-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathMemImage.cpp
2207 lines (1923 loc) · 54.4 KB
/
MemImage.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* MemImage.cpp : (C) 2008 Patrick Cyr
Implements MemImage class. There are 4 types of MemImages, palettized/RGB & alpha/no-alpha.
MemImage has built-in functions to convert between any of it's types. MemImage also
implements Save/Load functions for various file types. Currently, just PNG and BLP.
Because all types of PNG and BLP load into the same 4 types of MemImages, you can convert
any of the supported file types into any of the others.
TODO: Break the specific loading and saving functions out and keep them in arrays to
make it easier to add support for other file types.
*/
//#define SQUISH_USE_SSE 1
#ifndef LINUX
#include <stdio.h>
#else
#include "port.h"
#include <libgen.h>
#include <sys/types.h>
#include <dirent.h>
#include <fnmatch.h>
#include <errno.h>
#endif
#include <memory.h>
#include <math.h>
#include <set>
#include <list>
#include <png.h>
#include "MemImage.h"
#include "squish/squish.h"
#include "BLP.h"
#include "palbmp/palettize.h"
#include "palbmp/palcreate.h"
const char* FORMATIDNames[] = {
"[UNSPECIFIED]",
"BLP_PAL_A0",
"BLP_PAL_A1",
"BLP_PAL_A4",
"BLP_PAL_A8",
"BLP_DXT1_A0",
"BLP_DXT1_A1",
"BLP_DXT3",
"BLP_DXT5",
"BLP_BGRa",
"PNG_PAL",
"PNG_PAL_MASK",
"PNG_RGB",
"PNG_RGBA",
};
const char* FORMATIDDescriptions[] = {
"[INVALID]",
"Palettized (no alpha)",
"Palettized (1-bit alpha)",
"Palettized (4-bit alpha)",
"Palettized (full alpha)",
"DXT1 (no alpha)",
"DXT1 (alpha)",
"DXT3",
"DXT5",
"BGRa",
"Palettized (no alpha)",
"Palettized (with transparency)",
"RGB",
"RGBA",
};
FORMATID MemImage::s_ruleTable[FORMAT_COUNT] =
{
FORMAT_UNSPECIFIED,
PNGTYPE_PALETTIZED, // < BLPTYPE_PAL_ALPHA0,
PNGTYPE_PALETTIZED_ALPHAMASK, // < BLPTYPE_PAL_ALPHA1,
PNGTYPE_RGBA, // < BLPTYPE_PAL_ALPHA4,
PNGTYPE_RGBA, // < BLPTYPE_PAL_ALPHA8,
PNGTYPE_RGB, // < BLPTYPE_DXT1_ALPHA0,
PNGTYPE_RGBA, // < BLPTYPE_DXT1_ALPHA1,
PNGTYPE_RGBA, // < BLPTYPE_DXT3
PNGTYPE_RGBA, // < BLPTYPE_DXT5,
PNGTYPE_RGBA, // < BLPTYPE_BGRA
BLPTYPE_PAL_ALPHA0, // < PNGTYPE_PALETTIZED,
BLPTYPE_PAL_ALPHA1, // < PNGTYPE_PALETTIZED_ALPHAMASK,
BLPTYPE_DXT1_ALPHA0, // < PNGTYPE_RGB,
BLPTYPE_DXT3, // < PNGTYPE_RGBA,
};
///////////////////////////////////////////////////////////////////////////////
// Mip Stuff
// http://number-none.com/product/Mipmapping,%20Part%201/index.html
#define RO 0
#define GO 1
#define BO 2
/*
w = width of image, used to keep things within the borders. this kicks in when converting from a 2x1->1x1 mip, etc.
h = height of image
c = "color", a byte offset. for example, for an rgb image, specify 1 if you want the green component.
b = bytes per pixel, ie 1 = palettized, 3 = rgb, 4 = rgba
*/
int OFFSET_RGB(int x, int y, int w, int h, int c, int b)
{
if (x >= w)
x = w - 1;
if (y >= h)
y = h - 1;
return ((y * w * b) + (x * b) + c);
}
const BYTE SO[4][2] =
{
{0, 0},
{0, 1},
{1, 0},
{1, 1},
};
///////////////////////////////////////////////////////////////////////////////
// Palette sorting code.
