'
+ data[hue] = 'events'
+
+ col_list = [x_start, x_end, hue, label]
+ if add_columns is not None:
+ col_list += list(add_columns)
+ col_list = pd.Series(col_list).dropna().drop_duplicates()
+
+ # Set colors
+ if hue in data.columns:
+ colors = get_color_map(data, hue, palette)
+ else:
+ colors = None
+
+ return data[col_list], colors
+
+
+def get_events_period(
+ events_filtered: pd.DataFrame,
+ period_start: str,
+ period_end: str,
+ period_name: str,
+ col: str = 'event',
+ first_start: bool = True,
+ first_end: bool = True,
+ include_start: bool = True,
+ include_end: bool = True,
+ x_start: str = 'collection_timestamp',
+ x_end: str = 'event_end',
+) -> pd.DataFrame:
+ """
+ Get the period of time between the start and end events.
+
+ Args:
+ events_filtered (pd.DataFrame): The events DataFrame.
+ period_start (str): The label of the start event.
+ period_end (str): The label of the end event.
+ period_name (str): The label to assign to the period.
+ col (str): The column name for the event labels. Default is 'event'.
+ first_start (bool): If True, get the first start event. Default is True.
+ first_end (bool): If True, get the first end event. Default is True.
+ include_start (bool): If True, include the start event in the period. Default is True.
+ include_end (bool): If True, include the end event in the period. Default is True.
+ x_start (str): The column name for the start time of the event. Default is 'collection_timestamp'.
+ x_end (str): The column name for the end time of the event. Default is 'event_end'.
+
+ Returns:
+ pd.DataFrame: The period of events in the same format as the input DataFrame.
+ """
+ events_filtered = format_timeseries(events_filtered, None, None, None, x_start, x_end)
+
+ start_time = events_filtered.loc[
+ events_filtered[col] == period_start,
+ x_start if include_start else x_end]\
+ .iloc[0 if first_start else -1]
+ end_time = events_filtered.loc[
+ events_filtered[col] == period_end,
+ x_end if include_end else x_start]\
+ .iloc[0 if first_end else -1]
+
+ return pd.DataFrame({
+ x_start: [start_time],
+ x_end: [end_time],
+ col: [period_name]
+ })
+
+
+def get_color_map(data: pd.DataFrame, hue: str, palette: str) -> pd.DataFrame:
+ """
+ Get a color map for a specific column in the data.
+
+ Args:
+ data (pd.DataFrame): The data to get the color map from.
+ hue (str): The column name to use for the color map.
+ palette (str): The name of the colormap to use.
+
+ Returns:
+ pd.DataFrame: A DataFrame with the color map.
+ """
+ colors = sorted(data[hue].unique())
+ colors = pd.DataFrame({
+ hue: colors,
+ 'color': sns.color_palette(palette, len(colors))
+ }).set_index(hue)['color']
+
+ return colors