diff --git a/specsanalyzer/latest/_modules/index.html b/specsanalyzer/latest/_modules/index.html index 6c519e6..9e9c0ec 100644 --- a/specsanalyzer/latest/_modules/index.html +++ b/specsanalyzer/latest/_modules/index.html @@ -7,7 +7,7 @@ - Overview: module code — specsanalyzer 0.4.2.dev43+gba30cb5 documentation + Overview: module code — specsanalyzer 0.5.1.dev1+g9db1efa documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

specsanalyzer 0.4.2.dev43+gba30cb5 documentation

+

specsanalyzer 0.5.1.dev1+g9db1efa documentation

diff --git a/specsanalyzer/latest/_modules/specsanalyzer/config.html b/specsanalyzer/latest/_modules/specsanalyzer/config.html index 7e71943..eb46c37 100644 --- a/specsanalyzer/latest/_modules/specsanalyzer/config.html +++ b/specsanalyzer/latest/_modules/specsanalyzer/config.html @@ -7,7 +7,7 @@ - specsanalyzer.config — specsanalyzer 0.4.2.dev43+gba30cb5 documentation + specsanalyzer.config — specsanalyzer 0.5.1.dev1+g9db1efa documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

specsanalyzer 0.4.2.dev43+gba30cb5 documentation

+

specsanalyzer 0.5.1.dev1+g9db1efa documentation

diff --git a/specsanalyzer/latest/_modules/specsanalyzer/convert.html b/specsanalyzer/latest/_modules/specsanalyzer/convert.html index 10bcc6e..2d4078e 100644 --- a/specsanalyzer/latest/_modules/specsanalyzer/convert.html +++ b/specsanalyzer/latest/_modules/specsanalyzer/convert.html @@ -7,7 +7,7 @@ - specsanalyzer.convert — specsanalyzer 0.4.2.dev43+gba30cb5 documentation + specsanalyzer.convert — specsanalyzer 0.5.1.dev1+g9db1efa documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

specsanalyzer 0.4.2.dev43+gba30cb5 documentation

+

specsanalyzer 0.5.1.dev1+g9db1efa documentation

diff --git a/specsanalyzer/latest/_modules/specsanalyzer/core.html b/specsanalyzer/latest/_modules/specsanalyzer/core.html index 654785d..cff0103 100644 --- a/specsanalyzer/latest/_modules/specsanalyzer/core.html +++ b/specsanalyzer/latest/_modules/specsanalyzer/core.html @@ -7,7 +7,7 @@ - specsanalyzer.core — specsanalyzer 0.4.2.dev43+gba30cb5 documentation + specsanalyzer.core — specsanalyzer 0.5.1.dev1+g9db1efa documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

specsanalyzer 0.4.2.dev43+gba30cb5 documentation

+

specsanalyzer 0.5.1.dev1+g9db1efa documentation

diff --git a/specsanalyzer/latest/_modules/specsanalyzer/img_tools.html b/specsanalyzer/latest/_modules/specsanalyzer/img_tools.html index 23e7293..198d9be 100644 --- a/specsanalyzer/latest/_modules/specsanalyzer/img_tools.html +++ b/specsanalyzer/latest/_modules/specsanalyzer/img_tools.html @@ -7,7 +7,7 @@ - specsanalyzer.img_tools — specsanalyzer 0.4.2.dev43+gba30cb5 documentation + specsanalyzer.img_tools — specsanalyzer 0.5.1.dev1+g9db1efa documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

specsanalyzer 0.4.2.dev43+gba30cb5 documentation

+

specsanalyzer 0.5.1.dev1+g9db1efa documentation

diff --git a/specsanalyzer/latest/_modules/specsanalyzer/io.html b/specsanalyzer/latest/_modules/specsanalyzer/io.html index 6e08fe7..b0e13a6 100644 --- a/specsanalyzer/latest/_modules/specsanalyzer/io.html +++ b/specsanalyzer/latest/_modules/specsanalyzer/io.html @@ -7,7 +7,7 @@ - specsanalyzer.io — specsanalyzer 0.4.2.dev43+gba30cb5 documentation + specsanalyzer.io — specsanalyzer 0.5.1.dev1+g9db1efa documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

specsanalyzer 0.4.2.dev43+gba30cb5 documentation

+

specsanalyzer 0.5.1.dev1+g9db1efa documentation

diff --git a/specsanalyzer/latest/_modules/specsscan/core.html b/specsanalyzer/latest/_modules/specsscan/core.html index e3e2f89..1169e50 100644 --- a/specsanalyzer/latest/_modules/specsscan/core.html +++ b/specsanalyzer/latest/_modules/specsscan/core.html @@ -7,7 +7,7 @@ - specsscan.core — specsanalyzer 0.4.2.dev43+gba30cb5 documentation + specsscan.core — specsanalyzer 0.5.1.dev1+g9db1efa documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

specsanalyzer 0.4.2.dev43+gba30cb5 documentation

+

specsanalyzer 0.5.1.dev1+g9db1efa documentation

diff --git a/specsanalyzer/latest/_modules/specsscan/helpers.html b/specsanalyzer/latest/_modules/specsscan/helpers.html index f832248..e2cc4b1 100644 --- a/specsanalyzer/latest/_modules/specsscan/helpers.html +++ b/specsanalyzer/latest/_modules/specsscan/helpers.html @@ -7,7 +7,7 @@ - specsscan.helpers — specsanalyzer 0.4.2.dev43+gba30cb5 documentation + specsscan.helpers — specsanalyzer 0.5.1.dev1+g9db1efa documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

specsanalyzer 0.4.2.dev43+gba30cb5 documentation

+

specsanalyzer 0.5.1.dev1+g9db1efa documentation

diff --git a/specsanalyzer/latest/_static/documentation_options.js b/specsanalyzer/latest/_static/documentation_options.js index 8c68bc3..b692e17 100644 --- a/specsanalyzer/latest/_static/documentation_options.js +++ b/specsanalyzer/latest/_static/documentation_options.js @@ -1,5 +1,5 @@ const DOCUMENTATION_OPTIONS = { - VERSION: '0.4.2.dev43+gba30cb5', + VERSION: '0.5.1.dev1+g9db1efa', LANGUAGE: 'en', COLLAPSE_INDEX: false, BUILDER: 'html', diff --git a/specsanalyzer/latest/genindex.html b/specsanalyzer/latest/genindex.html index cb02700..1bfeb90 100644 --- a/specsanalyzer/latest/genindex.html +++ b/specsanalyzer/latest/genindex.html @@ -7,7 +7,7 @@ - Index — specsanalyzer 0.4.2.dev43+gba30cb5 documentation + Index — specsanalyzer 0.5.1.dev1+g9db1efa documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -54,7 +54,7 @@ - + @@ -116,7 +116,7 @@ -

specsanalyzer 0.4.2.dev43+gba30cb5 documentation

+

specsanalyzer 0.5.1.dev1+g9db1efa documentation

diff --git a/specsanalyzer/latest/getting_started.html b/specsanalyzer/latest/getting_started.html index 0b24aac..4be7745 100644 --- a/specsanalyzer/latest/getting_started.html +++ b/specsanalyzer/latest/getting_started.html @@ -8,7 +8,7 @@ - specsanalyzer — specsanalyzer 0.4.2.dev43+gba30cb5 documentation + specsanalyzer — specsanalyzer 0.5.1.dev1+g9db1efa documentation @@ -38,7 +38,7 @@ - + @@ -47,7 +47,7 @@ @@ -57,7 +57,7 @@ - + @@ -119,7 +119,7 @@ -

specsanalyzer 0.4.2.dev43+gba30cb5 documentation

+

specsanalyzer 0.5.1.dev1+g9db1efa documentation

diff --git a/specsanalyzer/latest/index.html b/specsanalyzer/latest/index.html index b763f1f..7114788 100644 --- a/specsanalyzer/latest/index.html +++ b/specsanalyzer/latest/index.html @@ -8,7 +8,7 @@ - Welcome to specsanalyzer’s documentation! — specsanalyzer 0.4.2.dev43+gba30cb5 documentation + Welcome to specsanalyzer’s documentation! — specsanalyzer 0.5.1.dev1+g9db1efa documentation @@ -38,7 +38,7 @@ - + @@ -49,7 +49,7 @@ @@ -58,7 +58,7 @@ - + @@ -120,7 +120,7 @@ -

specsanalyzer 0.4.2.dev43+gba30cb5 documentation

+

specsanalyzer 0.5.1.dev1+g9db1efa documentation

diff --git a/specsanalyzer/latest/misc/maintain.html b/specsanalyzer/latest/misc/maintain.html index e2ed69f..a6078f4 100644 --- a/specsanalyzer/latest/misc/maintain.html +++ b/specsanalyzer/latest/misc/maintain.html @@ -8,7 +8,7 @@ - 1. How to maintain — specsanalyzer 0.4.2.dev43+gba30cb5 documentation + 1. How to maintain — specsanalyzer 0.5.1.dev1+g9db1efa documentation @@ -38,7 +38,7 @@ - + @@ -47,7 +47,7 @@ @@ -56,7 +56,7 @@ - + @@ -118,7 +118,7 @@ -

specsanalyzer 0.4.2.dev43+gba30cb5 documentation

+

specsanalyzer 0.5.1.dev1+g9db1efa documentation

diff --git a/specsanalyzer/latest/objects.inv b/specsanalyzer/latest/objects.inv index 121ee01..a6e133e 100644 Binary files a/specsanalyzer/latest/objects.inv and b/specsanalyzer/latest/objects.inv differ diff --git a/specsanalyzer/latest/py-modindex.html b/specsanalyzer/latest/py-modindex.html index 95118e4..8adb16f 100644 --- a/specsanalyzer/latest/py-modindex.html +++ b/specsanalyzer/latest/py-modindex.html @@ -7,7 +7,7 @@ - Python Module Index — specsanalyzer 0.4.2.dev43+gba30cb5 documentation + Python Module Index — specsanalyzer 0.5.1.dev1+g9db1efa documentation @@ -37,7 +37,7 @@ - + @@ -46,7 +46,7 @@ @@ -55,7 +55,7 @@ - + @@ -119,7 +119,7 @@ -

specsanalyzer 0.4.2.dev43+gba30cb5 documentation

+

specsanalyzer 0.5.1.dev1+g9db1efa documentation

diff --git a/specsanalyzer/latest/search.html b/specsanalyzer/latest/search.html index 9c7e85c..824318c 100644 --- a/specsanalyzer/latest/search.html +++ b/specsanalyzer/latest/search.html @@ -6,7 +6,7 @@ - Search - specsanalyzer 0.4.2.dev43+gba30cb5 documentation + Search - specsanalyzer 0.5.1.dev1+g9db1efa documentation @@ -36,7 +36,7 @@ - + @@ -45,7 +45,7 @@ @@ -56,7 +56,7 @@ - + @@ -118,7 +118,7 @@ -