struct HSB
{
BYTE index;
DWORD h;
DWORD s;
DWORD b;
bool operator<(HSB& rhs)
{
if (h < rhs.h) return true;
else if (h > rhs.h) return false;
if (s < rhs.s) return true;
else if (s > rhs.s) return false;
if (b < rhs.b) return true;
else if (b > rhs.b) return false;
return false;
}
};
HSB RGBToHSB(int r, int g, int b)
{
HSB hsb;
int BMax = 0, BMin = 0, grey = 0, hue = 0, sat = 0;
float bright = 0, diff = 0, TempHue = 0;
if (r > g)
if (r > b)
BMax = r;
else
BMax = b;
else
if (g > b)
BMax = g;
else
BMax = b;
if (r < g)
if (r < b)
BMin = r;
else
BMin = b;
else
if (g < b)
BMin = g;
else
BMin = b;
diff = float(BMax - BMin);
if (BMin > 0)
{
bright = ((float)BMin/255) + (diff/255);
grey = int(((float)BMin / bright) + 0.5f);
sat = int((100 - (((float)grey/255) * 100)) + 0.5f);
bright = (float(bright * 100) + 0.5f);
if (r == BMax)
{
TempHue = (float)(g - b) / diff;
}
else if (g == BMax)
{
TempHue = 2 + (float)(b - r) / diff;
}
else if (b == BMax)
{
TempHue = 4 + (float)(r - g) / diff;
}
hue = int(TempHue * 60.0f);
if (hue < 0)
hue = hue + 360;
}
hsb.b = DWORD(bright);
hsb.h = hue;
hsb.s = sat;
return hsb;
}
typedef std::list<HSB> THSBList;
void SortPalette(BYTE* palette, int numEntries)
{
THSBList hsbList;
HSB hsb;
int ii;
for (ii = 0; ii < numEntries; ++ii)
{
hsb = RGBToHSB(palette[ii*3 + 0], palette[ii*3 + 1], palette[ii*3 + 2]);
hsb.index = ii;
hsbList.insert(hsbList.end(), hsb);
}
hsbList.sort();
BYTE tempPalette[MEMIMAGE_PALETTEBYTES];
THSBList::iterator it;
for (it = hsbList.begin(), ii = 0; it != hsbList.end(); ++it, ++ii)
{
HSB* pHSB = &(*it);
int ix = pHSB->index;
tempPalette[ii*3 + 0] = palette[ix*3 + 0];
tempPalette[ii*3 + 1] = palette[ix*3 + 1];
tempPalette[ii*3 + 2] = palette[ix*3 + 2];
}
memcpy(palette, tempPalette, numEntries*3);
}
///////////////////////////////////////////////////////////////////////////////
// BitArray struct--used to simplify access to the 1-bit alpha array.
struct BitArray
{
BYTE* m_buffer;
DWORD m_bytes;
DWORD m_length;
BitArray();
~BitArray();
void Clear();
void SetLength(DWORD length);
// Returns either 0x00 or 0x01, or 0xFF if error
BYTE Get(DWORD index) const;
// bit needs to be either 0x00 or 0x01.
bool Set(DWORD index, BYTE bit);
};
BitArray::BitArray()
{
m_buffer = NULL;
Clear();
}
BitArray::~BitArray()
{
Clear();
}
void BitArray::Clear()
{
delete[] m_buffer;
m_buffer = NULL;
m_bytes = 0;
m_length = 0;
}
void BitArray::SetLength(DWORD length)
{
Clear();
m_bytes = length/8 + (length%8 == 0 ? 0 : 1);
m_length = length;
m_buffer = new BYTE[m_bytes];
::memset(m_buffer, 0, m_bytes);
}
BYTE BitArray::Get(DWORD index) const
{
if (index >= m_length)
return 0xFF;
return m_buffer[index/8] & (0x1 << index%8);
}
// bit needs to be either 0x00 or 0x01.
bool BitArray::Set(DWORD index, BYTE bit)
{
if (index >= m_length)
return false;
if (0x00 != bit && 0x01 != bit)
return false;
BYTE& hostByte = m_buffer[index/8];
BYTE mask = (bit << index%8);
if (bit)
hostByte = m_buffer[index/8] | mask;
else if (hostByte & mask)
hostByte -= mask;
//else both are already zero.
return true;
}
///////////////////////////////////////////////////////////////////////////////
// This class is used for SAVING BLP files.
