-
Notifications
You must be signed in to change notification settings - Fork 46
/
LODCO_Based_Genetic_Algorithm.m
373 lines (353 loc) · 17.7 KB
/
LODCO_Based_Genetic_Algorithm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
clc, clear
%% ================= Simulation of LODCO-Based Genetic Algorithm =================
%% 基本参数设置
k = 1e-28; % 有效开关电容
tau = 0.002; % 时间片长度(s)
tau_d = 0.002; % 计算任务执行时间的deadline(s)
phi = 0.002; % 任务丢弃的惩罚项权重(s)
little_phi = 0.002; % 用小写的phi表示任务被卸载执行的奖励项
omega = 1e6; % 服务器带宽(Hz)
sigma = 1e-13; % 接收端的噪声功率(W)
p_tx_max = 1; % 移动设备最大传输功率(W)
f_max = 1.5e9; % 移动设备最大CPU时钟周期频率(Hz)
E_max = 0.002; % 电池允许的最大放电量(J)
L = 1000; % 一项计算任务的大小(bit)
X = 737.5; % 移动设备执行一项计算任务所需的时钟周期个数
W = 737500; % 移动设备本地执行一项计算任务所需的时钟周期个数(L*X)
g0 = 1e-4; % 路径损失常数(dB转化之后的数值比)
d0 = 1; % 服务器和移动设备之间的相对距离(m)
%% 变量控制
N = 10; % 移动设备数目
M = 5; % MEC服务器个数
T = 150; % 时间片个数
E_min = 0.02e-3; % 能量使用下界(J)
V = 1e-5; % LODCO中penalty项的权重(J^2/second)
rho = 0.7; % 计算任务抵达的概率
E_H_max = 48e-6; % 收集的能量服从的均匀分布上限(J)
eps = 0.1; % 用于贪心算法的决策
% 实际能耗上限
E_max_hat = min(max(k*W*(f_max^2), p_tx_max*tau), E_max);
theta = E_max_hat + V*phi/E_min; % 扰动参数
%% 中间变量存储
B = zeros(T, N); % N个移动设备的实际电量
B_hat = zeros(T, N); % N个移动设备的虚拟电量
e = zeros(T, N); % N个移动设备的能量收集
indicator = zeros(T, N); % 用1,2,3,4分别表示本地执行、卸载执行、drop(前三个均意味着有任务到达)以及没有任务到达
f = zeros(T, N); % N个移动设备本地执行的频率(之后不会用到)
p = zeros(T, N); % N个移动设备卸载执行的传输功率(之后不会用到)
local_execution_delay = zeros(T, N); % N个移动设备的local execution delay
remote_execution_delay = zeros(T, N); % N个移动设备的remote execution delay
cost = zeros(T, N); % N个移动设备的execution cost(最后确定)
E_local = zeros(T, N); % N个移动设备本地执行的能耗
E_remote = zeros(T, N); % N个移动设备卸载执行的能耗
E_all = zeros(T, N); % N个移动设备的总能耗
mode_num = zeros(T,3); % 每一列分别表示每轮中本地执行、远程执行及任务丢弃的比率(分母为N减去没有任务到达的)
% 关闭fslove的输出
opt = optimset('Display', 'off');
t = 1;
while t <= T
% 用一个不定长的、3列的矩阵描述"移动设备i-MEC服务器j-i到j的最小传输延迟"
map = [];
% 存储每一个MEC服务器连接到的移动设备个数
flags = zeros(M, 1);
% 分别保存当前移动设备到各MEC服务器的J_s值(就是延迟)
J_s_matrix = zeros(N, M);
% 分别保存当前移动设备到各MEC服务器的能耗
E_remote_matrix = zeros(N, M);
% 分别保存当前移动设备到各MEC服务器的最佳传输功率
p_matrix = zeros(N, M);
% 分别存储每一个移动设备的本地执行的延迟J_m供二次决策时使用
J_m = zeros(N, 1);
% 产生虚拟电量队列值
B_hat(t,:) = B(t,:) - theta;
% 假设一般情况下不需要借助键值对(即直接根据intlinporg求解)
useKeyValuePair = 0;
for i = 1:N
%% 对每一个移动设备,阶段初始化
% 以伯努利分布产生计算任务
zeta = binornd(1, rho);
if zeta == 0
% 没有计算任务产生
indicator(t, i) = 4;
f(t, i) = 0; p(t, i) = 0;
else
%% 求解optimal energy harvesting e*
% 产生E_H_t
