-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
199 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
<!DOCTYPE html> | ||
<html> | ||
<head> | ||
<title>DualDn: Dual-domain Denoising via Differentiable ISP</title> | ||
<link rel="icon" type="image/x-icon" href="static/images/noise.svg"> | ||
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro" | ||
rel="stylesheet"> | ||
|
||
<link rel="stylesheet" href="static/css/bulma.min.css"> | ||
<link rel="stylesheet" href="static/css/bulma-carousel.min.css"> | ||
<link rel="stylesheet" href="static/css/bulma-slider.min.css"> | ||
<link rel="stylesheet" href="static/css/fontawesome.all.min.css"> | ||
<link rel="stylesheet" | ||
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css"> | ||
<link rel="stylesheet" href="static/css/index.css"> | ||
<link href="static/css/twentytwenty-no-compass.css" rel="stylesheet" type="text/css" /> | ||
|
||
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script> | ||
<script src="https://documentcloud.adobe.com/view-sdk/main.js"></script> | ||
<script defer src="static/js/fontawesome.all.min.js"></script> | ||
<script src="static/js/bulma-carousel.min.js"></script> | ||
<script src="static/js/bulma-slider.min.js"></script> | ||
<script src="static/js/index.js"></script> | ||
</head> | ||
|
||
<body> | ||
|
||
<section class="hero"> | ||
<div class="hero-body"> | ||
<div class="container is-max-desktop"> | ||
<div class="columns is-centered"> | ||
<div class="column has-text-centered"> | ||
<h1 class="title is-1 publication-title">DualDn: Dual-domain Denoising via Differentiable ISP</h1> | ||
<div class="is-size-5 publication-authors"> | ||
<!-- Paper authors --> | ||
<span class="author-block"> | ||
<a>Ruikang Li</a><sup>1,2</sup>,</span> | ||
<span class="author-block"> | ||
<a>Yujin Wang</a><sup>1,†</sup>,</span> | ||
<span class="author-block"> | ||
<a href="https://tangeego.github.io">Shiqi Chen</a><sup>2</sup>,</span> | ||
<span class="author-block"> | ||
<a>Fan Zhang</a><sup>1</sup>,</span> | ||
<span class="author-block"> | ||
<a href="https://www.gujinwei.org/">Jinwei Gu</a><sup>3</sup>,</span> | ||
<span class="author-block"> | ||
<a href="https://tianfan.info/">Tianfan Xue</a><sup>3</sup>,</span> | ||
</div> | ||
|
||
<div class="is-size-5 publication-authors"> | ||
<span class="author-block"><sup>1</sup>Shanghai AI Laboratory,</span> | ||
<span class="author-block"><sup>2</sup>Zhejiang University,</span> | ||
<span class="author-block"><sup>3</sup>The Chinese University of Hong Kong</span> | ||
<span class="eql-cntrb"><small><br><sup>†</sup>Indicates Corresponding Author</small></span> | ||
</div> | ||
|
||
<!-- <div class="column has-text-centered"> | ||
<div class="publication-links"> | ||
<span class="link-block"> | ||
<a href="https://arxiv.org/pdf/<ARXIV PAPER ID>.pdf" target="_blank" | ||
class="external-link button is-normal is-rounded is-dark"> | ||
<span class="icon"> | ||
<i class="fas fa-file-pdf"></i> | ||
</span> | ||
<span>Paper</span> | ||
</a> | ||
</span> | ||
<span class="link-block"> | ||
<a href="static/pdfs/supplementary_material.pdf" target="_blank" | ||
class="external-link button is-normal is-rounded is-dark"> | ||
<span class="icon"> | ||
<i class="fas fa-file-pdf"></i> | ||
</span> | ||
<span>Supplementary</span> | ||
</a> | ||
</span> | ||
<span class="link-block"> | ||
<a href="https://github.com/YOUR REPO HERE" target="_blank" | ||
class="external-link button is-normal is-rounded is-dark"> | ||
<span class="icon"> | ||
<i class="fab fa-github"></i> | ||
</span> | ||
<span>Code</span> | ||
</a> | ||
</span> | ||
<span class="link-block"> | ||
<a href="https://arxiv.org/abs/<ARXIV PAPER ID>" target="_blank" | ||
class="external-link button is-normal is-rounded is-dark"> | ||
<span class="icon"> | ||
<i class="ai ai-arxiv"></i> | ||
</span> | ||
<span>arXiv</span> | ||
</a> | ||
</span> | ||
</div> | ||
</div> --> | ||
</div> | ||
</div> | ||
</div> | ||
</div> | ||
</section> | ||
|
||
|
||
<!-- Teaser video--> | ||
<section class="hero teaser"> | ||
<div class="container is-max-desktop"> | ||
<div class="columns is-centered"> | ||
<div class="column is-10"> | ||
<div class="twentytwenty-container" data="ISP-ours"> | ||
<img src="static/images/Others.gif" /> | ||
<img src="static/images/Ours.gif" /> | ||
</div> | ||
<h2 class="subtitle has-text-centered"> | ||
Illustrating the generalizability of our dual-domain denoising. Slide for comparison. | ||
Notice that DualDn is only trained on synthetic images, and outperforms commercial denoising algorithms on 3 smartphone cameras with different ISOs. | ||
</h2> | ||
</div> | ||
