forked from lamps-lab/ETDMiner
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtesseract_hocr.py
54 lines (45 loc) · 1.58 KB
/
tesseract_hocr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# USAGE
# python tesseract.py --image images/paper-01.tif
# python tesseract.py --image images/paper-02.tif --preprocess blur
# import the necessary packages
from PIL import Image
import pytesseract
import argparse
import cv2
import os
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
help="path to input image to be OCR'd")
ap.add_argument("-p", "--preprocess", type=str, default="thresh",
help="type of preprocessing to be done")
args = vars(ap.parse_args())
# load the example image and convert it to grayscale
image = cv2.imread(args["image"])
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv2.imshow("Image", gray)
# check to see if we should apply thresholding to preprocess the
# image
if args["preprocess"] == "thresh":
gray = cv2.threshold(gray, 0, 255,
cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
# make a check to see if median blurring should be done to remove
# noise
elif args["preprocess"] == "blur":
gray = cv2.medianBlur(gray, 3)
# write the grayscale image to disk as a temporary file so we can
# apply OCR to it
filename = "{}.tif".format(os.getpid())
cv2.imwrite(filename, gray)
# load the image as a PIL/Pillow image, apply OCR, and then delete
# the temporary file
text = pytesseract.image_to_string(Image.open(filename))
#Get the hocr file format output
#hocr = pytesseract.image_to_pdf_or_hocr(Image.open(filename), extension='hocr')
os.remove(filename)
print(text.encode('utf-8'))
#print(hocr)
# show the output images
# cv2.imshow("Image", image)
#cv2.imshow("Output", gray)
#cv2.waitKey(0)