class BLPMemFile
{
public:
BLPHeader aHeader;
BYTE aPalette[4 * 256];
BYTE* pMips[16];
public:
BLPMemFile()
{
memcpy(aHeader.id, BLPID, 4);
aHeader.version = 1;
for (int iMip = 0; iMip < 16; ++iMip)
{
aHeader.mipSizes[iMip] = 0;
aHeader.mipOffsets[iMip] = 0;
}
memset(&aPalette, 0, sizeof(BYTE) * 4 * 256);
int mipIndex;
for (mipIndex = 0; mipIndex < 16; ++mipIndex)
{
pMips[mipIndex] = NULL;
}
}
~BLPMemFile()
{
Unload();
}
void Unload()
{
int mipIndex;
for (mipIndex = 0; mipIndex < 16; ++mipIndex)
{
delete[] pMips[mipIndex];
pMips[mipIndex] = NULL;
}
}
void SetPalette(const png_color* pPaletteEntries)
{
int ii;
for (ii = 0; ii < 256; ++ii)
{
// BLP palettes are BGRA
aPalette[ii * 4 + 2] = pPaletteEntries[ii].red;
aPalette[ii * 4 + 1] = pPaletteEntries[ii].green;
aPalette[ii * 4 + 0] = pPaletteEntries[ii].blue;
aPalette[ii * 4 + 3] = 0; // guessing. Seems to have no affect.
}
}
bool Save(const char* pszFilename)
{
// Calculate the mip offsets.
DWORD offset = sizeof(BLPHeader) + (sizeof(BYTE) * 4 * 256);
int mipIndex = 0;
int mipCount = 0;
for (mipIndex = 0; mipIndex < 16; ++mipIndex)
{
if (aHeader.mipSizes[mipIndex] > 0)
{
++mipCount;
aHeader.mipOffsets[mipIndex] = offset;
offset += aHeader.mipSizes[mipIndex];
}
else
{
break;
}
}
// Open the file for writing.
FILE* hOutputFile = ::fopen(pszFilename, "wb");
if (NULL == hOutputFile)
{
printf("ERROR: Couldn't open %s for writing.", pszFilename);
return false;
}
////////////////
if (MemImage::s_bVerbose)
{
LOG("\t%dx%d\n", aHeader.xResolution, aHeader.yResolution);
LOG("\tencoding = %d (%s)\n", aHeader.encoding, (aHeader.encoding < BLP_ENCODING_COUNT ? encodingStrings[aHeader.encoding]: "UNRECOGNIZED"));
LOG("\talphaBitDepth = %d\n", aHeader.alphaBitDepth);
LOG("\talphaEncoding = %d\n", aHeader.alphaEncoding);
if (aHeader.hasMips)
LOG("\t%d mips\n", mipCount);
else
LOG("\tno mips\n");
}
/////////////////
// Write the header.
::fwrite(&aHeader, sizeof(BLPHeader), 1, hOutputFile);
// Write the palette.
::fwrite(&aPalette, sizeof(BYTE) * 4, 256, hOutputFile);
// Output each mip level.
for (mipIndex = 0; mipIndex < 16; ++mipIndex)
{
if (aHeader.mipSizes[mipIndex] > 0)
{
::fwrite(pMips[mipIndex], sizeof(BYTE), aHeader.mipSizes[mipIndex], hOutputFile);
}
}
/////////////////
// Close file.
::fclose(hOutputFile);
hOutputFile = NULL;
return true;
}
};
///////////////////////////////////////////////////////////////////////////////
// MemImage class
// Public settings.
