-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_dynamic_property_collateral.py
63 lines (51 loc) · 2.74 KB
/
extract_dynamic_property_collateral.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# Copyright (c) 2023 - 2024 Open Risk (https://www.openriskmanagement.com)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Script used in Step 3 of the Open Risk Academy Course
# https://www.openriskacademy.com/mod/page/view.php?id=754
import os
import pandas as pd
from config import column_names
from config import property_collateral_dynamic
from utils import load_file
def create_property_collateral_state_table(df):
_pct = df[property_collateral_dynamic]
columns = {
'LOAN_ID': 'loan_id',
'ACT_PERIOD': 'portfolio_snapshot_id',
'PROPERTY_PRESERVATION_AND_REPAIR_COSTS': 'property_preservation_and_repair_costs',
'MISCELLANEOUS_HOLDING_EXPENSES_AND_CREDITS': 'miscellaneous_holding_expenses_and_credits',
'ASSOCIATED_TAXES_FOR_HOLDING_PROPERTY': 'associated_taxes_for_holding_property',
'PROPERTY_INSPECTION_WAIVER_INDICATOR': 'property_valuation_method'}
_pct = _pct.rename(columns=columns)
_pct['portfolio_snapshot_id'] = _pct['portfolio_snapshot_id'].apply(lambda x: pd.to_datetime(x, format="%m%Y"))
return _pct
if __name__ == '__main__':
input_directory = "./PERF/"
files = os.listdir(input_directory)
input_files = [input_directory + f for f in files if os.path.isfile(input_directory + '/' + f)]
property_states = []
for in_file in input_files[:10]:
input_table = load_file(in_file, column_names)
property_state_table = create_property_collateral_state_table(input_table)
print(len(property_state_table.index))
property_states.append(property_state_table)
property_states_all = pd.concat(property_states)
print(len(property_states_all.index))
property_states_all.to_csv("DB_TABLES/property_collateral_state.csv", sep='|', index=False)