specsanalyzer 0.4.2.dev43+gba30cb5 documentation

+

specsanalyzer 0.5.1.dev1+g9db1efa documentation

diff --git a/specsanalyzer/latest/searchindex.js b/specsanalyzer/latest/searchindex.js index 9117496..869cbd2 100644 --- a/specsanalyzer/latest/searchindex.js +++ b/specsanalyzer/latest/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"API": [[3, "module-specsanalyzer.config"]], "Adjusting offsets and angle": [[10, "Adjusting-offsets-and-angle"]], "Config": [[3, null]], "Configuration and calib2d file": [[0, "configuration-and-calib2d-file"]], "Contributing": [[1, null]], "Conversion into spatially resolved modes": [[10, "Conversion-into-spatially-resolved-modes"]], "Conversion using conversion_parameters dict": [[10, "Conversion-using-conversion_parameters-dict"]], "Core functions (specsanalyzer.core)": [[5, null]], "Core functions (specsscan.core)": [[8, null]], "Cropping data": [[11, "Cropping-data"]], "Default specsanalyzer configuration settings": [[3, "default-specsanalyzer-configuration-settings"]], "Default specsscan configuration settings": [[3, "default-specsscan-configuration-settings"]], "Example 1: SpecsAnalyzer conversion": [[10, null]], "Example 2: SpecsScan loading": [[11, null]], "Example 3: Export to NeXus": [[12, null]], "Example 4: Sweep Scan loading": [[13, null]], "Example configuration file for the trARPES setup at FHI-Berlin": [[3, "example-configuration-file-for-the-trarpes-setup-at-fhi-berlin"]], "For Contributors": [[0, "for-contributors"]], "Getting Started": [[1, null]], "Helpers": [[9, null]], "How to maintain": [[2, null]], "Image conversion": [[10, "Image-conversion"]], "Indices and tables": [[1, "indices-and-tables"]], "Installation": [[0, "installation"]], "Loading data": [[11, "Loading-data"]], "Loading with selected iterations": [[11, "Loading-with-selected-iterations"]], "Pip (for users)": [[0, "pip-for-users"]], "Poetry (for maintainers)": [[0, "poetry-for-maintainers"]], "Removal of Mesh Artifact": [[11, "Removal-of-Mesh-Artifact"]], "Removal of mesh artefact": [[10, "Removal-of-mesh-artefact"]], "Saving": [[11, "Saving"]], "SpecsAnalyzer Core Modules": [[1, null]], "SpecsScan Core Modules": [[1, null]], "Welcome to specsanalyzer\u2019s documentation!": [[1, null]], "convert functions (specsanalyzer.convert)": [[4, null]], "image tool functions (specsanalyzer.img_tools)": [[6, null]], "io functions (specsanalyzer.io)": [[7, null]], "specsanalyzer": [[0, null]]}, "docnames": ["getting_started", "index", "misc/maintain", "specsanalyzer/config", "specsanalyzer/convert", "specsanalyzer/core", "specsanalyzer/img_tools", "specsanalyzer/io", "specsscan/core", "specsscan/helpers", "tutorial/1_specsanalyzer_conversion_examples", "tutorial/2_specsscan_example", "tutorial/3_specsscan_conversion_to_NeXus", "tutorial/4_specsscan_load_sweep_scan"], "envversion": {"nbsphinx": 4, "sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1}, "filenames": ["getting_started.rst", "index.rst", "misc/maintain.rst", "specsanalyzer/config.rst", "specsanalyzer/convert.rst", "specsanalyzer/core.rst", "specsanalyzer/img_tools.rst", "specsanalyzer/io.rst", "specsscan/core.rst", "specsscan/helpers.rst", "tutorial/1_specsanalyzer_conversion_examples.ipynb", "tutorial/2_specsscan_example.ipynb", "tutorial/3_specsscan_conversion_to_NeXus.ipynb", "tutorial/4_specsscan_load_sweep_scan.ipynb"], "indexentries": {"_fill_missing_dims() (in module specsanalyzer.io)": [[7, "specsanalyzer.io._fill_missing_dims", false]], "_sort_dims_for_imagej() (in module specsanalyzer.io)": [[7, "specsanalyzer.io._sort_dims_for_imagej", false]], "bisection() (in module specsanalyzer.convert)": [[4, "specsanalyzer.convert.bisection", false]], "calculate_jacobian() (in module specsanalyzer.convert)": [[4, "specsanalyzer.convert.calculate_jacobian", false]], "calculate_matrix_correction() (in module specsanalyzer.convert)": [[4, "specsanalyzer.convert.calculate_matrix_correction", false]], "calculate_polynomial_coef_da() (in module specsanalyzer.convert)": [[4, "specsanalyzer.convert.calculate_polynomial_coef_da", false]], "calib2d (specsanalyzer.core.specsanalyzer property)": [[5, "specsanalyzer.core.SpecsAnalyzer.calib2d", false]], "check_scan() (specsscan.core.specsscan method)": [[8, "specsscan.core.SpecsScan.check_scan", false]], "compare_coords() (in module specsscan.helpers)": [[9, "specsscan.helpers.compare_coords", false]], "complete_dictionary() (in module specsanalyzer.config)": [[3, "specsanalyzer.config.complete_dictionary", false]], "config (specsanalyzer.core.specsanalyzer property)": [[5, "specsanalyzer.core.SpecsAnalyzer.config", false]], "config (specsscan.core.specsscan property)": [[8, "specsscan.core.SpecsScan.config", false]], "convert_image() (specsanalyzer.core.specsanalyzer method)": [[5, "specsanalyzer.core.SpecsAnalyzer.convert_image", false]], "correction_matrix_dict (specsanalyzer.core.specsanalyzer property)": [[5, "specsanalyzer.core.SpecsAnalyzer.correction_matrix_dict", false]], "create_fft_params() (in module specsanalyzer.core)": [[5, "specsanalyzer.core.create_fft_params", false]], "crop_tool() (specsanalyzer.core.specsanalyzer method)": [[5, "specsanalyzer.core.SpecsAnalyzer.crop_tool", false]], "crop_tool() (specsscan.core.specsscan method)": [[8, "specsscan.core.SpecsScan.crop_tool", false]], "crop_xarray() (in module specsanalyzer.img_tools)": [[6, "specsanalyzer.img_tools.crop_xarray", false]], "fft_tool() (specsanalyzer.core.specsanalyzer method)": [[5, "specsanalyzer.core.SpecsAnalyzer.fft_tool", false]], "fft_tool() (specsscan.core.specsscan method)": [[8, "specsscan.core.SpecsScan.fft_tool", false]], "find_scan() (in module specsscan.helpers)": [[9, "specsscan.helpers.find_scan", false]], "find_scan_type() (in module specsscan.helpers)": [[9, "specsscan.helpers.find_scan_type", false]], "fourier_filter_2d() (in module specsanalyzer.img_tools)": [[6, "specsanalyzer.img_tools.fourier_filter_2d", false]], "gauss2d() (in module specsanalyzer.img_tools)": [[6, "specsanalyzer.img_tools.gauss2d", false]], "get_archiver_data() (in module specsscan.helpers)": [[9, "specsscan.helpers.get_archiver_data", false]], "get_coords() (in module specsscan.helpers)": [[9, "specsscan.helpers.get_coords", false]], "get_damatrix_from_calib2d() (in module specsanalyzer.convert)": [[4, "specsanalyzer.convert.get_damatrix_from_calib2d", false]], "get_modes_from_calib_dict() (in module specsanalyzer.io)": [[7, "specsanalyzer.io.get_modes_from_calib_dict", false]], "get_pair_from_list() (in module specsanalyzer.io)": [[7, "specsanalyzer.io.get_pair_from_list", false]], "get_raw2d() (in module specsscan.helpers)": [[9, "specsscan.helpers.get_raw2d", false]], "get_rr_da() (in module specsanalyzer.convert)": [[4, "specsanalyzer.convert.get_rr_da", false]], "get_scan_path() (in module specsscan.helpers)": [[9, "specsscan.helpers.get_scan_path", false]], "handle_meta() (in module specsscan.helpers)": [[9, "specsscan.helpers.handle_meta", false]], "load_config() (in module specsanalyzer.config)": [[3, "specsanalyzer.config.load_config", false]], "load_h5() (in module specsanalyzer.io)": [[7, "specsanalyzer.io.load_h5", false]], "load_images() (in module specsscan.helpers)": [[9, "specsscan.helpers.load_images", false]], "load_scan() (specsscan.core.specsscan method)": [[8, "specsscan.core.SpecsScan.load_scan", false]], "load_tiff() (in module specsanalyzer.io)": [[7, "specsanalyzer.io.load_tiff", false]], "mcp_position_mm() (in module specsanalyzer.convert)": [[4, "specsanalyzer.convert.mcp_position_mm", false]], "module": [[3, "module-specsanalyzer.config", false], [4, "module-specsanalyzer.convert", false], [5, "module-specsanalyzer.core", false], [6, "module-specsanalyzer.img_tools", false], [7, "module-specsanalyzer.io", false], [8, "module-specsscan.core", false], [9, "module-specsscan.helpers", false]], "parse_calib2d_to_dict() (in module specsanalyzer.io)": [[7, "specsanalyzer.io.parse_calib2d_to_dict", false]], "parse_config() (in module specsanalyzer.config)": [[3, "specsanalyzer.config.parse_config", false]], "parse_info_to_dict() (in module specsscan.helpers)": [[9, "specsscan.helpers.parse_info_to_dict", false]], "parse_lut_to_df() (in module specsscan.helpers)": [[9, "specsscan.helpers.parse_lut_to_df", false]], "physical_unit_data() (in module specsanalyzer.convert)": [[4, "specsanalyzer.convert.physical_unit_data", false]], "process_sweep_scan() (specsscan.core.specsscan method)": [[8, "specsscan.core.SpecsScan.process_sweep_scan", false]], "read_calib2d() (in module specsanalyzer.io)": [[7, "specsanalyzer.io.read_calib2d", false]], "recursive_parse_metadata() (in module specsanalyzer.io)": [[7, "specsanalyzer.io.recursive_parse_metadata", false]], "recursive_write_metadata() (in module specsanalyzer.io)": [[7, "specsanalyzer.io.recursive_write_metadata", false]], "result (specsscan.core.specsscan property)": [[8, "specsscan.core.SpecsScan.result", false]], "save() (specsscan.core.specsscan method)": [[8, "specsscan.core.SpecsScan.save", false]], "save_config() (in module specsanalyzer.config)": [[3, "specsanalyzer.config.save_config", false]], "second_closest_rr() (in module specsanalyzer.convert)": [[4, "specsanalyzer.convert.second_closest_rr", false]], "specsanalyzer (class in specsanalyzer.core)": [[5, "specsanalyzer.core.SpecsAnalyzer", false]], "specsanalyzer.config": [[3, "module-specsanalyzer.config", false]], "specsanalyzer.convert": [[4, "module-specsanalyzer.convert", false]], "specsanalyzer.core": [[5, "module-specsanalyzer.core", false]], "specsanalyzer.img_tools": [[6, "module-specsanalyzer.img_tools", false]], "specsanalyzer.io": [[7, "module-specsanalyzer.io", false]], "specsscan (class in specsscan.core)": [[8, "specsscan.core.SpecsScan", false]], "specsscan.core": [[8, "module-specsscan.core", false]], "specsscan.helpers": [[9, "module-specsscan.helpers", false]], "to_h5() (in module specsanalyzer.io)": [[7, "specsanalyzer.io.to_h5", false]], "to_nexus() (in module specsanalyzer.io)": [[7, "specsanalyzer.io.to_nexus", false]], "to_tiff() (in module specsanalyzer.io)": [[7, "specsanalyzer.io.to_tiff", false]], "zinner() (in module specsanalyzer.convert)": [[4, "specsanalyzer.convert.zinner", false]], "zinner_diff() (in module specsanalyzer.convert)": [[4, "specsanalyzer.convert.zinner_diff", false]]}, "objects": {"specsanalyzer": [[3, 0, 0, "-", "config"], [4, 0, 0, "-", "convert"], [5, 0, 0, "-", "core"], [6, 0, 0, "-", "img_tools"], [7, 0, 0, "-", "io"]], "specsanalyzer.config": [[3, 1, 1, "", "complete_dictionary"], [3, 1, 1, "", "load_config"], [3, 1, 1, "", "parse_config"], [3, 1, 1, "", "save_config"]], "specsanalyzer.convert": [[4, 1, 1, "", "bisection"], [4, 1, 1, "", "calculate_jacobian"], [4, 1, 1, "", "calculate_matrix_correction"], [4, 1, 1, "", "calculate_polynomial_coef_da"], [4, 1, 1, "", "get_damatrix_from_calib2d"], [4, 1, 1, "", "get_rr_da"], [4, 1, 1, "", "mcp_position_mm"], [4, 1, 1, "", "physical_unit_data"], [4, 1, 1, "", "second_closest_rr"], [4, 1, 1, "", "zinner"], [4, 1, 1, "", "zinner_diff"]], "specsanalyzer.core": [[5, 2, 1, "", "SpecsAnalyzer"], [5, 1, 1, "", "create_fft_params"]], "specsanalyzer.core.SpecsAnalyzer": [[5, 3, 1, "", "calib2d"], [5, 3, 1, "", "config"], [5, 4, 1, "", "convert_image"], [5, 3, 1, "", "correction_matrix_dict"], [5, 4, 1, "", "crop_tool"], [5, 4, 1, "", "fft_tool"]], "specsanalyzer.img_tools": [[6, 1, 1, "", "crop_xarray"], [6, 1, 1, "", "fourier_filter_2d"], [6, 1, 1, "", "gauss2d"]], "specsanalyzer.io": [[7, 1, 1, "", "_fill_missing_dims"], [7, 1, 1, "", "_sort_dims_for_imagej"], [7, 1, 1, "", "get_modes_from_calib_dict"], [7, 1, 1, "", "get_pair_from_list"], [7, 1, 1, "", "load_h5"], [7, 1, 1, "", "load_tiff"], [7, 1, 1, "", "parse_calib2d_to_dict"], [7, 1, 1, "", "read_calib2d"], [7, 1, 1, "", "recursive_parse_metadata"], [7, 1, 1, "", "recursive_write_metadata"], [7, 1, 1, "", "to_h5"], [7, 1, 1, "", "to_nexus"], [7, 1, 1, "", "to_tiff"]], "specsscan": [[8, 0, 0, "-", "core"], [9, 0, 0, "-", "helpers"]], "specsscan.core": [[8, 2, 1, "", "SpecsScan"]], "specsscan.core.SpecsScan": [[8, 4, 1, "", "check_scan"], [8, 3, 1, "", "config"], [8, 4, 1, "", "crop_tool"], [8, 4, 1, "", "fft_tool"], [8, 4, 1, "", "load_scan"], [8, 4, 1, "", "process_sweep_scan"], [8, 3, 1, "", "result"], [8, 4, 1, "", "save"]], "specsscan.helpers": [[9, 1, 1, "", "compare_coords"], [9, 1, 1, "", "find_scan"], [9, 1, 1, "", "find_scan_type"], [9, 1, 1, "", "get_archiver_data"], [9, 1, 1, "", "get_coords"], [9, 1, 1, "", "get_raw2d"], [9, 1, 1, "", "get_scan_path"], [9, 1, 1, "", "handle_meta"], [9, 1, 1, "", "load_images"], [9, 1, 1, "", "parse_info_to_dict"], [9, 1, 1, "", "parse_lut_to_df"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "property", "Python property"], "4": ["py", "method", "Python method"]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:property", "4": "py:method"}, "terms": {"": [3, 7, 12], "0": [3, 5, 10, 11, 12, 13], "00": 12, "000000": 10, "0033": 10, "00645": 3, "01": 10, "02": [10, 12], "0258": 10, "03": [10, 12], "04": 10, "04428571e": 10, "05": 10, "066": 10, "07597844332538181": 12, "07597844332538357": 13, "08": [11, 12], "0x7f0b16719b70": 10, "0x7f0b167a6890": 10, "0x7f0b16c6a860": 10, "0x7f0b1e507400": 10, "0x7f0b1e98bf70": 10, "0x7f0b21118fa0": 10, "0x7f756f5dfd30": 12, "0x7f75c09ee3e0": 12, "0x7f87b36835b0": 13, "0x7f9b5bb210c0": 11, "0x7f9b5bbd1570": 11, "0x7f9b5bc1b2b0": 11, "0x7f9b60223f10": 11, "0x7f9b63a90310": 11, "1": [1, 3, 4, 6, 8, 9, 11, 12, 13], "10": [3, 8, 9, 10, 11, 12, 13], "1024": 3, "108": 3, "109": 3, "11": [10, 11, 12], "116": 11, "12": [10, 11], "120": 12, "13": [10, 11, 13], "1376": 3, "14": [10, 11], "14195": 12, "1496": 12, "15": [3, 8, 9, 10, 11, 12, 13], "150": 12, "16453159041394336": 12, "16571429e": 10, "16732026143790849": 13, "17668": 3, "19828571e": 10, "19t10": 12, "2": [1, 6, 7, 9, 10, 12, 13], "20": 12, "2017": 12, "2020": 9, "20521429e": 10, "20f": 12, "21": 12, "224": 12, "23": 11, "2566412": 4, "270": 12, "2857142857142865": 10, "2d": [5, 6, 9], "3": [1, 3, 7, 8, 10, 11, 13], "30": 12, "300": 12, "34": 12, "34014286e": 10, "35": [10, 12], "36678571e": 10, "37997143e": 10, "39": [10, 11, 12], "3d": [9, 