E_H_t = unifrnd(0, E_H_max);
if B_hat(t,i) <= 0 % 初始值为0,因此无需讨论大于0的情形
e(t, i) = E_H_t;
end
%% 求解P_ME
f_L = max(sqrt(E_min/(k*W)), W/tau_d);
f_U = min(sqrt(E_min/(k*W)), f_max);
if f_L <= f_U
% P_ME有解
f0 = power(V/(-1*B_hat(t,i)*k), 1/3);
if f0 > f_U
f(t, i) = f_U;
elseif f0 >= f_L && f0 <= f_U && B_hat(t,i) < 0
f(t, i) = f0;
elseif f0 < f_L
f(t, i) = f_L;
end
% 计算此时的execution delay
local_execution_delay(t, i) = W / f(t, i);
% 计算此时的能耗
E_local(t, i) = k * W * (f(t, i)^2);
if E_local(t, i) >= B(t, i)
disp(['P_ME电量不足![此时t为', num2str(t), ']']);
J_m(i) = inf; % 设置为inf可以保证一定比phi小
useKeyValuePair = 1;
else
% 计算此时的J_m(只考虑延迟,不计算能耗)
J_m(i) = W/f(t, i);
end
else
disp(['P_ME无解![此时t为', num2str(t), ']']);
% 因此indicator(t, 1) = 0不变
J_m(i) = inf;
useKeyValuePair = 1;
end
%% 求解P_SE
% 随机产生服务器和移动设备的距离(限定在0 ~ 60之内)
D = unifrnd(0, 70, N, M);
% 服从lambda=1的指数分布的小尺度衰落信道功率收益
gamma = exprnd(1, N, M);
% 从任意移动设备到任意服务器的信道功率增益
h = g0*gamma.*power(d0./D, 4);
for j = 1:M
tmp_h = h(i,j);
E_tmp = sigma*L*log(2) / (omega*tmp_h);
p_L_taud = (power(2, L/(omega*tau_d)) - 1) * (sigma/tmp_h);
if E_tmp >= E_min
p_L = p_L_taud;
else
% 计算p_Emin
y = @(x)x*L-omega*log2(1+tmp_h*x/sigma)*E_min;
%p_Emin = double(vpa(solve(y, 1)));
tmp = fsolve(y, [0.001, 1], opt);
p_Emin = real(max(tmp));
p_L = max(p_L_taud, p_Emin);
end
if E_tmp >= E_max
p_U = 0;
else
% 计算p_Emax
%{
y = @(x)x*L-omega*log2(1+tmp_h*x/sigma)*E_max;
p_Emax = max(fsolve(y, [0.001, 100]));
p_U = min(p_tx_max, p_Emax);
%}
% 加速运算
p_Emax = 25;
p_U = 1;
end
if p_L <= p_U
% P_SE有解
% 计算p0
tmp = B_hat(t,i);
y = @(x)tmp*log2(1+tmp_h*x/sigma) + tmp_h*(V-tmp*x)/(log(2)*(sigma+tmp_h*x));
p0 = real(max(fsolve(y, [0.001, 1], opt)));
if p_U < p0
p_matrix(i, j) = p_U;
elseif p_L > p0 && B_hat(t,i) < 0
p_matrix(i, j) = p_L;
elseif p_L <= p0 && p_U >= p0 && B_hat(t,i) < 0
p_matrix(i, j) = p0;
end
% 计算achievable rate
r = calAchieveRate(tmp_h, p_matrix(i, j), omega, sigma);
% 计算此时的能耗
E_remote(t, i) = p_matrix(i, j) * L/r;
E_remote_matrix(i, j) = E_remote(t, i);
if E_remote(t, i) >= B(t, i)
disp(['P_SE电量不足![此时t为', num2str(t), ',移动设备编号为', num2str(i), ',MEC服务器编号为', num2str(j), '].']);
J_s = inf;
useKeyValuePair = 1;
else
% 计算此时的J_s(只计算延迟,不考虑能耗)
J_s = L/r;
end
else
disp(['P_SE无解![此时t为', num2str(t), ',移动设备编号为', num2str(i), '].']);
J_s = inf;
useKeyValuePair = 1;
end
J_s_matrix(i,j) = J_s;
end
% 计算此时的execution delay
remote_execution_delay(t, i) = min(J_s_matrix(i,:));
% 保存最佳的execution delay及其对应的服务器编号