bool MemImage::s_bCreateMipTestImage = false;
float MemImage::s_fGammaFactor = 1.0;
BYTE MemImage::s_byAlphaThreshold = 0x80;
bool MemImage::s_bVerbose = false;
bool MemImage::s_bNoMips = false;
bool MemImage::s_bOnlyWarnOnPatch = false;
MemImage::MemImage()
{
m_buffer = NULL;
m_bufferBytes = 0;
Clear();
}
MemImage::~MemImage()
{
Clear();
}
MemImage::MemImage(const MemImage &rhs)
{
m_buffer = NULL;
m_bufferBytes = 0;
Clear();
Copy(rhs);
}
MemImage& MemImage::operator=(const MemImage& rhs)
{
Clear();
Copy(rhs);
return *this;
}
void MemImage::Copy(const MemImage& rhs)
{
m_bHasAlpha = rhs.m_bHasAlpha;
m_bPalettized = rhs.m_bPalettized;
m_width = rhs.m_width;
m_height = rhs.m_height;
::memcpy(m_palette, rhs.m_palette, MEMIMAGE_PALETTEBYTES);
m_buffer = new BYTE[rhs.m_bufferBytes];
m_bufferBytes = rhs.m_bufferBytes;
::memcpy(m_buffer, rhs.m_buffer, rhs.m_bufferBytes);
}
void MemImage::Clear()
{
m_bPalettized = false;
m_bHasAlpha = false;
m_width = 0;
m_height = 0;
if (m_buffer)
{
delete[] m_buffer;
m_buffer = NULL;
m_bufferBytes = 0;
}
}
bool MemImage::AllocateBuffer(DWORD bytes)
{
if (0 == bytes)
bytes = CalculateBufferBytes(m_width, m_height, m_bHasAlpha, m_bPalettized);
if (m_buffer)
{
delete[] m_buffer;
m_bufferBytes = 0;
}
m_buffer = new BYTE[bytes];
if (NULL == m_buffer)
{
LOG("ERROR: Failed to allocate buffer (%d bytes).\n", bytes);
return false;
}
m_bufferBytes = bytes;
return true;
}
LoadResult MemImage::LoadFromBLP(const char* filename, FORMATID* blpTypeRet)
{
Clear();
FILE* fileInput = ::fopen(filename, "rb");
if (NULL == fileInput)
{
errno_t err;
_get_errno( &err );
LOG("ERROR opening %s: %s.\n", filename, ::strerror(err));
return LOADRESULT_FILEERROR;
}
if (s_bVerbose)
LOG("%s:\n", filename);
// Load the entire file into a buffer.
::fseek(fileInput, 0, SEEK_END);
DWORD dwFileBytes = ::ftell(fileInput);
BYTE* fileBuffer = new BYTE[dwFileBytes];
::fseek(fileInput, 0, SEEK_SET);
::fread(fileBuffer, dwFileBytes, 1, fileInput);
::fclose(fileInput);
// File size sanity check.
if (dwFileBytes < sizeof(BLPHeader))
{
LOG("ERROR: File size (%d) is smaller than the size of a header, not a known type of BLP.\n", dwFileBytes);
return LOADRESULT_NOTBLP;
}
BLPHeader* pHeader = (BLPHeader*) fileBuffer;
BYTE* pPalette = (BYTE*) &(fileBuffer[sizeof(BLPHeader)]);
// Check Header 4-character id.
char id[5];
::strncpy(id, pHeader->id, 4);
id[4] = 0;
if (0 != ::strcmp("BLP2", id))
{
if (0 == ::strcmp("PTCH", id))
{
LOG("WARNING: This is a Patch (PTCH) file, not an actual BLP (BLP2).\n");
return LOADRESULT_PATCH;
}
LOG("ERROR: Unexpected ID '%s'--not a BLP file?\n", id);
return LOADRESULT_NOTBLP;
}
// Check Version
if (1 != pHeader->version)
{
LOG("ERROR: Unsupported BLP version %d.\n", pHeader->version);
return LOADRESULT_VERSION;
}
/////////////////////
m_width = pHeader->xResolution;
m_height = pHeader->yResolution;
DWORD pixelCount = m_width*m_height;
if (s_bVerbose)
{
LOG("\t%dx%d\n", pHeader->xResolution, pHeader->yResolution);
LOG("\tencoding = %d (%s)\n", pHeader->encoding, (pHeader->encoding < BLP_ENCODING_COUNT ? encodingStrings[pHeader->encoding]: "UNRECOGNIZED"));
LOG("\talphaBitDepth = %d\n", pHeader->alphaBitDepth);
LOG("\talphaEncoding = %d\n", pHeader->alphaEncoding);
if (pHeader->hasMips)
{
int mipCount = 0;
while(NULL != pHeader->mipOffsets[mipCount])
++mipCount;
LOG("\t%d mips\n", mipCount);
}
else
LOG("\tno mips\n");
}
// Determine the BLP type.