11], "4": [1, 3, 7, 10, 11, 12], "4450": 11, "4sigma": 12, "5": [3, 10, 11, 12], "500": 12, "53542857e": 10, "54": [3, 10], "55": 12, "59685714e": 10, "5e": 12, "6": [4, 10, 11, 12], "6455": 13, "7": [10, 11, 12], "70": 12, "7142857142857135": 10, "74571429e": 10, "78": 3, "79": 3, "8": [3, 10, 11, 12], "80": [3, 12], "800": 12, "800nm": 12, "81": 3, "82": [10, 11], "8449673202614381": 13, "85": 11, "85771429e": 10, "8771428571428571": 10, "88": 11, "8840087145969499": 12, "8965456312395133": 13, "9": [10, 11], "9117413199045858": 12, "95942857e": 10, "A": [0, 3, 4, 5, 8, 9, 12], "For": [3, 8, 9, 11], "If": [0, 7, 9, 10], "In": [3, 11], "It": 3, "Its": 8, "No": 10, "One": 11, "The": [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "These": [3, 10, 12], "To": 0, "Will": 3, "__epicsarchiver_host__": 3, "_attr": 7, "_fill_missing_dim": 7, "_sort_dims_for_imagej": 7, "a_inn": [4, 10], "a_rang": [4, 10], "about": 6, "abov": 4, "access": [0, 11], "accessor": 11, "accord": 6, "acquir": 0, "activ": 0, "ad": [3, 7, 11], "add": 7, "addit": [3, 8, 9, 11, 13], "address": 12, "administr": 3, "affili": 12, "after": [4, 11, 12], "again": 11, "alia": 7, "alias": 8, "alias_dict": [7, 8], "all": [0, 3, 8, 9, 11, 13], "allusersprofil": 3, "along": [3, 4, 6, 11, 12], "alreadi": 11, "also": [3, 10, 11], "altern": [3, 10, 11], "amplitud": [3, 5, 6, 8, 11], "an": [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "analyz": [0, 3, 4, 5, 8, 10], "analyzer_dispers": 3, "ang_range_max": [5, 11, 12, 13], "ang_range_min": [5, 11, 12, 13], "angl": [0, 3, 4, 5, 8, 11], "angle_axi": 4, "angle_offset_px": [3, 4, 10, 13], "angular": [0, 3, 4, 7, 11], "angular0": [3, 12], "angular1": [3, 12], "angular_correction_matrix": 4, "angular_resolut": 12, "ani": [3, 7, 9], "anoth": 11, "api": 0, "appear": [5, 8], "append": 8, "appli": [3, 5, 8, 10, 11], "applic": [3, 8], "apply_fft_filt": [3, 10, 11], "approach": 10, "ar": [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13], "archiv": [3, 8, 9], "archiver_channel": 9, "archiver_url": [3, 9], "area": [4, 11], "argument": [3, 5, 7, 8, 10], "around": [4, 5, 8, 12], "arpescontrol": 8, "arrai": [4, 6, 7, 8, 9, 10], "arriv": 4, "artifact": [3, 6, 10], "associ": [4, 11], "assum": 7, "attr": [7, 10, 11], "attribut": [7, 10, 11], "attributeerror": 7, "automat": 7, "autoreload": [10, 11, 12, 13], "auxiliari": 4, "avail": [0, 10], "averag": [8, 9, 11], "average_pow": 12, "avg": 9, "ax": [3, 7, 12], "axi": [3, 4, 5, 7, 8, 9, 11, 12], "axis_data": 9, "axis_dict": 7, "azimuth": 3, "band": [11, 12], "bar": [3, 9], "base": [3, 4, 5, 8, 9], "base_dictionari": 3, "basepath": 9, "beam": 12, "been": 7, "befor": 11, "below": [0, 3, 4], "berlin": [8, 11, 12], "best": [4, 7], "between": [3, 4], "beyond": 11, "bin": [0, 3, 4, 10], "binarysearch": 4, "bisect": 4, "bool": [3, 5, 8, 9], "both": 9, "boundari": [4, 6, 11], "built": [5, 8], "c": 7, "calcul": [4, 6], "calculate_jacobian": 4, "calculate_matrix_correct": 4, "calculate_polynomial_coef_da": 4, "calib2": 10, "calib2d": [3, 4, 5, 7, 8, 10], "calib2d_dict": 4, "calib2d_fil": 3, "calib_dict": 7, "calibr": [0, 3, 7, 10], "camelcas": [5, 8], "camera": 5, "can": [0, 3, 7, 8, 9, 10, 11], "cannot": [3, 7, 9], "carv": [3, 12], "case": 11, "cd": 0, "center": [4, 6, 10], "certain": 4, "chang": [0, 3, 9, 11, 12], "channel": [3, 7, 9], "charact": 7, "check": [0, 5, 8], "check_scan": [8, 9, 11], "chemical_formula": 12, "chosen": 6, "class": [0, 5, 8, 9, 11, 12, 13], "clean": 7, "cleav": 12, "clone": 0, "closest": 4, "closest_rr_index": 4, "coeffici": 4, "collect": [3, 8, 9, 10, 11, 12, 13], "collect_metadata": [8, 9, 12], "column": 9, "com": [0, 4], "combin": 3, "come": 12, "command": 0, "common": 8, "compare_coord": 9, "comparison": 4, "compat": 7, "complet": [3, 7, 11], "complete_dictionari": 3, "concept": 1, "conda": 0, "config": [0, 1, 5, 8, 9, 10, 11, 12, 13], "config_dict": 3, "config_filteron": 10, "config_path": 3, "configur": [4, 7, 10, 11, 13], "consid": 7, "consist": [3, 8, 9], "constructor": 0, "contain": [0, 3, 4, 5, 6, 7, 8, 9, 11, 12], "content": [3, 9], "contribut": 0, "control": 3, "conveni": [7, 11], "convent": [5, 8], "convers": [0, 1, 3, 4, 5, 7, 8, 9, 11, 12, 13], "conversion_paramet": [5, 11], "convert": [0, 1, 5, 7, 8, 9, 10, 11, 12], "convert_imag": [5, 10], "coord": [7, 9], "coordin": [0, 4, 5, 6, 7, 8, 9, 11], "coordinate_depend": 3, "coordinate_map": 3, "copi": 10, "correct": [4, 5, 7], "correction_matrix_dict": 5, "correl": 6, "correspond": [0, 3, 4, 5, 6, 7, 9, 10, 11], "creat": [0, 3, 5, 7, 10, 11, 12, 13], "create_fft_param": 5, "crop": [3, 5, 6, 8, 12, 13], "crop_tool": [5, 8, 11], "crop_xarrai": 6, "crystal": 12, "cube": 12, "current": [3, 4, 7], "cut": 12, "d": [8, 9], "da": 4, "da1": 4, "da3": 4, "da7": 4, "da_matrix": [4, 10], "da_poly_matrix": 4, "dapolymatrix": 4, "data": [0, 3, 5, 6, 7, 8, 9, 10, 12, 13], "data9132_rawdata": 10, "data_arrai": 6, "data_path": [3, 8], "dataarrai": [5, 6, 7, 8], "databas": 4, "dataconvert": 7, "dataepfl": 10, "datafram": [9, 11, 12], "dataset": 7, "de": 12, "de1": [4, 10], "default": [5, 6, 7, 8, 9, 10, 11, 12, 13], "default_config": 3, "defin": [0, 3, 4, 5, 6, 10], "definit": [3, 7, 8, 12], "deg": 4, "degre": 3, "delai": [3, 8, 9, 11, 12], "delimit": 10, "demonstr": [10, 11], "depend": 0, "describ": 7, "descript": [1, 4, 12], "detail": 3, "detector": [0, 3, 4, 10, 11], "determin": [4, 5, 8], "dev": 0, "develop": 0, "deviat": 3, "df_lut": 9, "dict": [3, 4, 5, 6, 7, 8, 9], "dict_kei": 11, "dictionari": [3, 4, 5, 7, 8, 9, 13], "differ": [3, 9, 10, 11, 12, 13], "dim": [4, 6, 7, 9, 10, 11, 12], "dimens": [7, 8, 9, 10, 11], "dimension": [6, 7, 12], "direct": [3, 4, 6], "directli": [3, 5, 8, 11], "directori": [3, 9], "disabl": 3, "dispers": [3, 4, 11, 12], "distanc": 4, "divid": 7, "do": [4, 11], "doc": [0, 10, 11, 12, 13], "document": [0, 11], "doe": 7, "done": [0, 11, 12, 13], "drain_curr": 3, "drive": 11, "duplic": 7, "e": [0, 3, 4, 5, 6, 8, 9, 10, 11], "e_correct": 4, "e_rang": [4, 10], "e_shift": [4, 10], "each": [3, 4, 6, 8], "edg": 4, "edit": 0, "ef": 12, "either": [0, 8, 11], "ek_axi": 4, "ek_range_max": [5, 11, 12, 13], "ek_range_min": [5, 11, 12, 13], "ekin": [3, 8, 10, 11], "electron": [4, 8, 12], "electronanalys": [3, 12], "element": [6, 7], "eln": 3, "eln_data": 8, "email": 12, "emiss": [0, 4], "empti": [3, 8, 9], "enabl": [3, 9], "enable_nested_progress_bar": 3, "end": 9, "energi": [0, 3, 4, 5, 7, 8, 11, 12, 13], "energy_offset_px": [3, 4, 10], "energy_resolut": 12, "energydispers": 3, "engin": 3, "ensur": 0, "entri": [3, 6, 7, 11, 12], "entry_titl": 12, "environ": 0, "epfl": [0, 8], "epic": [3, 8, 9], "epics_channel": 3, "equidist": 13, "eshift": 4, "estim": 4, "etc": [0, 3, 9], "ev": 3, "even": 7, "ex": [8, 9], "exampl": [0, 1], "example_config_fhi": [12, 13], "example_data": 11, "exist": [3, 11], "experiment_summari": 12, "experiment_titl": 12, "explicitli": 10, "explor": 8, "export": 1, "express": 4, "extend": 7, "extens": 8, "extent": 12, "extract": 9, "f": [3, 12], "factor": [3, 4], "faddr": [7, 8], "fairmat": 12, "fals": [3, 5, 8, 9, 10, 11], "faradayweg": 12, "fast": 9, "fast_ax": 9, "featur": 6, "feel": 0, "fermi": 12, "fft": [5, 6, 8, 10, 11], "fft_filter_peak": [3, 5, 8, 10, 11], "fft_tool": [5, 8, 10, 11], "fhi": [0, 11, 12], "figur": [10, 11, 12, 13], "file": [5, 7, 8, 9, 10, 11, 12], "filenam": 8, "filenotfounderror": [3, 9], "filepath": 7, "fill": 12, "filter": [3, 5, 6, 8, 10, 11], "filtered_fft": 6, "find": 4, "find_scan": 9, "find_scan_typ": 9, "first": [0, 3, 6, 11, 12], "fit": 4, "fix": 11, "flag": [3, 6], "float": [4, 5, 6, 7, 8, 9], "fluenc": 12, "folder": [3, 8, 9, 10, 11], "folder_config": 3, "follow": [0, 3, 6, 7, 12], "format": [3, 7, 12], "found": [0, 3, 4, 7, 9, 10, 11, 12, 13], "fourier": [3, 5, 6, 8, 10], "fourier_filter_2d": 6, "fraction": 4, "frame": [8, 9], "free": 0, "frequenc": [5, 8, 12], "fritz": [3, 8, 12], "from": [0, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13], "front": 10, "fsmap": 12, "full": [6, 7], "fulli": 3, "function": [1, 3, 9, 10, 11], "further": [8, 9], "fwhm": 12, "g": [0, 3, 5, 6, 8, 9, 10, 11], "gamma": 12, "gather": [11, 12, 13], "gauss2d": 6, "gaussian": [3, 5, 6, 12], "gener": [8, 11, 12], "get": [4, 5, 8, 11], "get_archiver_data": 9, "get_coord": 9, "get_damatrix_from_calib2d": 4, "get_modes_from_calib_dict": 7, "get_pair_from_list": 7, "get_raw2d": 9, "get_rr_da": 4, "get_scan_path": 9, "getdata": 3, "git": 0, "github": [0, 2], "give": 3, "given": [3, 4, 6, 7, 8, 9, 11, 12], "grid": [3, 6, 8, 10, 11, 13], "group": 7, "gt": [10, 11, 12, 13], "guess": 7, "h5": [8, 11], "h5group": 7, "h5py": 7, "ha": [11, 12], "haber": [3, 8, 12], "handl": [0, 9], "handle_meta": 9, "have": [0, 7, 10], "hdf5": [7, 8, 11], "help": 0, "helper": 1, "here": [3, 11, 13], "hierarch": 3, "high": 4, "highmagnification2": 10, "home": [3, 10, 11, 12, 13], "horizont": [5, 8], "hostedtoolcach": [3, 10, 11, 12, 13], "how": 1, "http": [0, 3, 4], "i": [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "ideal": 12, "identifi": 9, "ignor": 7, "igor": 4, "illumin": 11, "imag": [0, 1, 3, 4, 5, 7, 8, 9, 11, 13], "imagej": 7, "img_tool": 1, "import": [0, 10, 11, 12, 13], "importantli": 0, "incident_energi": 12, "incident_energy_spread": 12, "incident_polar": 12, "incident_wavelength": 12, "includ": [7, 11], "increas": 4, "independ": 6, "index": [1, 4, 8, 9, 11], "indexerror": 9, "indic": [4, 6, 8, 9], "individu": [3, 13], "infer": 7, "info": 9, "info_dict": 9, "inform": [6, 7, 11], "init": 0, "initi": 3, "inner": 4, "input": [3, 6, 7, 8, 9], "input_fil": [3, 7, 8], "instanc": [3, 9, 10, 11, 12, 13], "instead": 7, "institut": [3, 8, 12], "instrument": [3, 12], "int": [4, 8, 9], "integ": [4, 8, 9], "integr": 11, "intend": [0, 3], "intens": 6, "interact": [10, 11], "interest": [8, 9, 11], "interfac": [8, 9], "interpol": [4, 8, 10], "introduc": 10, "investig": 12, "io": 1, "ipykernel": 0, "ipython": 0, "item": 3, "iter": [3, 8, 9], "its": [11, 12], "j": 4, "jacobian": 4, "jacobian_determin": 4, "json": [3, 8, 12], "jupyt": 0, "k": 3, "keep": 3, "kei": [3, 7, 11], "kernel": 0, "keyerror": 4, "keyword": [5, 7, 8, 10, 11], "kinet": [4, 5, 8, 13], "kinetic_energi": [3, 4, 5, 8, 10], "kwd": [5, 7, 8, 10], "lab": [8, 12], "labview": 0, "later": [4, 11], "laurenz": 12, "lausann": 8, "len": [3, 4, 5, 7, 8], "lens_mod": [4, 5, 8, 10], "lib": [3, 10, 11, 12, 13], "librari": 3, "like": 7, "line": [4, 6, 7], "linear": 4, "linux": 3, "list": [0, 4, 5, 6, 7, 8, 9, 11], "list_lin": 7, "load": [0, 1, 3, 7, 8, 9, 10, 12], "load_config": 3, "load_ext": [10, 11, 12, 13], "load_h5": 7, "load_imag": 9, "load_scan": [8, 9, 11, 12, 13], "load_tiff": 7, "loader": [11, 12], "loadtxt": 10, "loc": [11, 12], "local": 0, "locat": [0, 9, 11, 12, 13], "look": 3, "low": 4, "lt": [10, 11, 12, 13], "lut": 9, "m": 0, "magnif": [3, 4, 10], "mai": 11, "maintain": 1, "make": [0, 11], "manipul": [6, 9], "manner": 3, "manual": [7, 12], "manufactur": 0, "map": 12, "map_coordin": 4, "mask": 6, "matplotlib": [10, 11, 12, 13], "matric": 4, "matrix": [4, 5], "max": 12, "maxim": 4, "maximum": [6, 9], "mcp": [0, 4, 10, 11], "mcp_position_mm": 4, "measur": [3, 12], "mechan": 3, "merg": [3, 13], "mesh": [5, 8], "meshgrid": [5, 8, 11], "metadata": [5, 7, 8, 9, 11, 12, 13], "method": [8, 9, 11, 12, 13], "might": 13, "millimet": [3, 4], "mimic": 4, "minim": 4, "minimum": 6, "mirror": [9, 11], "mirrori": 3, "mirrorx": [3, 11], "miss": 3, "mitig": 10, "mm": [3, 4], "mm_z": 4, "mode": [0, 4, 5, 7, 8, 11], "modif": 3, "modul": [0, 3, 4, 6, 7], "monoton": 4, "more": 7, "most": [0, 9], "mostli": 3, "mpe": [3, 12], "mpg": 12, "must": [4, 8], "mx": 6, "my": 6, "name": [0, 3, 5, 7, 8, 9, 12], "nameerror": 7, "nap32": 9, "ndarrai": [4, 5, 6, 7, 8, 9], "ndimag": 4, "nearest": 4, "necessari": 3, "need": [0, 4, 7, 8, 9, 12], "neither": [3, 9], "nest": [3, 7, 9], "new": [0, 11], "nexu": [1, 3, 7, 8, 9], "node": 7, "non": [4, 11, 13], "none": [3, 5, 7, 8, 9], "nor": [3, 9], "normal": [3, 4, 5, 8], "notebook": [0, 3, 8, 11, 12], "notimplementederror": 7, "now": 0, "np": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "number": [3, 4, 7, 8, 9, 11, 13], "numpi": [4, 5, 7, 8, 9, 10, 11, 12, 13], "nx": [8, 12], "nx_pixel": [3, 4], "nxmpes_arp": [3, 12], "nxmpes_arpes_config": [3, 12], "nxuser": 12, "ny_pixel": [3, 4], "o": 10, "object": [5, 7, 8, 9, 11], "obtain": 9, "offset": [3, 4], "omg": 3, "onc": 0, "one": [6, 7, 10, 11], "onli": [4, 7, 11], "onto": [8, 13], "open": 10, "opencomp": 0, "oper": [10, 11], "opt": [3, 10, 11, 12, 13], "optim": [5, 8, 10, 11], "option": [0, 3, 5, 6, 7, 8, 9, 11], "order": [3, 4, 7, 11], "org": 0, "other": [3, 5, 11], "otherwis": 7, "out": [0, 4, 5, 8], "output": [7, 12], "outsid": 4, "over": [3, 8, 9, 11], "overlap": [12, 13], "overwrit": [3, 5], "overwritten": 3, "p": 12, "p_rd": [3, 12], "pack": 4, "packag": [0, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13], "package_dir": 3, "page": 1, "pair": 7, "panda": 9, "paramet": [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "pars": [7, 9], "parse_calib2d_to_dict": 7, "parse_config": [3, 5, 8], "parse_info_to_dict": 9, "parse_lut_to_df": 9, "parser": 7, "part": 0, "pass": [0, 3, 4, 5, 8, 10, 11], "pass_energi": [4, 5, 8, 10], "path": [3, 5, 7, 8, 9, 10, 11, 12, 13], "pattern": 6, "pd": 9, "peak": [3, 5, 6, 8, 10, 11], "per": [4, 11, 13], "perform": [4, 8, 9, 10, 13], "pesdata": 9, "phi": 3, "phoibo": [0, 5, 8, 10, 11], "phoibos150": [0, 3], "photoelectron": 4, "photoemiss": [4, 5], "physic": [0, 4, 5], "physical_unit_data": 4, "pixel": [3, 4], "pixel_s": [3, 4, 10], "place": [3, 5], "plai": [5, 8], "planck": 12, "plane": [3, 5, 8, 10], "pleas": 10, "plot": [10, 11, 12, 13], "plt": [10, 11, 12, 13], "point": [9, 11, 12], "pol": 12, "polar": 3, "polynomi": 4, "popul": 7, "pos_i": [3, 5, 6, 8, 11], "pos_x": [3, 5, 6, 8, 11], "posi": 7, "posit": [3, 4, 5, 6, 8, 10, 11], "poss": 4, "possibl": 6, "possibli": 3, "posx": 7, "pre": [3, 5], "prefer": 3, "preparation_d": 12, "preparation_descript": 12, "prerequisit": 0, "present": [3, 11], "preserv": 4, "press": 11, "pressur": 3, "pressureac": [3, 12], "previous": [8, 11], "princip": 12, "print": 9, "pro": 4, "probe": 