generated from pypa/sampleproject
-
Notifications
You must be signed in to change notification settings - Fork 9
/
hubconf.py
35 lines (31 loc) · 1.21 KB
/
hubconf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from asleep.models import CNNLSTM, weight_init
import torch
dependencies = ["torch"]
def sleepnet(pretrained=True, my_device="cpu", num_classes=2, lstm_nn_size=128,
dropout_p=0.5, bi_lstm=True, lstm_layer=1, local_weight_path=""):
model = CNNLSTM(
num_classes=num_classes,
model_device=my_device,
lstm_nn_size=lstm_nn_size,
dropout_p=dropout_p,
bidrectional=bi_lstm,
lstm_layer=lstm_layer,
)
weight_init(model)
if pretrained:
if len(local_weight_path) > 0:
print("Loading local weight from %s" % local_weight_path)
state_dict = torch.load(local_weight_path,
map_location=torch.device(my_device))
model.load_state_dict(
state_dict)
else:
checkpoint = 'https://github.com/OxWearables/asleep/' \
'releases/download/0.4.9/sleepnet_apr_16_2024.mdl'
model.load_state_dict(
torch.hub.load_state_dict_from_url(
checkpoint,
progress=True,
map_location=torch.device(my_device)))
model.to(my_device, dtype=torch.float)
return model