[J_s_best, j_best] = min(J_s_matrix(i,:));
E_remote(t, i) = E_remote_matrix(i, j_best);
%% 为第i个移动设备选取最佳模式
[~, mode] = min([J_m(i), J_s_best, phi]);
indicator(t, i) = mode;
if mode == 2
map = [map;[i,j_best,J_s_best]];
end
end
end
%% 求解过程
if useKeyValuePair == 0
% 亦采用intlinprog求解
% 定义目标函数f
goal = zeros(1,N*(M+2));
for i = 1:10
goal(7*i-6:7*i-5) = [local_execution_delay(t,i)-B_hat(t,i)*E_local(t,i),phi];
goal(7*i-4:7*i) = J_s_matrix(i,:)-B_hat(t,i)*E_remote_matrix(i,:)-little_phi;
end
fitnessGoal = @(x)-goal*[x(1),x(2),x(3),x(4),x(5),x(6),x(7),...
x(8),x(9),x(10),x(11),x(12),x(13),x(14),...
x(15),x(16),x(17),x(18),x(19),x(20),x(21),...
x(22),x(23),x(24),x(25),x(26),x(27),x(28),...
x(29),x(30),x(31),x(32),x(33),x(34),x(35),...
x(36),x(37),x(38),x(39),x(40),x(41),x(42),...
x(43),x(44),x(45),x(46),x(47),x(48),x(49),...
x(50),x(51),x(52),x(53),x(54),x(55),x(56),...
x(57),x(58),x(59),x(60),x(61),x(62),x(63),...
x(64),x(65),x(66),x(67),x(68),x(69),x(70)]';
% 定义nvars
nvars = N*(M+2);
% 定义A, b, lb, ub
A = [0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0;
0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0;
0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0;
0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0;
0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1;
1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1];
b = [4;4;4;4;4;1;1;1;1;1;1;1;1;1;1];
lb = zeros(N*(M+2),1);
ub = ones(N*(M+2),1);
% 返回计算结果 (system operation)
options = gaoptimset('ParetoFraction',0.3,'PopulationSize',100,'Generations',200,'StallGenLimit',200,'TolFun',1e-100,'PlotFcns',@gaplotpareto);
so = gamultiobj(fitnessGoal,nvars,A,b,[],[],lb,ub,options);
for i = 1:10
pos = find(so(7*i-6:7*i)==1);
if pos == 1
indicator(t,i) = 1;
elseif pos == 2
indicator(t,i) = 3;
else
indicator(t,i) = 2;
end
end
else
% 采用键值对求解
%% 为那些选择卸载执行的任务分配服务器(或另选模式)
% UB = f_server_max*tau_d/(L*X),取f_server_max=f_max则约为4.0678
UB = 4;
while ~isempty(map)
% 找到拥有最小传输延迟的移动设备-MEC服务器对
[min_Js,index] = min(map(:,3));
% 找到最小延迟对应的min_i和min_j
min_i = map(index,1);
min_j = map(index,2);
% 此时只考虑卸载执行,即不比较卸载执行是否为三者最佳
if rand() <= eps
if flags(min_j) <= UB
% 从map中删除该键值对并同步一系列共同维护的变量
map(index,:) = [];
% 对应的MEC服务器自增1(该操作的位置发生了变化,论文此处需要修改)
flags(min_j) = flags(min_j) + 1;
% 将J_s_matrix(min_i,min_j)设为inf
J_s_matrix(min_i,min_j) = inf;
else
if min(J_s_matrix(min_i,:)) ~= inf
% 当该移动设备还有能选的服务器的时候,不断找能找到的最小的那个
% 此处论文需要补充!找到最小的那个之后,覆盖map中该移动设备选取的服务器,并覆盖对应的Js最小值