FORMATID blpType = FORMAT_UNSPECIFIED;
if (BLP_ENCODING_PALETTIZED == pHeader->encoding)
{
m_bPalettized = true;
// Determine alpha type.
m_bHasAlpha = false;
DWORD bpp = 1;
switch (pHeader->alphaBitDepth)
{
case 0: blpType = BLPTYPE_PAL_ALPHA0; break;
case 1: blpType = BLPTYPE_PAL_ALPHA1; m_bHasAlpha = true; bpp = 2; break;
case 4: blpType = BLPTYPE_PAL_ALPHA4; m_bHasAlpha = true; bpp = 2; break;
case 8: blpType = BLPTYPE_PAL_ALPHA8; m_bHasAlpha = true; bpp = 2; break;
default: LOG("ERROR: BLP 'alphaBitDepth' field an unrecognized value (%d).\n", pHeader->alphaBitDepth); break;
}
// Save the palette.
// Note that our palette is RGB, but BLP palettes are BGRx.
for (int ii = 0; ii < 256; ++ii)
{
m_palette[ii*3 + 0] = pPalette[ii*4 + 2];
m_palette[ii*3 + 1] = pPalette[ii*4 + 1];
m_palette[ii*3 + 2] = pPalette[ii*4 + 0];
}
// Save the image data.
if (!AllocateBuffer(m_width * m_height * bpp))
return LOADRESULT_MEMORY;
// Save image data.
BYTE* pImageData = &(fileBuffer[pHeader->mipOffsets[0]]);
switch (blpType)
{
case BLPTYPE_PAL_ALPHA0:
case BLPTYPE_PAL_ALPHA8:
{
::memcpy(m_buffer, pImageData, m_bufferBytes);
break;
}
case BLPTYPE_PAL_ALPHA1:
{
::memcpy(m_buffer, pImageData, pixelCount);
// Convert the 1-bit alpha channel to 8-bit.
BYTE* pAlphaData = &(pImageData[pixelCount]);
for (DWORD ii = 0; ii < pixelCount; ++ii)
{
m_buffer[pixelCount + ii] = (pAlphaData[ii / 8] & (0x1 << (ii % 8))) ? 0xFF : 0;
}
break;
}
case BLPTYPE_PAL_ALPHA4:
{
::memcpy(m_buffer, pImageData, pixelCount);
// Convert the 4-bit alpha channel to 8-bit.
BYTE* pAlphaData = &(pImageData[pixelCount]);
for (DWORD ii = 0; ii < pixelCount; ++ii)
{
// Two alpha values per byte.
// Note: This could obviously be made faster but I wanted it to be clear as possible.
BYTE by = pAlphaData[ii / 2]; // The byte
BYTE mask = 0xF << (ii % 2)*4; // The mask to get which of the two we want.
BYTE maskedBy = by & mask; // The masked byte.
DWORD shift = (ii % 2)*4; // The amount of shift needed.
BYTE alpha4 = maskedBy >> shift; // The 4-bit alpha value.
BYTE alpha = BYTE(float(0xFF) * (float(alpha4) / float(0xF))); // Translated into 8-bit.
m_buffer[pixelCount + ii] = alpha;
}
break;
}
}
}
else if (BLP_ENCODING_COMPRESSED == pHeader->encoding)
{
m_bPalettized = false;
int squishFlags = squish::kDxt1;
m_bHasAlpha = true;
switch (pHeader->alphaBitDepth)
{
case 0: blpType = BLPTYPE_DXT1_ALPHA0; m_bHasAlpha = false; break;
case 1: blpType = BLPTYPE_DXT1_ALPHA1; break;
case 4:
{
switch (pHeader->alphaEncoding)
{
// NOTE: There is no known way to make DXT3 data be "4 bit" instead of "8 bit".
// Presumably it is just an anomaly of some textures that they have
// this set.
case 1: blpType = BLPTYPE_DXT3; squishFlags = squish::kDxt3; break;
default: LOG("ERROR: BLP 'alphaEncoding' field an unrecognized value (%d).\n", pHeader->alphaEncoding); break;
}
break;
}
case 8:
{
switch (pHeader->alphaEncoding)
{
case 1: blpType = BLPTYPE_DXT3; squishFlags = squish::kDxt3; break;
case 7: blpType = BLPTYPE_DXT5; squishFlags = squish::kDxt5; break;
default: LOG("ERROR: BLP 'alphaEncoding' field an unrecognized value (%d).\n", pHeader->alphaEncoding); break;
}
break;
}
case 72:
{
// Only seeing this on doodads.