12, "procedur": 0, "process": [8, 11], "process_sweep_scan": 8, "processor": 3, "produc": 13, "program": 4, "progress": [3, 9], "project": 9, "properti": [5, 8], "provid": [0, 3, 5, 6, 7, 8, 9, 10, 11, 13], "pull": 0, "pulse_dur": 12, "pulse_energi": 12, "pump": 12, "pv": 3, "pyenv": 0, "pynxtool": [7, 8, 12], "pypi": 0, "pyplot": [10, 11, 12, 13], "pyproject": 0, "python": [0, 3, 7, 10, 11, 12, 13], "python3": [3, 10, 11, 12, 13], "quadmesh": [10, 11, 12, 13], "queri": 9, "question": 4, "r": 7, "r9132": 10, "rais": [3, 4, 7, 8, 9], "rang": [4, 8, 9, 11, 12, 13], "ratio": 4, "raw": [4, 5, 8, 9], "raw_arrai": 9, "raw_data": 8, "raw_imag": 5, "raw_image_nam": 10, "raw_img": 5, "raw_list": 9, "rbv": 3, "read": [0, 7, 8, 9], "read_calib2d": 7, "reader": [3, 7, 8, 12], "real": 6, "record": 11, "recurs": [0, 7], "recursive_parse_metadata": 7, "recursive_write_metadata": 7, "refer": 2, "regular": 6, "rel": 11, "remov": [3, 6], "renam": 3, "report": 3, "repositori": 0, "repres": 7, "request": [0, 3, 4], "requir": [0, 11], "res_xarrai": [10, 11, 12, 13], "res_xarray_check": 11, "resolut": 12, "resolv": 4, "respect": [3, 4], "result": [3, 4, 8, 11, 12, 13], "ret": 6, "retain": 7, "retard": 4, "retardation_ratio": [4, 10], "retriev": 3, "rettig": 12, "return": [3, 4, 5, 6, 7, 8, 9, 13], "rewrit": 12, "right": 0, "rise": 7, "role": 12, "root": 13, "rotat": 10, "rotation_angl": [10, 13], "row": 4, "row0": 4, "row1": 4, "rr": 4, "rrvec": 4, "rudimentari": 9, "rule": 3, "run": 0, "runner": [10, 11, 12, 13], "s_": [8, 9, 11], "sai": 11, "sampl": [3, 12], "sample_azimuth": 3, "sample_histori": 12, "sample_polar": 3, "sample_tilt": 3, "save": [3, 7, 8, 12], "save_config": 3, "scale": 4, "scan": [0, 1, 4, 8, 9, 11, 12], "scan_info": [9, 11, 12], "scan_list": 9, "scan_path": 9, "scan_typ": 9, "scanvector": 9, "scipi": 4, "script": 9, "search": [1, 3, 8, 9], "second": [4, 6], "second_closest_rr": 4, "see": [0, 3, 11], "select": [5, 8], "sequenc": [6, 7, 8, 9], "server": 11, "set": [0, 4, 5, 8, 11, 12, 13], "sever": 0, "shell": 0, "shift": 4, "ship": 3, "should": [0, 3, 4, 7, 11, 12], "show": 11, "showcas": [10, 11, 12, 13], "sigma": [5, 6], "sigma_i": [3, 5, 6, 8, 11], "sigma_x": [3, 5, 6, 8, 11], "singl": [3, 7, 8, 9, 10, 12], "site": [3, 10, 11, 12, 13], "size": [3, 4, 9], "slice": [8, 9, 11, 12], "slow": 9, "slow_ax": 9, "so": 7, "societi": 12, "softwar": [0, 8, 11], "some": 10, "sort": 7, "sourc": [0, 3, 4, 5, 6, 7, 8, 9, 10], "sp": [11, 12, 13], "sp2": 10, "spa": 10, "spa_param": [3, 12, 13], "spatial": [3, 4, 5, 7, 8], "spatial0": 3, "spatial_resolut": 12, "spawn": 0, "spec": [0, 3, 4, 5, 8, 10], "specs_config": 3, "specs_kernel": 0, "specs_poetri": 0, "specsanalyz": [8, 11, 12, 13], "specsscan": [0, 9, 12, 13], "spectromet": 0, "split": 7, "src": [3, 12, 13], "stack": [7, 8], "stackoverflow": 4, "stamp": [9, 11, 12, 13], "standard": [3, 7], "start": [4, 9], "step": [0, 3, 8, 11, 13], "stoke": 12, "store": [3, 5, 7, 8, 10, 11], "str": [3, 4, 5, 6, 7, 8, 9], "string": [3, 4, 7, 8, 9, 11], "structur": 7, "subfunct": 7, "submit": 0, "submodul": 0, "subsequ": 3, "subtract": [3, 5, 8], "sum": [8, 11, 12, 13], "support": [3, 7, 8], "suppress": 6, "sure": 0, "surfac": 12, "sweep": [1, 8], "sx": 6, "sy": 6, "sync": 0, "system": [0, 3, 4], "system_config": [3, 11], "t": [7, 10, 12], "tabul": 4, "take": 3, "tbte3": 12, "temp_rbv": [3, 12], "tempa": 3, "temperatur": [3, 8, 9], "test": [0, 3, 10, 11, 12, 13], "text": 10, "th": [5, 8], "than": 7, "thei": 3, "them": 3, "therefor": [7, 11], "thi": [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "third": [8, 11], "through": 7, "tht": 3, "tif": 8, "tiff": [7, 8], "tilt": [3, 12], "time": [7, 9, 11, 12, 13], "to_h5": 7, "to_nexu": 7, "to_tiff": 7, "todo": 1, "togeth": [0, 3], "toml": 0, "tool": [1, 5, 8, 10, 11], "topfloor": 9, "total_iter": 9, "tqdm_enable_nest": 9, "trans_i": 3, "trans_x": 3, "trans_z": 3, "transform": [3, 4], "trarp": [9, 11, 12], "tri": 7, "true": [3, 10, 11, 12, 13], "trx": 3, "try": 3, "trz": 3, "ts_from": 9, "ts_to": 9, "tsv": 10, "tsv_data": 10, "tupl": [4, 7, 8, 9], "tutori": 0, "two": 0, "txt": 9, "type": [0, 3, 4, 5, 6, 7, 8, 9], "typeerror": [3, 7], "typic": 3, "tzcyx": 7, "uhv": 12, "under": [5, 8, 9], "union": 8, "unit": [3, 4, 5], "unless": 4, "up": [0, 4], "updat": 0, "url": [3, 9], "us": [0, 3, 4, 5, 7, 8, 9, 11, 12, 13], "usag": 0, "user": [3, 11, 12, 13], "user0": 12, "user_config": [3, 11, 12, 13], "v": [3, 5], "valid": [4, 8, 9, 10], "valu": [3, 4, 5, 6, 7, 8], "valueerror": [4, 7, 8, 9], "variabl": 6, "variou": 3, "vector": [4, 12], "venv": 0, "verbos": 3, "version": 0, "vertic": [5, 8], "virtual": 0, "visual": 10, "voltag": [3, 8], "w": [7, 8, 10], "wa": 8, "want": 6, "warn": [7, 11, 13], "we": 11, "well": [2, 11], "when": [7, 8, 9], "where": [3, 6, 7, 8, 11], "which": [6, 8, 9, 10, 11, 12], "while": 11, "wide": [0, 3], "wideanglemod": [5, 8, 10], "widget": [10, 11, 12, 13], "width": [3, 5, 8], "wiki": 2, "window": 3, "wish": 0, "within": 0, "withing": 4, "without": [6, 10], "work": [0, 3, 4, 5, 8, 10, 11, 12, 13], "work_funct": [4, 5, 8, 10], "workflow": 3, "would": [8, 9], "write": [7, 8], "writer": 8, "wrong": 13, "x": [3, 5, 6, 7], "x64": [3, 10, 11, 12, 13], "x_max": 6, "x_min": 6, "xarrai": [3, 5, 6, 7, 8, 10, 11, 12, 13], "xgs600": [3, 12], "xr": [5, 6, 7, 8], "xuv": 12, "y": [3, 5, 6, 7], "y_max": 6, "y_min": 6, "yaml": [3, 9, 10, 11, 12, 13], "year": 9, "yet": 11, "you": [0, 4, 6], "your": [0, 3, 10], "z": [3, 7], "zinner": 4, "zinner_diff": 4, "\u00b5j": 12}, "titles": ["specsanalyzer", "Welcome to specsanalyzer\u2019s documentation!", "1. How to maintain", "Config", "2. convert functions (specsanalyzer.convert)", "1. Core functions (specsanalyzer.core)", "3. image tool functions (specsanalyzer.img_tools)", "4. io functions (specsanalyzer.io)", "1. Core functions (specsscan.core)", "2. Helpers", "Example 1: SpecsAnalyzer conversion", "Example 2: SpecsScan loading", "Example 3: Export to NeXus", "Example 4: Sweep Scan loading"], "titleterms": {"": 1, "1": 10, "2": 11, "3": 12, "4": 13, "For": 0, "adjust": 10, "angl": 10, "api": 3, "artefact": 10, "artifact": 11, "berlin": 3, "calib2d": 0, "config": 3, "configur": [0, 3], "contribut": 1, "contributor": 0, "convers": 10, "conversion_paramet": 10, "convert": 4, "core": [1, 5, 8], "crop": 11, "data": 11, "default": 3, "dict": 10, "document": 1, "exampl": [3, 10, 11, 12, 13], "export": 12, "fhi": 3, "file": [0, 3], "function": [4, 5, 6, 7, 8], "get": 1, "helper": 9, "how": 2, "imag": [6, 10], "img_tool": 6, "indic": 1, "instal": 0, "io": 7, "iter": 11, "load": [11, 13], "maintain": [0, 2], "mesh": [10, 11], "mode": 10, "modul": 1, "nexu": 12, "offset": 10, "pip": 0, "poetri": 0, "remov": [10, 11], "resolv": 10, "save": 11, "scan": 13, "select": 11, "set": 3, "setup": 3, "spatial": 10, "specsanalyz": [0, 1, 3, 4, 5, 6, 7, 10], "specsscan": [1, 3, 8, 11], "start": 1, "sweep": 13, "tabl": 1, "tool": 6, "trarp": 3, "us": 10, "user": 0, "welcom": 1}}) \ No newline at end of file +Search.setIndex({"alltitles": {"API": [[3, "module-specsanalyzer.config"]], "Adjusting offsets and angle": [[10, "Adjusting-offsets-and-angle"]], "Config": [[3, null]], "Configuration and calib2d file": [[0, "configuration-and-calib2d-file"]], "Contributing": [[1, null]], "Conversion into spatially resolved modes": [[10, "Conversion-into-spatially-resolved-modes"]], "Conversion using conversion_parameters dict": [[10, "Conversion-using-conversion_parameters-dict"]], "Core functions (specsanalyzer.core)": [[5, null]], "Core functions (specsscan.core)": [[8, null]], "Cropping data": [[11, "Cropping-data"]], "Default specsanalyzer configuration settings": [[3, "default-specsanalyzer-configuration-settings"]], "Default specsscan configuration settings": [[3, "default-specsscan-configuration-settings"]], "Example 1: SpecsAnalyzer conversion": [[10, null]], "Example 2: SpecsScan loading": [[11, null]], "Example 3: Export to NeXus": [[12, null]], "Example 4: Sweep Scan loading": [[13, null]], "Example configuration file for the trARPES setup at FHI-Berlin": [[3, "example-configuration-file-for-the-trarpes-setup-at-fhi-berlin"]], "For Contributors": [[0, "for-contributors"]], "Getting Started": [[1, null]], "Helpers": [[9, null]], "How to maintain": [[2, null]], "Image conversion": [[10, "Image-conversion"]], "Indices and tables": [[1, "indices-and-tables"]], "Installation": [[0, "installation"]], "Loading data": [[11, "Loading-data"]], "Loading with selected iterations": [[11, "Loading-with-selected-iterations"]], "Pip (for users)": [[0, "pip-for-users"]], "Poetry (for maintainers)": [[0, "poetry-for-maintainers"]], "Removal of Mesh Artifact": [[11, "Removal-of-Mesh-Artifact"]], "Removal of mesh artefact": [[10, "Removal-of-mesh-artefact"]], "Saving": [[11, "Saving"]], "SpecsAnalyzer Core Modules": [[1, null]], "SpecsScan Core Modules": [[1, null]], "Welcome to specsanalyzer\u2019s documentation!": [[1, null]], "convert functions (specsanalyzer.convert)": [[4, null]], "image tool functions (specsanalyzer.img_tools)": [[6, null]], "io functions (specsanalyzer.io)": [[7, null]], "specsanalyzer": [[0, null]]}, "docnames": ["getting_started", "index", "misc/maintain", "specsanalyzer/config", "specsanalyzer/convert", "specsanalyzer/core", "specsanalyzer/img_tools", "specsanalyzer/io", "specsscan/core", "specsscan/helpers", "tutorial/1_specsanalyzer_conversion_examples", "tutorial/2_specsscan_example", "tutorial/3_specsscan_conversion_to_NeXus", "tutorial/4_specsscan_load_sweep_scan"], "envversion": {"nbsphinx": 4, "sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1}, "filenames": ["getting_started.rst", "index.rst", "misc/maintain.rst", "specsanalyzer/config.rst", "specsanalyzer/convert.rst", "specsanalyzer/core.rst", "specsanalyzer/img_tools.rst", "specsanalyzer/io.rst", "specsscan/core.rst", "specsscan/helpers.rst", "tutorial/1_specsanalyzer_conversion_examples.ipynb", "tutorial/2_specsscan_example.ipynb", "tutorial/3_specsscan_conversion_to_NeXus.ipynb", "tutorial/4_specsscan_load_sweep_scan.ipynb"], "indexentries": {"_fill_missing_dims() (in module specsanalyzer.io)": [[7, "specsanalyzer.io._fill_missing_dims", false]], "_sort_dims_for_imagej() (in module specsanalyzer.io)": [[7, "specsanalyzer.io._sort_dims_for_imagej", false]], "bisection() (in module specsanalyzer.convert)": [[4, "specsanalyzer.convert.bisection", false]], "calculate_jacobian() (in module specsanalyzer.convert)": [[4, "specsanalyzer.convert.calculate_jacobian", false]], "calculate_matrix_correction() (in module specsanalyzer.convert)": [[4, "specsanalyzer.convert.calculate_matrix_correction", false]], "calculate_polynomial_coef_da() (in module specsanalyzer.convert)": [[4, "specsanalyzer.convert.calculate_polynomial_coef_da", false]], "calib2d (specsanalyzer.core.specsanalyzer property)": [[5, "specsanalyzer.core.SpecsAnalyzer.calib2d", false]], "check_scan() (specsscan.core.specsscan method)": [[8, "specsscan.core.SpecsScan.check_scan", false]], "compare_coords() (in module specsscan.helpers)": [[9, "specsscan.helpers.compare_coords", false]], "complete_dictionary() (in module specsanalyzer.config)": [[3, "specsanalyzer.config.complete_dictionary", false]], "config (specsanalyzer.core.specsanalyzer property)": [[5, "specsanalyzer.core.SpecsAnalyzer.config", false]], "config (specsscan.core.specsscan property)": [[8, "specsscan.core.SpecsScan.config", false]], "convert_image() (specsanalyzer.core.specsanalyzer method)": [[5, "specsanalyzer.core.SpecsAnalyzer.convert_image", false]], "correction_matrix_dict (specsanalyzer.core.specsanalyzer property)": [[5, "specsanalyzer.core.SpecsAnalyzer.correction_matrix_dict", false]], "create_fft_params() (in module specsanalyzer.core)": [[5, "specsanalyzer.core.create_fft_params", false]], "crop_tool() (specsanalyzer.core.specsanalyzer method)": [[5, "specsanalyzer.core.SpecsAnalyzer.crop_tool", false]], "crop_tool() (specsscan.core.specsscan method)": [[8, "specsscan.core.SpecsScan.crop_tool", false]], "crop_xarray() (in module specsanalyzer.img_tools)": [[6, "specsanalyzer.img_tools.crop_xarray", false]], "fft_tool() (specsanalyzer.core.specsanalyzer method)": [[5, "specsanalyzer.core.SpecsAnalyzer.fft_tool", false]], "fft_tool() (specsscan.core.specsscan method)": [[8, "specsscan.core.SpecsScan.fft_tool", false]], "find_scan() (in module specsscan.helpers)": [[9, "specsscan.helpers.find_scan", false]], "find_scan_type() (in module specsscan.helpers)": [[9, "specsscan.helpers.find_scan_type", false]], "fourier_filter_2d() (in module specsanalyzer.img_tools)": [[6, "specsanalyzer.img_tools.fourier_filter_2d", false]], "gauss2d() (in module specsanalyzer.img_tools)": [[6, "specsanalyzer.img_tools.gauss2d", false]], "get_archiver_data() (in module specsscan.helpers)": [[9, "specsscan.helpers.get_archiver_data", false]], "get_coords() (in module specsscan.helpers)": [[9, "specsscan.helpers.get_coords", false]], "get_damatrix_from_calib2d() (in module specsanalyzer.convert)": [[4, "specsanalyzer.convert.get_damatrix_from_calib2d", false]], "get_modes_from_calib_dict() (in module specsanalyzer.io)": [[7, "specsanalyzer.io.get_modes_from_calib_dict", false]], "get_pair_from_list() (in module specsanalyzer.io)": [[7, "specsanalyzer.io.get_pair_from_list", false]], "get_raw2d() (in module specsscan.helpers)": [[9, "specsscan.helpers.get_raw2d", false]], "get_rr_da() (in module specsanalyzer.convert)": [[4, "specsanalyzer.convert.get_rr_da", false]], "get_scan_path() (in module specsscan.helpers)": [[9, "specsscan.helpers.get_scan_path", false]], "handle_meta() (in module specsscan.helpers)": [[9, "specsscan.helpers.handle_meta", false]], "load_config() (in module specsanalyzer.config)": [[3, "specsanalyzer.config.load_config", false]], "load_h5() (in module specsanalyzer.io)": [[7, "specsanalyzer.io.load_h5", false]], "load_images() (in module specsscan.helpers)": [[9, "specsscan.helpers.load_images", false]], "load_scan() (specsscan.core.specsscan method)": [[8, "specsscan.core.SpecsScan.load_scan", false]], "load_tiff() (in module specsanalyzer.io)": [[7, "specsanalyzer.io.load_tiff", false]], "mcp_position_mm() (in module