</div> | ||
</div> | ||
</section> | ||
<!-- End teaser video --> | ||
|
||
<!-- Paper abstract --> | ||
<section class="section hero"> | ||
<div class="container is-max-desktop"> | ||
<div class="columns is-centered has-text-centered"> | ||
<div class="column is-four-fifths"> | ||
<h2 class="title is-3">Abstract</h2> | ||
<div class="columns is-centered"> | ||
<div class="column is-10"> | ||
<img src="static/images/intro.png" /> | ||
</div> | ||
</div> | ||
<div class="content has-text-justified"> | ||
<p> | ||
Image denoising is a critical step in the Image Signal Processor (ISP) of a camera. There are two typical ways to inject a denoiser into the ISP pipeline: a raw domain denoiser that is directly applied to captured raw frames, and an sRGB domain denoiser that is applied to the sRGB image output by the ISP. However, both approaches have their limitations. The residual noise from the raw-domain denoising will be amplified by the ISP pipeline, and the sRGB domain cannot handle spatially varying noise as it only sees noise distorted by ISP processing. As a result, most raw-domain or sRGB-domain denoising works only for specific noise distributions and ISP configurations. | ||
To address these challenges, we propose DualDn, a novel learning-based dual-domain denoising. Unlike previous single-domain denoising, DualDn consists of two denoising networks, one in the raw domain and one in the sRGB domain. The raw domain denoising can adapt to spatially varying noise levels, and the sRGB domain denoising can remove the residual noise amplified by the ISP. Both denoising networks are connected with a differentiable ISP, which is trained end-to-end and discarded during the inference stage. With this design, DualDn achieves greater generalizability compared to most learning-based denoising, as it can adapt to different unseen noises, ISP parameters, and even novel ISP pipelines. | ||
Experiments show that DualDn achieves state-of-the-art performance and can adapt to different denoising network architectures. Moreover, DualDn can be used as a plug-and-play denoising module with real cameras without retraining, and still demonstrate better performance than commercial on-camera denoising, further showing its generalization ability. | ||
</p> | ||
</div> | ||
</div> | ||
</div> | ||
</div> | ||
</section> | ||
<!-- End paper abstract --> | ||
|
||
|
||
<!--BibTex citation --> | ||
<section class="section" id="BibTeX"> | ||
<div class="container is-max-desktop content"> | ||
<h2 class="title">BibTeX</h2> | ||
<pre><code>@article{li2024dualdn, | ||
title={DualDn: Dual-domain Denoising via Differentiable ISP}, | ||
author={Ruikang Li and Yujin Wang and Shiqi Chen and Fan Zhang and Jinwei Gu and Tianfan Xue}, | ||
journal={arXiv preprint}, | ||
year={2024} | ||
}</code></pre> | ||
</div> | ||
</section> | ||
<!--End BibTex citation --> | ||
|
||
|
||
<footer class="footer"> | ||
<div class="container"> | ||
<div class="columns is-centered"> | ||
<div class="column is-8"> | ||
<div class="content"> | ||
|
||
<p> | ||
This page was built using the <a href="https://github.com/eliahuhorwitz/Academic-project-page-template" target="_blank">Academic Project Page Template</a> which was adopted from the <a href="https://nerfies.github.io" target="_blank">Nerfies</a> project page. | ||
You are free to borrow the of this website, we just ask that you link back to this page in the footer. <br> This website is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/" target="_blank">Creative | ||
Commons Attribution-ShareAlike 4.0 International License</a>. | ||
</p> | ||
|
||
</div> | ||
</div> | ||
</div> | ||
</div> | ||
</footer> | ||
<!-- End image carousel --> | ||
|
||
<script src="static/js/jquery.min.js"></script> | ||
<script src="static/js/jquery.event.move.js"></script> | ||
<script src="static/js/jquery.twentytwenty.js"></script> | ||
<script> | ||
$(window).load(function(){ | ||
$(".twentytwenty-container[data='raw-ours']").twentytwenty({default_offset_pct: 0.38, before_label: "Raw-domian Denoising", after_label: "Dual-domian Denoising (Ours)", move_slider_on_hover: false, click_to_move: true}); | ||
$(".twentytwenty-container[data='sRGB-ours']").twentytwenty({default_offset_pct: 0.38, before_label: "sRGB-domian Denoising", after_label: "Dual-domian Denoising (Ours)", move_slider_on_hover: false, click_to_move: true}); | ||
$(".twentytwenty-container[data='ISP-ours']").twentytwenty({default_offset_pct: 0.38, before_label: "Camera ISPs", after_label: "DualDn (Ours)", move_slider_on_hover: false, click_to_move: true}); | ||
}); | ||
</script> | ||
|
||
</body> | ||
|
||
</html> |