-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_static_counterparty.py
66 lines (54 loc) · 2.73 KB
/
extract_static_counterparty.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# Copyright (c) 2023 - 2024 Open Risk (https://www.openriskmanagement.com)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Script used in Step 3 of the Open Risk Academy Course
# https://www.openriskacademy.com/mod/page/view.php?id=754
import os
import pandas as pd
from config import column_names
from config import counterparty_static
from data_dictionaries import *
from utils import create_static_table
from utils import load_file
def create_counterparty_table(df):
tmp = df.copy()
_ct = tmp[counterparty_static]
_ct = _ct.rename(columns={'LOAN_ID': 'counterparty_id',
'NUM_BO': 'number_of_borrowers',
'CSCORE_B': 'borrower_credit_score_at_origination',
'CSCORE_C': 'coborrower_credit_score_at_origination',
'FIRST_FLAG': 'first_time_home_buyer_indicator'})
_ct['first_time_home_buyer_indicator'] = _ct['first_time_home_buyer_indicator'].apply(lambda x: FIRST_TIME_DICT[x])
return _ct
if __name__ == '__main__':
input_directory = "./PERF/"
files = os.listdir(input_directory)
input_files = [input_directory + f for f in files if os.path.isfile(input_directory + '/' + f)]
counterparties = []
for in_file in input_files:
input_table = load_file(in_file, column_names)
static_table = create_static_table(input_table)
del input_table
counterparty_table = create_counterparty_table(static_table)
del static_table
print(len(counterparty_table.index))
counterparties.append(counterparty_table)
counterparty_all = pd.concat(counterparties)
print(len(counterparty_all.index))
counterparty_all.to_csv("DB_TABLES/counterparty.csv", sep='|', index=False)