specsanalyzer.convert)": [[4, "specsanalyzer.convert.mcp_position_mm", false]], "module": [[3, "module-specsanalyzer.config", false], [4, "module-specsanalyzer.convert", false], [5, "module-specsanalyzer.core", false], [6, "module-specsanalyzer.img_tools", false], [7, "module-specsanalyzer.io", false], [8, "module-specsscan.core", false], [9, "module-specsscan.helpers", false]], "parse_calib2d_to_dict() (in module specsanalyzer.io)": [[7, "specsanalyzer.io.parse_calib2d_to_dict", false]], "parse_config() (in module specsanalyzer.config)": [[3, "specsanalyzer.config.parse_config", false]], "parse_info_to_dict() (in module specsscan.helpers)": [[9, "specsscan.helpers.parse_info_to_dict", false]], "parse_lut_to_df() (in module specsscan.helpers)": [[9, "specsscan.helpers.parse_lut_to_df", false]], "physical_unit_data() (in module specsanalyzer.convert)": [[4, "specsanalyzer.convert.physical_unit_data", false]], "process_sweep_scan() (specsscan.core.specsscan method)": [[8, "specsscan.core.SpecsScan.process_sweep_scan", false]], "read_calib2d() (in module specsanalyzer.io)": [[7, "specsanalyzer.io.read_calib2d", false]], "recursive_parse_metadata() (in module specsanalyzer.io)": [[7, "specsanalyzer.io.recursive_parse_metadata", false]], "recursive_write_metadata() (in module specsanalyzer.io)": [[7, "specsanalyzer.io.recursive_write_metadata", false]], "result (specsscan.core.specsscan property)": [[8, "specsscan.core.SpecsScan.result", false]], "save() (specsscan.core.specsscan method)": [[8, "specsscan.core.SpecsScan.save", false]], "save_config() (in module specsanalyzer.config)": [[3, "specsanalyzer.config.save_config", false]], "second_closest_rr() (in module specsanalyzer.convert)": [[4, "specsanalyzer.convert.second_closest_rr", false]], "specsanalyzer (class in specsanalyzer.core)": [[5, "specsanalyzer.core.SpecsAnalyzer", false]], "specsanalyzer.config": [[3, "module-specsanalyzer.config", false]], "specsanalyzer.convert": [[4, "module-specsanalyzer.convert", false]], "specsanalyzer.core": [[5, "module-specsanalyzer.core", false]], "specsanalyzer.img_tools": [[6, "module-specsanalyzer.img_tools", false]], "specsanalyzer.io": [[7, "module-specsanalyzer.io", false]], "specsscan (class in specsscan.core)": [[8, "specsscan.core.SpecsScan", false]], "specsscan.core": [[8, "module-specsscan.core", false]], "specsscan.helpers": [[9, "module-specsscan.helpers", false]], "to_h5() (in module specsanalyzer.io)": [[7, "specsanalyzer.io.to_h5", false]], "to_nexus() (in module specsanalyzer.io)": [[7, "specsanalyzer.io.to_nexus", false]], "to_tiff() (in module specsanalyzer.io)": [[7, "specsanalyzer.io.to_tiff", false]], "zinner() (in module specsanalyzer.convert)": [[4, "specsanalyzer.convert.zinner", false]], "zinner_diff() (in module specsanalyzer.convert)": [[4, "specsanalyzer.convert.zinner_diff", false]]}, "objects": {"specsanalyzer": [[3, 0, 0, "-", "config"], [4, 0, 0, "-", "convert"], [5, 0, 0, "-", "core"], [6, 0, 0, "-", "img_tools"], [7, 0, 0, "-", "io"]], "specsanalyzer.config": [[3, 1, 1, "", "complete_dictionary"], [3, 1, 1, "", "load_config"], [3, 1, 1, "", "parse_config"], [3, 1, 1, "", "save_config"]], "specsanalyzer.convert": [[4, 1, 1, "", "bisection"], [4, 1, 1, "", "calculate_jacobian"], [4, 1, 1, "", "calculate_matrix_correction"], [4, 1, 1, "", "calculate_polynomial_coef_da"], [4, 1, 1, "", "get_damatrix_from_calib2d"], [4, 1, 1, "", "get_rr_da"], [4, 1, 1, "", "mcp_position_mm"], [4, 1, 1, "", "physical_unit_data"], [4, 1, 1, "", "second_closest_rr"], [4, 1, 1, "", "zinner"], [4, 1, 1, "", "zinner_diff"]], "specsanalyzer.core": [[5, 2, 1, "", "SpecsAnalyzer"], [5, 1, 1, "", "create_fft_params"]], "specsanalyzer.core.SpecsAnalyzer": [[5, 3, 1, "", "calib2d"], [5, 3, 1, "", "config"], [5, 4, 1, "", "convert_image"], [5, 3, 1, "", "correction_matrix_dict"], [5, 4, 1, "", "crop_tool"], [5, 4, 1, "", "fft_tool"]], "specsanalyzer.img_tools": [[6, 1, 1, "", "crop_xarray"], [6, 1, 1, "", "fourier_filter_2d"], [6, 1, 1, "", "gauss2d"]], "specsanalyzer.io": [[7, 1, 1, "", "_fill_missing_dims"], [7, 1, 1, "", "_sort_dims_for_imagej"], [7, 1, 1, "", "get_modes_from_calib_dict"], [7, 1, 1, "", "get_pair_from_list"], [7, 1, 1, "", "load_h5"], [7, 1, 1, "", "load_tiff"], [7, 1, 1, "", "parse_calib2d_to_dict"], [7, 1, 1, "", "read_calib2d"], [7, 1, 1, "", "recursive_parse_metadata"], [7, 1, 1, "", "recursive_write_metadata"], [7, 1, 1, "", "to_h5"], [7, 1, 1, "", "to_nexus"], [7, 1, 1, "", "to_tiff"]], "specsscan": [[8, 0, 0, "-", "core"], [9, 0, 0, "-", "helpers"]], "specsscan.core": [[8, 2, 1, "", "SpecsScan"]], "specsscan.core.SpecsScan": [[8, 4, 1, "", "check_scan"], [8, 3, 1, "", "config"], [8, 4, 1, "", "crop_tool"], [8, 4, 1, "", "fft_tool"], [8, 4, 1, "", "load_scan"], [8, 4, 1, "", "process_sweep_scan"], [8, 3, 1, "", "result"], [8, 4, 1, "", "save"]], "specsscan.helpers": [[9, 1, 1, "", "compare_coords"], [9, 1, 1, "", "find_scan"], [9, 1, 1, "", "find_scan_type"], [9, 1, 1, "", "get_archiver_data"], [9, 1, 1, "", "get_coords"], [9, 1, 1, "", "get_raw2d"], [9, 1, 1, "", "get_scan_path"], [9, 1, 1, "", "handle_meta"], [9, 1, 1, "", "load_images"], [9, 1, 1, "", "parse_info_to_dict"], [9, 1, 1, "", "parse_lut_to_df"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "property", "Python property"], "4": ["py", "method", "Python method"]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:property", "4": "py:method"}, "terms": {"": [3, 7, 12], "0": [3, 5, 10, 11, 12, 13], "00": 12, "000000": 10, "0033": 10, "00645": 3, "01": 10, "02": [10, 12], "0258": 10, "03": [10, 12], "04": 10, "04428571e": 10, "05": 10, "066": 10, "07597844332538181": 12, "07597844332538357": 13, "08": [11, 12], "0x7f464fbfafb0": 11, "0x7f464fc2d6c0": 11, "0x7f464fc2fb20": 11, "0x7f4657884a90": 11, "0x7f4657a03730": 11, "0x7fa37360a9e0": 10, "0x7fa3736549a0": 10, "0x7fa373741d50": 10, "0x7fa37b1dddb0": 10, "0x7fa37b603f10": 10, "0x7fa37ddccfa0": 10, "0x7fd128e5e590": 12, "0x7fd12a096350": 12, "0x7fd6647401f0": 13, "1": [1, 3, 4, 6, 8, 9, 11, 12, 13], "10": [3, 8, 9, 10, 11, 12, 13], "1024": 3, "108": 3, "109": 3, "11": [10, 11, 12], "116": 11, "12": [10, 11], "120": 12, "13": [10, 11, 13], "1376": 3, "14": [10, 11], "14195": 12, "1496": 12, "15": [3, 8, 9, 10, 11, 12, 13], "150": 12, "16453159041394336": 12, "16571429e": 10, "16732026143790849": 13, "17668": 3, "19828571e": 10, "19t10": 12, "2": [1, 6, 7, 9, 10, 12, 13], "20": 12, "2017": 12, "2020": 9, "20521429e": 10, "20f": 12, "21": 12, "224": 12, "23": 11, "2566412": 4, "270": 12, "2857142857142865": 10, "2d": [5, 6, 9], "3": [1, 3, 7, 8, 10, 11, 13], "30": 12, "300": 12, "34": 12, "34014286e": 10, "35": [10, 12], "36678571e": 10, "37997143e": 10, "39": [10, 11, 12], "3d": [9, 11], "4": [1, 3, 7, 10, 11, 12], "4450": 11, "4sigma": 12, "5": [3, 10, 11, 12], "500": 12, "53542857e": 10, "54": [3, 10], "55": 12, "59685714e": 10, "5e": 12, "6": [4, 10, 11, 12], "6455": 13, "7": [10, 11, 12], "70": 12, "7142857142857135": 10, "74571429e": 10, "78": 3, "79": 3, "8": [3, 10, 11, 12], "80": [3, 12], "800": 12, "800nm": 12, "81": 3, "82": [10, 11], "8449673202614381": 13, "85": 11, "85771429e": 10, "8771428571428571": 10, "88": 11, "8840087145969499": 12, "8965456312395133": 13, "9": [10, 11], "9117413199045858": 12, "95942857e": 10, "A": [0, 3, 4, 5, 8, 9, 12], "For": [3, 8, 9, 11], "If": [0, 7, 9, 10], "In": [3, 11], "It": 3, "Its": 8, "No": 10, "One": 11, "The": [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "These": [3, 10, 12], "To": 0, "Will": 3, "__epicsarchiver_host__": 3, "_attr": 7, "_fill_missing_dim": 7, "_sort_dims_for_imagej": 7, "a_inn": [4, 10], "a_rang": [4, 10], "about": 6, "abov": 4, "access": [0, 11], "accessor": 11, "accord": 6, "acquir": 0, "activ": 0, "ad": [3, 7, 11], "add": 7, "addit": [3, 8, 9, 11, 13], "address": 12, "administr": 3, "affili": 12, "after": [4, 11, 12], "again": 11, "alia": 7, "alias": 8, "alias_dict": [7, 8], "all": [0, 3, 8, 9, 11, 13], "allusersprofil": 3, "along": [3, 4, 6, 11, 12], "alreadi": 11, "also": [3, 10, 11], "altern": [3, 10, 11], "amplitud": [3, 5, 6, 8, 11], "an": [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "analyz": [0, 3, 4, 5, 8, 10], "analyzer_dispers": 3, "ang_range_max": [5, 11, 12, 13], "ang_range_min": [5, 11, 12, 13], "angl": [0, 3, 4, 5, 8, 11], "angle_axi": 4, "angle_offset_px": [3, 4, 10, 13], "angular": [0, 3, 4, 7, 11], "angular0": [3, 12], "angular1": [3, 12], "angular_correction_matrix": 4, "angular_resolut": 12, "ani": [3, 7, 9], "anoth": 11, "api": 0, "appear": [5, 8], "append": 8, "appli": [3, 5, 8, 10, 11], "applic": [3, 8], "apply_fft_filt": [3, 10, 11], "approach": 10, "ar": [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13], "archiv": [3, 8, 9], "archiver_channel": 9, "archiver_url": [3, 9], "area": [4, 11], "argument": [3, 5, 7, 8, 10], "around": [4, 5, 8, 12], "arpescontrol": 8, "arrai": [4, 6, 7, 8, 9, 10], "arriv": 4, "artifact": [3, 6, 10], "associ": [4, 11], "assum": 7, "attr": [7, 10, 11], "attribut": [7, 10, 11], "attributeerror": 7, "automat": 7, "autoreload": [10, 11, 12, 13], "auxiliari": 4, "avail": [0, 10], "averag": [8, 9, 11], "average_pow": 12, "avg": 9, "ax": [3, 7, 12], "axi": [3, 4, 5, 7, 8, 9, 11, 12], "axis_data": 9, "axis_dict": 7, "azimuth": 3, "band": [11, 12], "bar": [3, 9], "base": [3, 4, 5, 8, 9], "base_dictionari": 3, "basepath": 9, "beam": 12, "been": 7, "befor": 11, "below": [0, 3, 4], "berlin": [8, 11, 12], "best": [4, 7], "between": [3, 4], "beyond": 11, "bin": [0, 3, 4, 10], "binarysearch": 4, "bisect": 4, "bool": [3, 5, 8, 9], "both": 9, "boundari": [4, 6, 11], "built": [5, 8], "c": 7, "calcul": [4, 6], "calculate_jacobian": 4, "calculate_matrix_correct": 4, "calculate_polynomial_coef_da": 4, "calib2": 10, "calib2d": [3, 4, 5, 7, 8, 10], "calib2d_dict": 4, "calib2d_fil": 3, "calib_dict": 7, "calibr": [0, 3, 7, 10], "camelcas": [5, 8], "camera": 5, "can": [0, 3, 7, 8, 9, 10, 11], "cannot": [3, 7, 9], "carv": [3, 12], "case": 11, "cd": 0, "center": [4, 6, 10], "certain": 4, "chang": [0, 3, 9, 11, 12], "channel": [3, 7, 9], "charact": 7, "check": [0, 5, 8], "check_scan": [8, 9, 11], "chemical_formula": 12, "chosen": 6, "class": [0, 5, 8, 9, 11, 12, 13], "clean": 7, "cleav": 12, "clone": 0, "closest": 4, "closest_rr_index": 4, "coeffici": 4, "collect": [3, 8, 9, 10, 11, 12, 13], "collect_metadata": [8, 9, 12], "column": 9, "com": [0, 4], "combin": 3, "come": 12, "command": 0, "common": 8, "compare_coord": 9, "comparison": 4, "compat": 7, "complet": [3, 7, 11], "complete_dictionari": 3, "concept": 1, "conda": 0, "config": [0, 1, 5, 8, 9, 10, 11, 12, 13], "config_dict": 3, "config_filteron": 10, "config_path": 3, "configur": [4, 7, 10, 11, 13], "consid": 7, "consist": [3, 8, 9], "constructor": 0, "contain": [0, 3, 4, 5, 6, 7, 8, 9, 11, 12], "content": [3, 9], "contribut": 0, "control": 3, "conveni": [7, 11], "convent": [5, 8], "convers": [0, 1, 3, 4, 5, 7, 8, 9, 11, 12, 13], "conversion_paramet": [5, 11], "convert": [0, 1, 5, 7, 8, 9, 10, 11, 12], "convert_imag": [5, 10], "coord": [7, 9], "coordin": [0, 4, 5, 6, 7, 8, 9, 11], "coordinate_depend": 3, "coordinate_map": 3, "copi": 10, "correct": [4, 5, 7], "correction_matrix_dict": 5, "correl": 6, "correspond": [0, 3, 4, 5, 6, 7, 9, 10, 11], "creat": [0, 3, 5, 7, 10, 11, 12, 13], "create_fft_param": 5, "crop": [3, 5, 6, 8, 12, 13], "crop_tool": [5, 8, 11], "crop_xarrai": 6, "crystal": 12, "cube": 12, "current": [3, 4, 7], "cut": 12, "d": [8, 9], "da": 4, "da1": 4, "da3": 4, "da7": 4, "da_matrix": [4, 10], "da_poly_matrix": 4, "dapolymatrix": 4, "data": [0, 3, 5, 6, 7, 8, 9, 10, 12, 13], "data9132_rawdata": 10, "data_arrai": 6, "data_path": [3, 8], "dataarrai": [5, 6, 7, 8], "databas": 4, "dataconvert": 7, "dataepfl": 10, "datafram": [9, 11, 12], "dataset": 7, "de": 12, "de1": [4, 10], "default": [5, 6, 7, 8, 9, 10, 11, 12, 13], "default_config": 3, "defin": [0, 3, 4, 5, 6, 10], "definit": [3, 7, 8, 12], "deg": 4, "degre": 3, "delai": [3, 8, 9, 11, 12], "delimit": 10, "demonstr": [10, 11], "depend": 0, "describ": 7, "descript": [1, 4, 12], "detail": 3, "detector": [0, 3, 4, 10, 11], "determin": [4, 5, 8], "dev": 0, "develop": 0, "deviat": 3, "df_lut": 9, "dict": [3, 4, 5, 6, 7, 8, 9], "dict_kei": 11, "dictionari": [3, 4, 5, 7, 8, 9, 13], "differ": [3, 9, 10, 11, 12, 13], "dim": [4, 6, 7, 9, 10, 11, 12], "dimens": [7, 8, 9, 10, 11], "dimension": [6, 7, 12], "direct": [3, 4, 6], "directli": [3, 5, 8, 11], "directori": [3, 9], "disabl": 3, "dispers": [3, 4, 11, 12], "distanc": 4, "divid": 7, "do": [4, 11], "doc": [0, 10, 11, 12, 13], "document": [0, 11], "doe": 7, "done": [0, 11, 12, 13], "drain_curr": 3, "drive": 11, "duplic": 7, "e": [0, 3, 4, 5, 6, 8, 9, 10, 11], "e_correct": 4, "e_rang": [4, 10], "e_shift": [4, 10], "each": [3, 4, 6, 8], "edg": 4, "edit": 0, "ef": 12, "either": [0, 8, 11], "ek_axi": 4, "ek_range_max": [5, 11, 12, 13], "ek_range_min": [5, 11, 12, 13], "ekin": [3, 8, 10, 11], "electron": [4, 8, 12], "electronanalys": [3, 12], "element": [6, 7], "eln": 3, "eln_data": 8, "email": 12, "emiss": [0, 4], "empti": [3, 8, 9], "enabl": [3, 9], "enable_nested_progress_bar": 3, "end": 9, "energi": [0, 3, 4, 5, 7, 8, 11, 12, 13], "energy_offset_px": [3, 4, 10], "energy_resolut": 12, "energydispers": 3, "engin": 3, "ensur": 0, "entri": [3, 6, 7, 11, 12], "entry_titl": 12, "environ": 0, "epfl": [0, 8], "epic": [3, 8, 9], "epics_channel": 3, "equidist": 13, "eshift": 4, "estim": 4, "etc": [0, 3, 9], "ev": 3, "even": 7, "ex": [8, 9], "exampl": [0, 1], "example_config_fhi": [12, 13], "example_data": 11, "exist": [3, 11], "experiment_summari": 12, "experiment_titl": 12, "explicitli": 10, "explor": 8, "export": 1, "express": 4, "extend": 7, "extens": 8, "extent": 12, "extract": 9, "f": [3, 12], "factor": [3, 4], "faddr": [7, 8], "fairmat": 12, "fals": [3, 5, 8, 9, 10, 11], "faradayweg": 12, "fast": 9, "fast_ax": 9, "featur": 6, "feel": 0, "fermi": 12, "fft": [5, 6, 8, 10, 11], "fft_filter_peak": [3, 5, 8, 10, 11], "fft_tool": [5, 8, 10, 11], "fhi": [0, 11, 12], "figur": [10, 11, 12, 13], "file": [5, 7, 8, 9, 10, 11, 12], "filenam": 8, "filenotfounderror": [3, 9], "filepath": 7, "fill": 12, "filter": [3, 5, 6, 8, 10, 11], "filtered_fft": 6, "find": 