LOG("WARNING: alphaBitDepth = 72, which is recognized but not well understood. Treating as DXT5.\n");
switch (pHeader->alphaEncoding)
{
case 7:
default:
blpType = BLPTYPE_DXT5; squishFlags = squish::kDxt5;
break;
}
break;
}
default: LOG("ERROR: BLP 'alphaBitDepth' field an unrecognized value (%d).\n", pHeader->alphaBitDepth); break;
}
////////////
void* Source = &(fileBuffer[pHeader->mipOffsets[0]]);
squish::u8* Dest = new squish::u8[ m_width * m_height * 4 ];
// Do the conversion.
squish::DecompressImage( Dest,
m_width,
m_height,
Source,
squishFlags);
// Create a buffer for the data.
DWORD bpp = (0 == pHeader->alphaBitDepth) ? 3 : 4;
if (!AllocateBuffer(m_width * m_height * bpp))
return LOADRESULT_MEMORY;
// Copy into our own buffer.
if (0 == pHeader->alphaBitDepth)
{
for (DWORD ii = 0; ii < pixelCount; ++ii)
{
::memcpy(&m_buffer[ii*3], &Dest[ii*4], 3);
}
}
else
{
::memcpy(m_buffer, Dest, m_width*m_height*bpp);
}
// Cleanup.
delete[] Dest;
Dest = NULL;
}
else if (BLP_ENCODING_BGRA == pHeader->encoding)
{
blpType = BLPTYPE_BGRA;
m_bPalettized = false;
m_bHasAlpha = true;
if (8 != pHeader->alphaBitDepth)
{
LOG("WARNING: alphaBitDepth is %d, expected 8. Will treat data as though it was 8.\n");
}
if (m_width * m_height * 4 != pHeader->mipSizes[0])
{
LOG("ERROR: mip0 size unexpected.");
return LOADRESULT_ERROR;
}
if (!AllocateBuffer(m_width * m_height * 4))
return LOADRESULT_MEMORY;
BYTE* source = &(fileBuffer[pHeader->mipOffsets[0]]);
for (DWORD ii = 0; ii < m_width * m_height; ++ii)
{
m_buffer[ii*4 + 0] = source[ii*4 + 2];
m_buffer[ii*4 + 1] = source[ii*4 + 1];
m_buffer[ii*4 + 2] = source[ii*4 + 0];
m_buffer[ii*4 + 3] = source[ii*4 + 3];
}
}
if (FORMAT_UNSPECIFIED == blpType)
{
LOG("ERROR: Unexpected blp format.\n");
return LOADRESULT_ERROR;
}
if (blpTypeRet)
*blpTypeRet = blpType;
if (s_bVerbose)
LOG("\tFormat = %s (%s).\n", FORMATIDNames[blpType], FORMATIDDescriptions[blpType]);
// Cleanup.
delete[] fileBuffer;
return LOADRESULT_SUCCESS;
}
bool MemImage::LoadFromPNG(const char* filename, FORMATID* pngTypeRet)
{
bool retVal = true;
// Clear any existing content.
Clear();
// Open the PNG.
png_structp png_ptr;
png_infop info_ptr;
unsigned int sig_read = 0;
FILE *fp;
if ((fp = ::fopen(filename, "rb")) == NULL)
{
errno_t err;
_get_errno( &err );
LOG("ERROR opening %s: %s.\n", filename, ::strerror(err));
return false;
}
if (s_bVerbose)
LOG("%s:\n", filename);
/* Create and initialize the png_struct with the desired error handler
* functions. If you want to use the default stderr and longjump method,
* you can supply NULL for the last three parameters. We also supply the
* the compiler header file version, so that we know if the application
* was compiled with a compatible version of the library. REQUIRED
*/
png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL);
if (png_ptr == NULL)
{
fclose(fp);
return false;
}
/* Allocate/initialize the memory for image information. REQUIRED. */
info_ptr = png_create_info_struct(png_ptr);
if (info_ptr == NULL)
{
fclose(fp);
png_destroy_read_struct(&png_ptr, png_infopp_NULL, png_infopp_NULL);
return false;
}
/* Set error handling if you are using the setjmp/longjmp method (this is
* the normal method of doing things with libpng). REQUIRED unless you
* set up your own error handlers in the png_create_read_struct() earlier.
