-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathCNN.py
161 lines (124 loc) · 4.6 KB
/
CNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
tf.logging.set_verbosity(tf.logging.INFO)
import re
import numpy
import os
import tensorflow as tf
from random import randint
def read_pgm(filename, byteorder='>'):
with open(filename, 'rb') as f:
buffer = f.read()
try:
header, width, height, maxval = re.search(
b"(^P5\s(?:\s*#.*[\r\n])*"
b"(\d+)\s(?:\s*#.*[\r\n])*"
b"(\d+)\s(?:\s*#.*[\r\n])*"
b"(\d+)\s(?:\s*#.*[\r\n]\s)*)", buffer).groups()
except AttributeError:
raise ValueError("Not a raw PGM file: '%s'" % filename)
return numpy.frombuffer(buffer,
dtype='u1' if int(maxval) < 256 else byteorder+'u2',
count=int(width)*int(height),
offset=len(header)
).reshape((int(height)*int(width)))
def import_images(image_dir, num_images):
images_tensor = numpy.zeros((num_images, 1024*1024))
i = 0
for dirName, subdirList, fileList in os.walk(image_dir):
for fname in fileList:
if fname.endswith(".pgm"):
images_tensor[i] = read_pgm(image_dir+fname, byteorder='<')
i += 1
# Create a tensor for the labels
labels_tensor = numpy.zeros(num_images,dtype=np.int32)
f = open("data.txt", 'r')
for line in f:
image_num = int(line.split()[0].replace("mdb", ""))-1
abnormality = line.split()[2]
if abnormality == "CALC":
labels_tensor[image_num] = 1
elif abnormality == "CIRC":
labels_tensor[image_num] = 2
elif abnormality == "SPIC":
labels_tensor[image_num] = 3
elif abnormality == "MISC":
labels_tensor[image_num] = 4
elif abnormality == "ARCH":
labels_tensor[image_num] = 5
elif abnormality == "ASYM":
labels_tensor[image_num] = 6
elif abnormality == "NORM":
labels_tensor[image_num] = 7
return images_tensor, labels_tensor
def cnn_model_fn(features, labels, mode):
input_layer = tf.reshape(features["x"], [-1, 1024, 1024, 1])
conv1 = tf.layers.conv2d(
inputs=input_layer,
filters=32,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu)
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[8, 8], strides=8)
conv2 = tf.layers.conv2d(
inputs=pool1,
filters=64,
kernel_size=[11, 11],
padding="same",
activation=tf.nn.relu)
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[8, 8], strides=8)
pool2_flat = tf.reshape(pool2, [-1, 16 * 16 * 64])
dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu)
dropout = tf.layers.dropout(
inputs=dense, rate=0.4, training=mode == tf.estimator.ModeKeys.TRAIN)
logits = tf.layers.dense(inputs=dropout, units=10)
predictions = {
"classes": tf.argmax(input=logits, axis=1),
"probabilities": tf.nn.softmax(logits, name="softmax_tensor")
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(
loss=loss,
global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
eval_metric_ops = {
"accuracy": tf.metrics.accuracy(
labels=labels, predictions=predictions["classes"])}
return tf.estimator.EstimatorSpec(
mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)
def main(unused_argv):
train_data , train_labels = import_images("./images/", 322)
eval_data , eval_labels = train_data , train_labels
mnist_classifier = tf.estimator.Estimator(
model_fn=cnn_model_fn, model_dir="/tmp/breast_cancer")
tensors_to_log = {"probabilities": "softmax_tensor"}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=50)
# Train the model
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": train_data.astype(np.float32)},
y=train_labels.astype(np.int32),
batch_size=10,
num_epochs=None,
shuffle=True)
mnist_classifier.train(
input_fn=train_input_fn,
steps=10,
hooks=[logging_hook])
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": eval_data.astype(np.float32)},
y=eval_labels.astype(np.int32),
batch_size=5,
num_epochs=1,
shuffle=False)
eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
print(eval_results)
if __name__ == "__main__":
tf.app.run()