4, "find_scan": 9, "find_scan_typ": 9, "first": [0, 3, 6, 11, 12], "fit": 4, "fix": 11, "flag": [3, 6], "float": [4, 5, 6, 7, 8, 9], "fluenc": 12, "folder": [3, 8, 9, 10, 11], "folder_config": 3, "follow": [0, 3, 6, 7, 12], "format": [3, 7, 12], "found": [0, 3, 4, 7, 9, 10, 11, 12, 13], "fourier": [3, 5, 6, 8, 10], "fourier_filter_2d": 6, "fraction": 4, "frame": [8, 9], "free": 0, "frequenc": [5, 8, 12], "fritz": [3, 8, 12], "from": [0, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13], "front": 10, "fsmap": 12, "full": [6, 7], "fulli": 3, "function": [1, 3, 9, 10, 11], "further": [8, 9], "fwhm": 12, "g": [0, 3, 5, 6, 8, 9, 10, 11], "gamma": 12, "gather": [11, 12, 13], "gauss2d": 6, "gaussian": [3, 5, 6, 12], "gener": [8, 11, 12], "get": [4, 5, 8, 11], "get_archiver_data": 9, "get_coord": 9, "get_damatrix_from_calib2d": 4, "get_modes_from_calib_dict": 7, "get_pair_from_list": 7, "get_raw2d": 9, "get_rr_da": 4, "get_scan_path": 9, "getdata": 3, "git": 0, "github": [0, 2], "give": 3, "given": [3, 4, 6, 7, 8, 9, 11, 12], "grid": [3, 6, 8, 10, 11, 13], "group": 7, "gt": [10, 11, 12, 13], "guess": 7, "h5": [8, 11], "h5group": 7, "h5py": 7, "ha": [11, 12], "haber": [3, 8, 12], "handl": [0, 9], "handle_meta": 9, "have": [0, 7, 10], "hdf5": [7, 8, 11], "help": 0, "helper": 1, "here": [3, 11, 13], "hierarch": 3, "high": 4, "highmagnification2": 10, "home": [3, 10, 11, 12, 13], "horizont": [5, 8], "hostedtoolcach": [3, 10, 11, 12, 13], "how": 1, "http": [0, 3, 4], "i": [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "ideal": 12, "identifi": 9, "ignor": 7, "igor": 4, "illumin": 11, "imag": [0, 1, 3, 4, 5, 7, 8, 9, 11, 13], "imagej": 7, "img_tool": 1, "import": [0, 10, 11, 12, 13], "importantli": 0, "incident_energi": 12, "incident_energy_spread": 12, "incident_polar": 12, "incident_wavelength": 12, "includ": [7, 11], "increas": 4, "independ": 6, "index": [1, 4, 8, 9, 11], "indexerror": 9, "indic": [4, 6, 8, 9], "individu": [3, 13], "infer": 7, "info": 9, "info_dict": 9, "inform": [6, 7, 11], "init": 0, "initi": 3, "inner": 4, "input": [3, 6, 7, 8, 9], "input_fil": [3, 7, 8], "instanc": [3, 9, 10, 11, 12, 13], "instead": 7, "institut": [3, 8, 12], "instrument": [3, 12], "int": [4, 8, 9], "integ": [4, 8, 9], "integr": 11, "intend": [0, 3], "intens": 6, "interact": [10, 11], "interest": [8, 9, 11], "interfac": [8, 9], "interpol": [4, 8, 10], "introduc": 10, "investig": 12, "io": 1, "ipykernel": 0, "ipython": 0, "item": 3, "iter": [3, 8, 9], "its": [11, 12], "j": 4, "jacobian": 4, "jacobian_determin": 4, "json": [3, 8, 12], "jupyt": 0, "k": 3, "keep": 3, "kei": [3, 7, 11], "kernel": 0, "keyerror": 4, "keyword": [5, 7, 8, 10, 11], "kinet": [4, 5, 8, 13], "kinetic_energi": [3, 4, 5, 8, 10], "kwd": [5, 7, 8, 10], "lab": [8, 12], "labview": 0, "later": [4, 11], "laurenz": 12, "lausann": 8, "len": [3, 4, 5, 7, 8], "lens_mod": [4, 5, 8, 10], "lib": [3, 10, 11, 12, 13], "librari": 3, "like": 7, "line": [4, 6, 7], "linear": 4, "linux": 3, "list": [0, 4, 5, 6, 7, 8, 9, 11], "list_lin": 7, "load": [0, 1, 3, 7, 8, 9, 10, 12], "load_config": 3, "load_ext": [10, 11, 12, 13], "load_h5": 7, "load_imag": 9, "load_scan": [8, 9, 11, 12, 13], "load_tiff": 7, "loader": [11, 12], "loadtxt": 10, "loc": [11, 12], "local": 0, "locat": [0, 9, 11, 12, 13], "look": 3, "low": 4, "lt": [10, 11, 12, 13], "lut": 9, "m": 0, "magnif": [3, 4, 10], "mai": 11, "maintain": 1, "make": [0, 11], "manipul": [6, 9], "manner": 3, "manual": [7, 12], "manufactur": 0, "map": 12, "map_coordin": 4, "mask": 6, "matplotlib": [10, 11, 12, 13], "matric": 4, "matrix": [4, 5], "max": 12, "maxim": 4, "maximum": [6, 9], "mcp": [0, 4, 10, 11], "mcp_position_mm": 4, "measur": [3, 12], "mechan": 3, "merg": [3, 13], "mesh": [5, 8], "meshgrid": [5, 8, 11], "metadata": [5, 7, 8, 9, 11, 12, 13], "method": [8, 9, 11, 12, 13], "might": 13, "millimet": [3, 4], "mimic": 4, "minim": 4, "minimum": 6, "mirror": [9, 11], "mirrori": 3, "mirrorx": [3, 11], "miss": 3, "mitig": 10, "mm": [3, 4], "mm_z": 4, "mode": [0, 4, 5, 7, 8, 11], "modif": 3, "modul": [0, 3, 4, 6, 7], "monoton": 4, "more": 7, "most": [0, 9], "mostli": 3, "mpe": [3, 12], "mpg": 12, "must": [4, 8], "mx": 6, "my": 6, "name": [0, 3, 5, 7, 8, 9, 12], "nameerror": 7, "nap32": 9, "ndarrai": [4, 5, 6, 7, 8, 9], "ndimag": 4, "nearest": 4, "necessari": 3, "need": [0, 4, 7, 8, 9, 12], "neither": [3, 9], "nest": [3, 7, 9], "new": [0, 11], "nexu": [1, 3, 7, 8, 9], "node": 7, "non": [4, 11, 13], "none": [3, 5, 7, 8, 9], "nor": [3, 9], "normal": [3, 4, 5, 8], "notebook": [0, 3, 8, 11, 12], "notimplementederror": 7, "now": 0, "np": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "number": [3, 4, 7, 8, 9, 11, 13], "numpi": [4, 5, 7, 8, 9, 10, 11, 12, 13], "nx": [8, 12], "nx_pixel": [3, 4], "nxmpes_arp": [3, 12], "nxmpes_arpes_config": [3, 12], "nxuser": 12, "ny_pixel": [3, 4], "o": 10, "object": [5, 7, 8, 9, 11], "obtain": 9, "offset": [3, 4], "omg": 3, "onc": 0, "one": [6, 7, 10, 11], "onli": [4, 7, 11], "onto": [8, 13], "open": 10, "opencomp": 0, "oper": [10, 11], "opt": [3, 10, 11, 12, 13], "optim": [5, 8, 10, 11], "option": [0, 3, 5, 6, 7, 8, 9, 11], "order": [3, 4, 7, 11], "org": 0, "other": [3, 5, 11], "otherwis": 7, "out": [0, 4, 5, 8], "output": [7, 12], "outsid": 4, "over": [3, 8, 9, 11], "overlap": [12, 13], "overwrit": [3, 5], "overwritten": 3, "p": 12, "p_rd": [3, 12], "pack": 4, "packag": [0, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13], "package_dir": 3, "page": 1, "pair": 7, "panda": 9, "paramet": [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "pars": [7, 9], "parse_calib2d_to_dict": 7, "parse_config": [3, 5, 8], "parse_info_to_dict": 9, "parse_lut_to_df": 9, "parser": 7, "part": 0, "pass": [0, 3, 4, 5, 8, 10, 11], "pass_energi": [4, 5, 8, 10], "path": [3, 5, 7, 8, 9, 10, 11, 12, 13], "pattern": 6, "pd": 9, "peak": [3, 5, 6, 8, 10, 11], "per": [4, 11, 13], "perform": [4, 8, 9, 10, 13], "pesdata": 9, "phi": 3, "phoibo": [0, 5, 8, 10, 11], "phoibos150": [0, 3], "photoelectron": 4, "photoemiss": [4, 5], "physic": [0, 4, 5], "physical_unit_data": 4, "pixel": [3, 4], "pixel_s": [3, 4, 10], "place": [3, 5], "plai": [5, 8], "planck": 12, "plane": [3, 5, 8, 10], "pleas": 10, "plot": [10, 11, 12, 13], "plt": [10, 11, 12, 13], "point": [9, 11, 12], "pol": 12, "polar": 3, "polynomi": 4, "popul": 7, "pos_i": [3, 5, 6, 8, 11], "pos_x": [3, 5, 6, 8, 11], "posi": 7, "posit": [3, 4, 5, 6, 8, 10, 11], "poss": 4, "possibl": 6, "possibli": 3, "posx": 7, "pre": [3, 5], "prefer": 3, "preparation_d": 12, "preparation_descript": 12, "prerequisit": 0, "present": [3, 11], "preserv": 4, "press": 11, "pressur": 3, "pressureac": [3, 12], "previous": [8, 11], "princip": 12, "print": 9, "pro": 4, "probe": 12, "procedur": 0, "process": [8, 11], "process_sweep_scan": 8, "processor": 3, "produc": 13, "program": 4, "progress": [3, 9], "project": 9, "properti": [5, 8], "provid": [0, 3, 5, 6, 7, 8, 9, 10, 11, 13], "pull": 0, "pulse_dur": 12, "pulse_energi": 12, "pump": 12, "pv": 3, "pyenv": 0, "pynxtool": [7, 8, 12], "pypi": 0, "pyplot": [10, 11, 12, 13], "pyproject": 0, "python": [0, 3, 7, 10, 11, 12, 13], "python3": [3, 10, 11, 12, 13], "quadmesh": [10, 11, 12, 13], "queri": 9, "question": 4, "r": 7, "r9132": 10, "rais": [3, 4, 7, 8, 9], "rang": [4, 8, 9, 11, 12, 13], "ratio": 4, "raw": [4, 5, 8, 9], "raw_arrai": 9, "raw_data": 8, "raw_imag": 5, "raw_image_nam": 10, "raw_img": 5, "raw_list": 9, "rbv": 3, "read": [0, 7, 8, 9], "read_calib2d": 7, "reader": [3, 7, 8, 12], "real": 6, "record": 11, "recurs": [0, 7], "recursive_parse_metadata": 7, "recursive_write_metadata": 7, "refer": 2, "regular": 6, "rel": 11, "remov": [3, 6], "renam": 3, "report": 3, "repositori": 0, "repres": 7, "request": [0, 3, 4], "requir": [0, 11], "res_xarrai": [10, 11, 12, 13], "res_xarray_check": 11, "resolut": 12, "resolv": 4, "respect": [3, 4], "result": [3, 4, 8, 11, 12, 13], "ret": 6, "retain": 7, "retard": 4, "retardation_ratio": [4, 10], "retriev": 3, "rettig": 12, "return": [3, 4, 5, 6, 7, 8, 9, 13], "rewrit": 12, "right": 0, "rise": 7, "role": 12, "root": 13, "rotat": 10, "rotation_angl": [10, 13], "row": 4, "row0": 4, "row1": 4, "rr": 4, "rrvec": 4, "rudimentari": 9, "rule": 3, "run": 0, "runner": [10, 11, 12, 13], "s_": [8, 9, 11], "sai": 11, "sampl": [3, 12], "sample_azimuth": 3, "sample_histori": 12, "sample_polar": 3, "sample_tilt": 3, "save": [3, 7, 8, 12], "save_config": 3, "scale": 4, "scan": [0, 1, 4, 8, 9, 11, 12], "scan_info": [9, 11, 12], "scan_list": 9, "scan_path": 9, "scan_typ": 9, "scanvector": 9, "scipi": 4, "script": 9, "search": [1, 3, 8, 9], "second": [4, 6], "second_closest_rr": 4, "see": [0, 3, 11], "select": [5, 8], "sequenc": [6, 7, 8, 9], "server": 11, "set": [0, 4, 5, 8, 11, 12, 13], "sever": 0, "shell": 0, "shift": 4, "ship": 3, "should": [0, 3, 4, 7, 11, 12], "show": 11, "showcas": [10, 11, 12, 13], "sigma": [5, 6], "sigma_i": [3, 5, 6, 8, 11], "sigma_x": [3, 5, 6, 8, 11], "singl": [3, 7, 8, 9, 10, 12], "site": [3, 10, 11, 12, 13], "size": [3, 4, 9], "slice": [8, 9, 11, 12], "slow": 9, "slow_ax": 9, "so": 7, "societi": 12, "softwar": [0, 8, 11], "some": 10, "sort": 7, "sourc": [0, 3, 4, 5, 6, 7, 8, 9, 10], "sp": [11, 12, 13], "sp2": 10, "spa": 10, "spa_param": [3, 12, 13], "spatial": [3, 4, 5, 7, 8], "spatial0": 3, "spatial_resolut": 12, "spawn": 0, "spec": [0, 3, 4, 5, 8, 10], "specs_config": 3, "specs_kernel": 0, "specs_poetri": 0, "specsanalyz": [8, 11, 12, 13], "specsscan": [0, 9, 12, 13], "spectromet": 0, "split": 7, "src": [3, 12, 13], "stack": [7, 8], "stackoverflow": 4, "stamp": [9, 11, 12, 13], "standard": [3, 7], "start": [4, 9], "step": [0, 3, 8, 11, 13], "stoke": 12, "store": [3, 5, 7, 8, 10, 11], "str": [3, 4, 5, 6, 7, 8, 9], "string": [3, 4, 7, 8, 9, 11], "structur": 7, "subfunct": 7, "submit": 0, "submodul": 0, "subsequ": 3, "subtract": [3, 5, 8], "sum": [8, 11, 12, 13], "support": [3, 7, 8], "suppress": 6, "sure": 0, "surfac": 12, "sweep": [1, 8], "sx": 6, "sy": 6, "sync": 0, "system": [0, 3, 4], "system_config": [3, 11], "t": [7, 10, 12], "tabul": 4, "take": 3, "tbte3": 12, "temp_rbv": [3, 12], "tempa": 3, "temperatur": [3, 8, 9], "test": [0, 3, 10, 11, 12, 13], "text": 10, "th": [5, 8], "than": 7, "thei": 3, "them": 3, "therefor": [7, 11], "thi": [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "third": [8, 11], "through": 7, "tht": 3, "tif": 8, "tiff": [7, 8], "tilt": [3, 12], "time": [7, 9, 11, 12, 13], "to_h5": 7, "to_nexu": 7, "to_tiff": 7, "todo": 1, "togeth": [0, 3], "toml": 0, "tool": [1, 5, 8, 10, 11], "topfloor": 9, "total_iter": 9, "tqdm_enable_nest": 9, "trans_i": 3, "trans_x": 3, "trans_z": 3, "transform": [3, 4], "trarp": [9, 11, 12], "tri": 7, "true": [3, 10, 11, 12, 13], "trx": 3, "try": 3, "trz": 3, "ts_from": 9, "ts_to": 9, "tsv": 10, "tsv_data": 10, "tupl": [4, 7, 8, 9], "tutori": 0, "two": 0, "txt": 9, "type": [0, 3, 4, 5, 6, 7, 8, 9], "typeerror": [3, 7], "typic": 3, "tzcyx": 7, "uhv": 12, "under": [5, 8, 9], "union": 8, "unit": [3, 4, 5], "unless": 4, "up": [0, 4], "updat": 0, "url": [3, 9], "us": [0, 3, 4, 5, 7, 8, 9, 11, 12, 13], "usag": 0, "user": [3, 11, 12, 13], "user0": 12, "user_config": [3, 11, 12, 13], "v": [3, 5], "valid": [4, 8, 9, 10], "valu": [3, 4, 5, 6, 7, 8], "valueerror": [4, 7, 8, 9], "variabl": 6, "variou": 3, "vector": [4, 12], "venv": 0, "verbos": 3, "version": 0, "vertic": [5, 8], "virtual": 0, "visual": 10, "voltag": [3, 8], "w": [7, 8, 10], "wa": 8, "want": 6, "warn": [7, 11, 13], "we": 11, "well": [2, 11], "when": [7, 8, 9], "where": [3, 6, 7, 8, 11], "which": [6, 8, 9, 10, 11, 12], "while": 11, "wide": [0, 3], "wideanglemod": [5, 8, 10], "widget": [10, 11, 12, 13], "width": [3, 5, 8], "wiki": 2, "window": 3, "wish": 0, "within": 0, "withing": 4, "without": [6, 10], "work": [0, 3, 4, 5, 8, 10, 11, 12, 13], "work_funct": [4, 5, 8, 10], "workflow": 3, "would": [8, 9], "write": [7, 8], "writer": 8, "wrong": 13, "x": [3, 5, 6, 7], "x64": [3, 10, 11, 12, 13], "x_max": 6, "x_min": 6, "xarrai": [3, 5, 6, 7, 8, 10, 11, 12, 13], "xgs600": [3, 12], "xr": [5, 6, 7, 8], "xuv": 12, "y": [3, 5, 6, 7], "y_max": 6, "y_min": 6, "yaml": [3, 9, 10, 11, 12, 13], "year": 9, "yet": 11, "you": [0, 4, 6], "your": [0, 3, 10], "z": [3, 7], "zinner": 4, "zinner_diff": 4, "\u00b5j": 12}, "titles": ["specsanalyzer", "Welcome to specsanalyzer\u2019s documentation!", "1. How to maintain", "Config", "2. convert functions (specsanalyzer.convert)", "1. Core functions (specsanalyzer.core)", "3. image tool functions (specsanalyzer.img_tools)", "4. io functions (specsanalyzer.io)", "1. Core functions (specsscan.core)", "2. Helpers", "Example 1: SpecsAnalyzer conversion", "Example 2: SpecsScan loading", "Example 3: Export to NeXus", "Example 4: Sweep Scan loading"], "titleterms": {"": 1, "1": 10, "2": 11, "3": 12, "4": 13, "For": 0, "adjust": 10, "angl": 10, "api": 3, "artefact": 10, "artifact": 11, "berlin": 3, "calib2d": 0, "config": 3, "configur": [0, 3], "contribut": 1, "contributor": 0, "convers": 10, "conversion_paramet": 10, "convert": 4, "core": [1, 5, 8], "crop": 11, "data": 11, "default": 3, "dict": 10, "document": 1, "exampl": [3, 10, 11, 12, 13], "export": 12, "fhi": 3, "file": [0, 3], "function": [4, 5, 6, 7, 8], "get": 1, "helper": 9, "how": 2, "imag": [6, 10], "img_tool": 6, "indic": 1, "instal": 0, "io": 7, "iter": 11, "load": [11, 13], "maintain": [0, 2], "mesh": [10, 11], "mode": 10, "modul": 1, "nexu": 12, "offset": 10, "pip": 0, "poetri": 0, "remov": [10, 11], "resolv": 10, "save": 11, "scan": 13, "select": 11, "set": 3, "setup": 3, "spatial": 10, "specsanalyz": [0, 1, 3, 4, 5, 6, 7, 10], "specsscan": [1, 3, 8, 11], "start": 1, "sweep": 13, "tabl": 1, "tool": 6, "trarp": 3, "us": 10, "user": 0, "welcom": 1}}) \ No newline at end of file diff --git a/specsanalyzer/latest/specsanalyzer/config.html b/specsanalyzer/latest/specsanalyzer/config.html index 92322e3..3b5ab75 100644 --- a/specsanalyzer/latest/specsanalyzer/config.html +++ b/specsanalyzer/latest/specsanalyzer/config.html @@ -8,7 +8,7 @@ - Config — specsanalyzer 0.4.2.dev43+gba30cb5 documentation + Config — specsanalyzer 0.5.1.dev1+g9db1efa documentation @@ -38,7 +38,7 @@ - + @@ -47,7 +47,7 @@ @@ -57,7 +57,7 @@ - + @@ -119,7 +119,7 @@ -

