-
Generate graph feature database in a pickle file
- top_db.py : creates TOP feature database using RDKit
- qc1_3d.py : generates 3D molecular structures for the QC1 database
- qc1_db.py : aggregates the 3D structures and calculates features
- qc2_db.py : calculates BDE features for the QC2 model and stores them in a pickle file
-
Run the prediction script with the associated model and database
- pred_afb.py : predict a spectra using the QC2 model
-
Install:
git clone https://github.com/PNNL-m-q/qcgnoms.git
cd qcgnoms
mamba env create -f qcgnoms.yml
conda activate qcgnoms
pip install .
- Example:
$ python
>>> from qcgnoms import predict_msms
mz, itn = predict_msms("CC(C)/C=C/CCCCC(=O)NCC1=CC(=C(C=C1)O)OC", 45)
- Collision Energy in eV
- InChI
- Smiles
- M/Z: numpy array of high resolution m/z values.
- Intensity: numpy array of MS intensities.
-
See data/msms_sample.pkl
-
Generate graph feature database in a pickle file
- top_db.py : creates TOP feature database using RDKit
- qc1_3d.py : generates 3D molecular structures for the QC1 database
- qc1_db.py : aggregates the 3D structures and calculates features
- qc2_db.py : calculates BDE features for the QC2 model and stores them in a pickle file
-
Test datasets are assigned by first training the control model with train_control.py
-
Test set data are located in test_set/
- torch
- torch-geometric
- alfabet https://github.com/NREL/alfabet
- xtb https://github.com/grimme-lab/xtb
- openbabel
- pandas
- matplotlib
- numpy
QC-GN2oMS2: a Graph Neural Net for High Resolution Mass Spectra Prediction
Richard Overstreet, Ethan King, Julia Nguyen, Danielle Ciesielski
bioRxiv 2023.01.16.524269; doi: https://doi.org/10.1101/2023.01.16.524269