[min_Js_second, min_j_second] = min(J_s_matrix(min_i,:));
map(index,2:3) = [min_j_second,min_Js_second];
% 返回最外层的while,重新开始找最小的Js
continue;
else
% 没有服务器可以选了,只能在另外两种mode中选取
% 重新设置指示变量
[~, mode] = min([J_m(min_i), inf, phi]);
indicator(t, i) = mode;
% 从map中删除该键值对并同步一系列共同维护的变量(此处论文需要补充)
map(index,:) = [];
%{
==min_i已绝无再出现的可能,因此没有必要再将J_s_matrix(min_i,min_j)设为inf==
J_s_matrix(min_i,min_j) = inf;
%}
end
end
else
[~, mode] = min([J_m(i), J_s_best, phi]);
if mode == 2
% 当前最优模式仍为卸载执行
if flags(min_j) <= UB
% 从map中删除该键值对并同步一系列共同维护的变量
map(index,:) = [];
% 对应的MEC服务器自增1(该操作的位置发生了变化,论文此处需要修改)
flags(min_j) = flags(min_j) + 1;
% 将J_s_matrix(min_i,min_j)设为inf
J_s_matrix(min_i,min_j) = inf;
else
if min(J_s_matrix(min_i,:)) ~= inf
% 当该移动设备还有能选的服务器的时候,不断找能找到的最小的那个
% 此处论文需要补充!找到最小的那个之后,覆盖map中该移动设备选取的服务器,并覆盖对应的Js最小值
[min_Js_second, min_j_second] = min(J_s_matrix(min_i,:));
map(index,2:3) = [min_j_second,min_Js_second];
% 返回最外层的while,重新开始找最小的Js
continue;
else
% 没有服务器可以选了,只能在另外两种mode中选取
% 重新设置指示变量
[~, mode] = min([J_m(min_i), inf, phi]);
indicator(t,i) = mode;
% 从map中删除该键值对并同步一系列共同维护的变量(此处论文需要补充)
map(index,:) = [];
%{
==min_i已绝无再出现的可能,因此没有必要再将J_s_matrix(min_i,min_j)设为inf==
J_s_matrix(min_i,min_j) = inf;
%}
end
end
else
% 设置新的最优模式,并从map中删除本键值对及维护的变量
indicator(t,i) = mode;
map(index,:) = [];
end
end
end
end
% 计算每一个移动设备的execution cost
cost(t,indicator(t,:)==1) = local_execution_delay(t,indicator(t,:)==1);
cost(t,indicator(t,:)==2) = remote_execution_delay(t,indicator(t,:)==2);
cost(t,indicator(t,:)==3) = phi;
% 计算每一个移动设备的总能耗
E_all(t,indicator(t,:)==1) = E_local(t,indicator(t,:)==1);
E_all(t,indicator(t,:)==2) = E_remote(t,indicator(t,:)==2);
E_all(t,indicator(t,:)==3) = 0;
% 中间结果输出
task_num = N - size(find(indicator(t,:)==4),2);
local_rate = size(find(indicator(t,:)==1),2)/task_num;
offloading_rate = size(find(indicator(t,:)==2),2)/task_num;
drop_rate = size(find(indicator(t,:)==3),2)/task_num;
mode_num(t,:) = [local_rate,offloading_rate,drop_rate];
disp(['在第',num2str(t),'轮:']);
disp(['本地执行的移动设备占比: ',num2str(local_rate)]);
disp(['卸载执行的移动设备占比: ',num2str(offloading_rate)]);
disp(['任务丢弃的移动设备占比: ',num2str(drop_rate)]);
disp('-----------------------------------');
% 移动设备电量迭代
B(t+1,:) = B(t,:) - E_all(t,:) + e(t,:);
% 时间片迭代
t = t + 1;
end
%% 结果总结
disp('--------------迭代结束--------------');
disp(['本地执行的平均移动设备占比: ', num2str(mean(mode_num(:,1)))]);
disp(['卸载执行的平均移动设备占比: ', num2str(mean(mode_num(:,2)))]);
disp(['任务丢弃的平均移动设备占比: ', num2str(mean(mode_num(:,3)))]);