specsanalyzer 0.4.2.dev43+gba30cb5 documentation

+

specsanalyzer 0.5.1.dev1+g9db1efa documentation

diff --git a/specsanalyzer/latest/specsanalyzer/convert.html b/specsanalyzer/latest/specsanalyzer/convert.html index a3f6a0d..f582f0a 100644 --- a/specsanalyzer/latest/specsanalyzer/convert.html +++ b/specsanalyzer/latest/specsanalyzer/convert.html @@ -8,7 +8,7 @@ - 2. convert functions (specsanalyzer.convert) — specsanalyzer 0.4.2.dev43+gba30cb5 documentation + 2. convert functions (specsanalyzer.convert) — specsanalyzer 0.5.1.dev1+g9db1efa documentation @@ -38,7 +38,7 @@ - + @@ -47,7 +47,7 @@ @@ -57,7 +57,7 @@ - + @@ -119,7 +119,7 @@ -

specsanalyzer 0.4.2.dev43+gba30cb5 documentation

+

specsanalyzer 0.5.1.dev1+g9db1efa documentation

diff --git a/specsanalyzer/latest/specsanalyzer/core.html b/specsanalyzer/latest/specsanalyzer/core.html index 5fa9c82..4a7b9a4 100644 --- a/specsanalyzer/latest/specsanalyzer/core.html +++ b/specsanalyzer/latest/specsanalyzer/core.html @@ -8,7 +8,7 @@ - 1. Core functions (specsanalyzer.core) — specsanalyzer 0.4.2.dev43+gba30cb5 documentation + 1. Core functions (specsanalyzer.core) — specsanalyzer 0.5.1.dev1+g9db1efa documentation @@ -38,7 +38,7 @@ - + @@ -47,7 +47,7 @@ @@ -57,7 +57,7 @@ - + @@ -119,7 +119,7 @@ -

specsanalyzer 0.4.2.dev43+gba30cb5 documentation

+

specsanalyzer 0.5.1.dev1+g9db1efa documentation

diff --git a/specsanalyzer/latest/specsanalyzer/img_tools.html b/specsanalyzer/latest/specsanalyzer/img_tools.html index d8365d7..ec7fc37 100644 --- a/specsanalyzer/latest/specsanalyzer/img_tools.html +++ b/specsanalyzer/latest/specsanalyzer/img_tools.html @@ -8,7 +8,7 @@ - 3. image tool functions (specsanalyzer.img_tools) — specsanalyzer 0.4.2.dev43+gba30cb5 documentation + 3. image tool functions (specsanalyzer.img_tools) — specsanalyzer 0.5.1.dev1+g9db1efa documentation @@ -38,7 +38,7 @@ - + @@ -47,7 +47,7 @@ @@ -57,7 +57,7 @@ - + @@ -119,7 +119,7 @@ -

specsanalyzer 0.4.2.dev43+gba30cb5 documentation

+

specsanalyzer 0.5.1.dev1+g9db1efa documentation

diff --git a/specsanalyzer/latest/specsanalyzer/io.html b/specsanalyzer/latest/specsanalyzer/io.html index f1509f2..8655fa1 100644 --- a/specsanalyzer/latest/specsanalyzer/io.html +++ b/specsanalyzer/latest/specsanalyzer/io.html @@ -8,7 +8,7 @@ - 4. io functions (specsanalyzer.io) — specsanalyzer 0.4.2.dev43+gba30cb5 documentation + 4. io functions (specsanalyzer.io) — specsanalyzer 0.5.1.dev1+g9db1efa documentation @@ -38,7 +38,7 @@ - + @@ -47,7 +47,7 @@ @@ -57,7 +57,7 @@ - + @@ -119,7 +119,7 @@ -

specsanalyzer 0.4.2.dev43+gba30cb5 documentation

+

specsanalyzer 0.5.1.dev1+g9db1efa documentation

diff --git a/specsanalyzer/latest/specsscan/core.html b/specsanalyzer/latest/specsscan/core.html index bd9eeba..fe5047c 100644 --- a/specsanalyzer/latest/specsscan/core.html +++ b/specsanalyzer/latest/specsscan/core.html @@ -8,7 +8,7 @@ - 1. Core functions (specsscan.core) — specsanalyzer 0.4.2.dev43+gba30cb5 documentation + 1. Core functions (specsscan.core) — specsanalyzer 0.5.1.dev1+g9db1efa documentation @@ -38,7 +38,7 @@ - + @@ -47,7 +47,7 @@ @@ -57,7 +57,7 @@ - + @@ -119,7 +119,7 @@ -

specsanalyzer 0.4.2.dev43+gba30cb5 documentation

+

specsanalyzer 0.5.1.dev1+g9db1efa documentation

diff --git a/specsanalyzer/latest/specsscan/helpers.html b/specsanalyzer/latest/specsscan/helpers.html index 25c0675..2010447 100644 --- a/specsanalyzer/latest/specsscan/helpers.html +++ b/specsanalyzer/latest/specsscan/helpers.html @@ -8,7 +8,7 @@ - 2. Helpers — specsanalyzer 0.4.2.dev43+gba30cb5 documentation + 2. Helpers — specsanalyzer 0.5.1.dev1+g9db1efa documentation @@ -38,7 +38,7 @@ - + @@ -47,7 +47,7 @@ @@ -57,7 +57,7 @@ - + @@ -119,7 +119,7 @@ -

specsanalyzer 0.4.2.dev43+gba30cb5 documentation

+

specsanalyzer 0.5.1.dev1+g9db1efa documentation

diff --git a/specsanalyzer/latest/tutorial/1_specsanalyzer_conversion_examples.html b/specsanalyzer/latest/tutorial/1_specsanalyzer_conversion_examples.html index 36ca61c..7457653 100644 --- a/specsanalyzer/latest/tutorial/1_specsanalyzer_conversion_examples.html +++ b/specsanalyzer/latest/tutorial/1_specsanalyzer_conversion_examples.html @@ -8,7 +8,7 @@ - Example 1: SpecsAnalyzer conversion — specsanalyzer 0.4.2.dev43+gba30cb5 documentation + Example 1: SpecsAnalyzer conversion — specsanalyzer 0.5.1.dev1+g9db1efa documentation @@ -39,7 +39,7 @@ - + @@ -50,7 +50,7 @@ @@ -60,7 +60,7 @@ - + @@ -122,7 +122,7 @@ -

specsanalyzer 0.4.2.dev43+gba30cb5 documentation

+

specsanalyzer 0.5.1.dev1+g9db1efa documentation

@@ -657,14 +657,14 @@

Image conversion
-<matplotlib.collections.QuadMesh at 0x7f0b21118fa0>
+<matplotlib.collections.QuadMesh at 0x7fa37ddccfa0>
 
-
+

Conversion parameters are stored in the attributes

@@ -734,14 +734,14 @@

Adjusting offsets and angle
-<matplotlib.collections.QuadMesh at 0x7f0b1e507400>
+<matplotlib.collections.QuadMesh at 0x7fa37b1dddb0>
 

-
+
@@ -786,14 +786,14 @@

Removal of mesh artefact
-<matplotlib.collections.QuadMesh at 0x7f0b1e98bf70>
+<matplotlib.collections.QuadMesh at 0x7fa37b603f10>
 
-
+

Alternatively, one can use the interactive fft tool to optimize the fft peak positions of the grid.

-
+
-
+
-
+

The peak parameters are stored in the config dict which can be passed as kwds to the convert_image function

-
+

@@ -898,14 +898,14 @@

Conversion into spatially resolved modes
-<matplotlib.collections.QuadMesh at 0x7f0b16719b70>
+<matplotlib.collections.QuadMesh at 0x7fa37360a9e0>
 
-
+

@@ -975,17 +975,17 @@

Conversion using conversion_parameters dict
-<matplotlib.collections.QuadMesh at 0x7f0b167a6890>
+<matplotlib.collections.QuadMesh at 0x7fa3736549a0>
 
-
+

diff --git a/specsanalyzer/latest/tutorial/2_specsscan_example.html b/specsanalyzer/latest/tutorial/2_specsscan_example.html index 5735b6e..be85472 100644 --- a/specsanalyzer/latest/tutorial/2_specsscan_example.html +++ b/specsanalyzer/latest/tutorial/2_specsscan_example.html @@ -8,7 +8,7 @@ - Example 2: SpecsScan loading — specsanalyzer 0.4.2.dev43+gba30cb5 documentation + Example 2: SpecsScan loading — specsanalyzer 0.5.1.dev1+g9db1efa documentation @@ -39,7 +39,7 @@ - + @@ -50,7 +50,7 @@ @@ -60,7 +60,7 @@ - + @@ -122,7 +122,7 @@ -

specsanalyzer 0.4.2.dev43+gba30cb5 documentation

+

specsanalyzer 0.5.1.dev1+g9db1efa documentation

@@ -621,7 +621,7 @@

Loading data
-
+
-
+
@@ -696,7 +696,7 @@

Cropping data
-
+
-
+
-
+

Load the scan again to apply it to all images:

-
+
-
+
-
+

Load the scan again for the new changes to apply to all the images

-
+
-
+

We can e.g. also get a plot along the third dimension, by integrating along the first.