*/
if (setjmp(png_jmpbuf(png_ptr)))
{
/* Free all of the memory associated with the png_ptr and info_ptr */
png_destroy_read_struct(&png_ptr, &info_ptr, png_infopp_NULL);
fclose(fp);
/* If we get here, we had a problem reading the file */
return false;
}
/* Set up the input control if you are using standard C streams */
png_init_io(png_ptr, fp);
/* If we have already read some of the signature */
png_set_sig_bytes(png_ptr, sig_read);
/*
* If you have enough memory to read in the entire image at once,
* and you need to specify only transforms that can be controlled
* with one of the PNG_TRANSFORM_* bits (this presently excludes
* dithering, filling, setting background, and doing gamma
* adjustment), then you can read the entire image (including
* pixels) into the info structure with this call:
*/
png_read_png(png_ptr, info_ptr, PNG_TRANSFORM_IDENTITY, png_voidp_NULL);
/* At this point you have read the entire image */
///////////////////////////////////////////////////////////////////////////
m_width = info_ptr->width;
m_height = info_ptr->height;
DWORD pixelCount = m_width * m_height;
if (s_bVerbose)
LOG("\t%dx%d\n", m_width, m_height);
// Create a buffer for the image data.
DWORD imageBytes = info_ptr->rowbytes * info_ptr->height * (info_ptr->num_trans == 0 ? 1 : 2);
if (!AllocateBuffer(imageBytes))
return false;
// Copy the data in row by row.
if (info_ptr->color_type == PNG_COLOR_TYPE_RGB_ALPHA ||
info_ptr->color_type == PNG_COLOR_TYPE_RGB ||
(info_ptr->color_type == PNG_COLOR_TYPE_PALETTE && info_ptr->num_trans == 0))
{
for (DWORD row = 0; row < info_ptr->height; ++row)
{
memcpy(&m_buffer[row*info_ptr->rowbytes], info_ptr->row_pointers[row], info_ptr->rowbytes);
}
}
else if (info_ptr->color_type == PNG_COLOR_TYPE_PALETTE && info_ptr->num_trans > 0)
{
for (DWORD row = 0; row < info_ptr->height; ++row)
{
for (DWORD ii = 0; ii < info_ptr->width; ++ii)
{
BYTE palIx = info_ptr->row_pointers[row][ii];
m_buffer[row*info_ptr->rowbytes + ii] = palIx;
BYTE alpha = 255;
if (palIx < info_ptr->num_trans)
alpha = info_ptr->trans[palIx];
m_buffer[pixelCount + row*info_ptr->rowbytes + ii] = alpha;
}
}
}
else
{
printf("ERROR: PNG format unsupported. Format = %d", info_ptr->color_type);
return false;
}
// Copy the palette.
if (info_ptr->palette)
{
// Assuming here that png_color is 3 bytes (it is at time of writing).
memcpy(m_palette, info_ptr->palette, info_ptr->num_palette*sizeof(png_color));
}
///////////////////////////////////////////////////////////////////////////
// Print image info.
FORMATID type = FORMAT_UNSPECIFIED;
m_bPalettized = false;
m_bHasAlpha = false;
if (PNG_COLOR_TYPE_PALETTE == info_ptr->color_type)
{
m_bPalettized = true;
if (s_bVerbose)
LOG("\t%d palette entries\n", info_ptr->num_palette);
if (info_ptr->num_trans == 0)
{
type = PNGTYPE_PALETTIZED;
}
else
{
type = PNGTYPE_PALETTIZED_ALPHAMASK;
if (s_bVerbose)
LOG("\t%d transparency values\n", info_ptr->num_trans);
m_bHasAlpha = true;
}
}
else if (PNG_COLOR_TYPE_RGB_ALPHA == info_ptr->color_type)
{
type = PNGTYPE_RGBA;
m_bHasAlpha = true;
}
else if (PNG_COLOR_TYPE_RGB == info_ptr->color_type)
{
type = PNGTYPE_RGB;
}
else
{
printf("ERROR: Unsupported PNG format.\n");
retVal = false;
}
if (pngTypeRet)
*pngTypeRet = type;
if (s_bVerbose)
LOG("\tFormat = %s (%s).\n", FORMATIDNames[type], FORMATIDDescriptions[type]);
///////////////////////////////////////////////////////////////////////////
/* clean up after the read, and free any memory allocated - REQUIRED */
png_destroy_read_struct(&png_ptr, &info_ptr, png_infopp_NULL);
/* close the file */
fclose(fp);
/* that's it */