One can also access the conversion result from a class accessor:

@@ -874,14 +874,14 @@

Removal of Mesh Artifact
-<matplotlib.collections.QuadMesh at 0x7f9b5bc1b2b0>
+<matplotlib.collections.QuadMesh at 0x7f464fc2d6c0>
 
-
+

The metadata associated with the scan is added as an attribute to the xarray

-
+
-
+

Another useful functionality is to load a 3D scan as a function of iterations averaged over the scan parameter (in this case, mirrorX). This is done using the check_scan method

-
+
-
+

@@ -1033,7 +1033,7 @@

Saving#
-
+
@@ -1059,7 +1059,7 @@

Saving#

diff --git a/specsanalyzer/latest/tutorial/3_specsscan_conversion_to_NeXus.html b/specsanalyzer/latest/tutorial/3_specsscan_conversion_to_NeXus.html index 605e857..ee3ae6d 100644 --- a/specsanalyzer/latest/tutorial/3_specsscan_conversion_to_NeXus.html +++ b/specsanalyzer/latest/tutorial/3_specsscan_conversion_to_NeXus.html @@ -8,7 +8,7 @@ - Example 3: Export to NeXus — specsanalyzer 0.4.2.dev43+gba30cb5 documentation + Example 3: Export to NeXus — specsanalyzer 0.5.1.dev1+g9db1efa documentation @@ -39,7 +39,7 @@ - + @@ -50,7 +50,7 @@ @@ -60,7 +60,7 @@ - + @@ -122,7 +122,7 @@ -

specsanalyzer 0.4.2.dev43+gba30cb5 documentation

+

specsanalyzer 0.5.1.dev1+g9db1efa documentation

@@ -687,7 +687,7 @@

Example 3: Export to NeXus
-
+
-
+

The Fermi surface

@@ -759,14 +759,14 @@

Example 3: Export to NeXus
-<matplotlib.collections.QuadMesh at 0x7f756f5dfd30>
+<matplotlib.collections.QuadMesh at 0x7fd128e5e590>
 

-
+

Save as nexus file

@@ -796,7 +796,7 @@

Example 3: Export to NeXus -{"state": {"9e52f9710f1f49beb3cc8253cf871dd3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bf3228074a6e40f68c167ebfe316a6df": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0c1d49d6c0fc4545b902e3b6d5fcb683": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9e52f9710f1f49beb3cc8253cf871dd3", "max": 61.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bf3228074a6e40f68c167ebfe316a6df", "tabbable": null, "tooltip": null, "value": 61.0}}, "8f0b7314a609460087f9624d4076e1ea": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1b9b6e868dd64a989a6cad4963ca53e5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1a9d89697d674b7c9a02c1a6e7b6e441": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8f0b7314a609460087f9624d4076e1ea", "placeholder": "\u200b", "style": "IPY_MODEL_1b9b6e868dd64a989a6cad4963ca53e5", "tabbable": null, "tooltip": null, "value": "100%"}}, "f3c4b391f7c64fc3bd7655fedef8b915": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "980dc1a8a601451f90b48444a1647c25": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4eb96074c14d4dd1a603cd65b5e6ed1c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f3c4b391f7c64fc3bd7655fedef8b915", "placeholder": "\u200b", "style": "IPY_MODEL_980dc1a8a601451f90b48444a1647c25", "tabbable": null, "tooltip": null, "value": "\u200761/61\u2007[00:00<00:00,\u2007153.90it/s]"}}, "b421e0b76c6042b5bb1a24a9ad860a42": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "286ac178d38441639e04a69651dce658": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1a9d89697d674b7c9a02c1a6e7b6e441", "IPY_MODEL_0c1d49d6c0fc4545b902e3b6d5fcb683", "IPY_MODEL_4eb96074c14d4dd1a603cd65b5e6ed1c"], "layout": "IPY_MODEL_b421e0b76c6042b5bb1a24a9ad860a42", "tabbable": null, "tooltip": null}}, "87e66fa314304d33ba70619bfb0cba02": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e4589368eae34b6183a0d5a410b38c0d": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [640.0, 480.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_87e66fa314304d33ba70619bfb0cba02", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_17de790212f5479a91f71c7167d8ccf7", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "2d81b65bbfb64b2b85201056e3ec725a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "17de790212f5479a91f71c7167d8ccf7": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_2d81b65bbfb64b2b85201056e3ec725a", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}, "3a7e5cedd4da4a4786c85417c246f713": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "00381e1eaa8e4584b942c771e3d6f6fa": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [640.0, 480.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_3a7e5cedd4da4a4786c85417c246f713", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_7378deb7ee5547629641fce7a2cea3de", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "1730c8b1e45f43878e7352878e885040": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7378deb7ee5547629641fce7a2cea3de": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_1730c8b1e45f43878e7352878e885040", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"f230864a11ad4e779f616bc9b33ce45d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e2471639c319462c8075362efdac056f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a39634f818f4410fbbbb354a1e965ac6": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f230864a11ad4e779f616bc9b33ce45d", "max": 61.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e2471639c319462c8075362efdac056f", "tabbable": null, "tooltip": null, "value": 61.0}}, "13e7360fbea94fc8a0ba5fa187c55bbc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "937ada6b4beb4a14a8dabe404a3d19bc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "df601369d84d4e9280b7ecb1310e8899": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_13e7360fbea94fc8a0ba5fa187c55bbc", "placeholder": "\u200b", "style": "IPY_MODEL_937ada6b4beb4a14a8dabe404a3d19bc", "tabbable": null, "tooltip": null, "value": "100%"}}, "f204cecd00bf4313810fdc57fb26ada3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "20c6f235125d42af8e3825442090a940": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "029e0a202833415092e6deee3fa2d653": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f204cecd00bf4313810fdc57fb26ada3", "placeholder": "\u200b", "style": "IPY_MODEL_20c6f235125d42af8e3825442090a940", "tabbable": null, "tooltip": null, "value": "\u200761/61\u2007[00:00<00:00,\u2007147.77it/s]"}}, "2857eb22e4154e489bccac71c133e1fc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4d608ac0281c4b1bb5d248253ad5f896": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_df601369d84d4e9280b7ecb1310e8899", "IPY_MODEL_a39634f818f4410fbbbb354a1e965ac6", "IPY_MODEL_029e0a202833415092e6deee3fa2d653"], "layout": "IPY_MODEL_2857eb22e4154e489bccac71c133e1fc", "tabbable": null, "tooltip": null}}, "67b9045254f447318a3af8536506c9e9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "02a03342f8e441b69eb8f46f31d2cb78": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [640.0, 480.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_67b9045254f447318a3af8536506c9e9", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_71cff4c755fc485289868ebc999a78e4", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "8bf26ee784824f4793ccf58f16922bf2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "71cff4c755fc485289868ebc999a78e4": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_8bf26ee784824f4793ccf58f16922bf2", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}, "bbcfb0305a2d4c79ab21abd9b3cf34b3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1c65e985d9b54beeaac7f4369e0948d3": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [640.0, 480.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_bbcfb0305a2d4c79ab21abd9b3cf34b3", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_067f2af63d1d4d4a92b236a9194afba4", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "ae2d6febe907476c8a2be62105e72c32": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "067f2af63d1d4d4a92b236a9194afba4": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_ae2d6febe907476c8a2be62105e72c32", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/specsanalyzer/latest/tutorial/4_specsscan_load_sweep_scan.html b/specsanalyzer/latest/tutorial/4_specsscan_load_sweep_scan.html index 521e7c1..0cb2bbb 100644 --- a/specsanalyzer/latest/tutorial/4_specsscan_load_sweep_scan.html +++ b/specsanalyzer/latest/tutorial/4_specsscan_load_sweep_scan.html @@ -8,7 +8,7 @@ - Example 4: Sweep Scan loading — specsanalyzer 0.4.2.dev43+gba30cb5 documentation + Example 4: Sweep Scan loading — specsanalyzer 0.5.1.dev1+g9db1efa documentation @@ -39,7 +39,7 @@ - + @@ -50,7 +50,7 @@ @@ -60,7 +60,7 @@ - + @@ -122,7 +122,7 @@ -

specsanalyzer 0.4.2.dev43+gba30cb5 documentation

+

specsanalyzer 0.5.1.dev1+g9db1efa documentation

@@ -625,7 +625,7 @@

Example 4: Sweep Scan loading
-
+
-
+
-
+
[ ]:
@@ -692,7 +692,7 @@ 

Example 4: Sweep Scan loading -{"state": {"ac07e3d4dae24d64a17cd4a50e6f80e9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bea7875a9934459fa4aa4c4fd57e8b54": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "686c48895cfc460aa8d64515335f790f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ac07e3d4dae24d64a17cd4a50e6f80e9", "max": 80.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bea7875a9934459fa4aa4c4fd57e8b54", "tabbable": null, "tooltip": null, "value": 80.0}}, "292392806b0743bbaaeec20c482dc2dd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d61141802c324d028f47edd29f48c823": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6e8bb5ff73fd49e9a4c87bc7d11012c6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_292392806b0743bbaaeec20c482dc2dd", "placeholder": "\u200b", "style": "IPY_MODEL_d61141802c324d028f47edd29f48c823", "tabbable": null, "tooltip": null, "value": "100%"}}, "aee9ecb4f7534267beab9c1072fb5721": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d0f9a7facaf9420ead5cb8aa3a339aef": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "57a06e8d79c94408b437b5c6fda3a3fb": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_aee9ecb4f7534267beab9c1072fb5721", "placeholder": "\u200b", "style": "IPY_MODEL_d0f9a7facaf9420ead5cb8aa3a339aef", "tabbable": null, "tooltip": null, "value": "\u200780/80\u2007[00:00<00:00,\u2007177.94it/s]"}}, "8cd8b3c59aa74273be57d3211474f000": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7bf56276b2264de282fd80fea681846c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6e8bb5ff73fd49e9a4c87bc7d11012c6", "IPY_MODEL_686c48895cfc460aa8d64515335f790f", "IPY_MODEL_57a06e8d79c94408b437b5c6fda3a3fb"], "layout": "IPY_MODEL_8cd8b3c59aa74273be57d3211474f000", "tabbable": null, "tooltip": null}}, "09d5f33d35f544ba91f481e8cd4ced8e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fc97c85b3f6a4406a4471e0001fe067a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b4c9de3f125445829b7ec4b0fa7b9ad0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_09d5f33d35f544ba91f481e8cd4ced8e", "max": 80.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fc97c85b3f6a4406a4471e0001fe067a", "tabbable": null, "tooltip": null, "value": 80.0}}, "b5aabc0519434d33a83bd15b431cdd91": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ae94f64648a84097b0ce715a72c1cc74": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1828bff4a24e4ee9ab267f0e5c95f04b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b5aabc0519434d33a83bd15b431cdd91", "placeholder": "\u200b", "style": "IPY_MODEL_ae94f64648a84097b0ce715a72c1cc74", "tabbable": null, "tooltip": null, "value": "100%"}}, "f08d9d39f41b44a3b487694b4e1bbf02": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "448815ba0b0945b292e9057829ac60e4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2b923314e1404cdd9b0c828a613845fd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f08d9d39f41b44a3b487694b4e1bbf02", "placeholder": "\u200b", "style": "IPY_MODEL_448815ba0b0945b292e9057829ac60e4", "tabbable": null, "tooltip": null, "value": "\u200780/80\u2007[00:03<00:00,\u200725.22it/s]"}}, "3205ddaf4f4a4edb8e94860fd264d482": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e272c3231ca0406a9429b0416ba0b55d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1828bff4a24e4ee9ab267f0e5c95f04b", "IPY_MODEL_b4c9de3f125445829b7ec4b0fa7b9ad0", "IPY_MODEL_2b923314e1404cdd9b0c828a613845fd"], "layout": "IPY_MODEL_3205ddaf4f4a4edb8e94860fd264d482", "tabbable": null, "tooltip": null}}, "ba550b46ff0849d0bc1389c56fec9395": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "87df94a178a042b78b6bce55270b4bd7": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [640.0, 480.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_ba550b46ff0849d0bc1389c56fec9395", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_cee022455d3c4b9fa9a0d697115655fc", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "6cf457dabcff46d5bdfcd3ac44b96da0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cee022455d3c4b9fa9a0d697115655fc": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_6cf457dabcff46d5bdfcd3ac44b96da0", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"5cc80657c552400f8fe73be6fdd8cda3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cced38ff769a4af084d238f29bb22d4b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9467ac5d2a844ad4994182767f4b0020": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5cc80657c552400f8fe73be6fdd8cda3", "max": 80.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_cced38ff769a4af084d238f29bb22d4b", "tabbable": null, "tooltip": null, "value": 80.0}}, "ee5cfa6c83a34fdba3519b1489664f16": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2a974da6ecba4fb48f702b9db3a95860": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "29b67788c832493988920052e5b2b85a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ee5cfa6c83a34fdba3519b1489664f16", "placeholder": "\u200b", "style": "IPY_MODEL_2a974da6ecba4fb48f702b9db3a95860", "tabbable": null, "tooltip": null, "value": "100%"}}, "d0fe6e709b1f4e4bb47ae8eca766248d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2a70cf46f47f4752a76f039804e83843": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1848fcef3671480984383ec172d960d7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d0fe6e709b1f4e4bb47ae8eca766248d", "placeholder": "\u200b", "style": "IPY_MODEL_2a70cf46f47f4752a76f039804e83843", "tabbable": null, "tooltip": null, "value": "\u200780/80\u2007[00:00<00:00,\u2007184.43it/s]"}}, "441497eda88345d38eb029287ca7778f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "82c2b4346c8545808582664369ad678e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_29b67788c832493988920052e5b2b85a", "IPY_MODEL_9467ac5d2a844ad4994182767f4b0020", "IPY_MODEL_1848fcef3671480984383ec172d960d7"], "layout": "IPY_MODEL_441497eda88345d38eb029287ca7778f", "tabbable": null, "tooltip": null}}, "5edf5f409ce1416ba081c9bd9299c568": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ec66a91a269b4ba4a103960a0cd30917": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "dfa80ffe48904d29ae9837be8257b921": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5edf5f409ce1416ba081c9bd9299c568", "max": 80.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ec66a91a269b4ba4a103960a0cd30917", "tabbable": null, "tooltip": null, "value": 80.0}}, "d63404eec6b7476180fb4953f4f1a52f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "117ef0c9adb54662bacb89e59e88a02a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7f7c50521fc54310b66e535c7803db79": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d63404eec6b7476180fb4953f4f1a52f", "placeholder": "\u200b", "style": "IPY_MODEL_117ef0c9adb54662bacb89e59e88a02a", "tabbable": null, "tooltip": null, "value": "100%"}}, "1b013fd9785349138fd92ec9e3dbaf03": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9fea4c4dd6d847b49bfeb2fe21736881": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "050f7678bd774776bbd0a9e650bbf2b9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1b013fd9785349138fd92ec9e3dbaf03", "placeholder": "\u200b", "style": "IPY_MODEL_9fea4c4dd6d847b49bfeb2fe21736881", "tabbable": null, "tooltip": null, "value": "\u200780/80\u2007[00:03<00:00,\u200726.16it/s]"}}, "fa711c2704f24364a5f511403a3b6554": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2f7555131b77465ba9bf2dd8fa3bb993": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7f7c50521fc54310b66e535c7803db79", "IPY_MODEL_dfa80ffe48904d29ae9837be8257b921", "IPY_MODEL_050f7678bd774776bbd0a9e650bbf2b9"], "layout": "IPY_MODEL_fa711c2704f24364a5f511403a3b6554", "tabbable": null, "tooltip": null}}, "a55933b4854a4f2c9d273e4decdbb955": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cc20a172fcc64dfbbc875431b0a4b066": {"model_name": "MPLCanvasModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_cursor": "pointer", "_data_url": "", "_dom_classes": [], "_figure_label": "Figure", "_image_mode": "full", "_message": "", "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "MPLCanvasModel", "_rubberband_height": 0, "_rubberband_width": 0, "_rubberband_x": 0, "_rubberband_y": 0, "_size": [640.0, 480.0], "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "MPLCanvasView", "capture_scroll": false, "footer_visible": true, "header_visible": true, "layout": "IPY_MODEL_a55933b4854a4f2c9d273e4decdbb955", "pan_zoom_throttle": 33.0, "resizable": true, "tabbable": null, "toolbar": "IPY_MODEL_89ec910d825545b59df63e29feecd338", "toolbar_position": "left", "toolbar_visible": "fade-in-fade-out", "tooltip": null}}, "2e9e8482a2ef4db3b78c4774d844011b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "89ec910d825545b59df63e29feecd338": {"model_name": "ToolbarModel", "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "state": {"_current_action": "", "_dom_classes": [], "_model_module": "jupyter-matplotlib", "_model_module_version": "^0.11", "_model_name": "ToolbarModel", "_view_count": null, "_view_module": "jupyter-matplotlib", "_view_module_version": "^0.11", "_view_name": "ToolbarView", "button_style": "", "collapsed": true, "layout": "IPY_MODEL_2e9e8482a2ef4db3b78c4774d844011b", "orientation": "vertical", "tabbable": null, "toolitems": [["Home", "Reset original view", "home", "home"], ["Back", "Back to previous view", "arrow-left", "back"], ["Forward", "Forward to next view", "arrow-right", "forward"], ["Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan"], ["Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom"], ["Download", "Download plot", "floppy-o", "save_figure"]], "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/specsanalyzer/switcher.json b/specsanalyzer/switcher.json index 1a01728..b1a203e 100644 --- a/specsanalyzer/switcher.json +++ b/specsanalyzer/switcher.json @@ -1,7 +1,7 @@ [ { "name": "latest", - "version": "0.4.2.dev43+gba30cb5", + "version": "0.5.1.dev1+g9db1efa", "url": "https://opencompes.github.io/docs/specsanalyzer/latest" }, {