generated from Ootzk/DeepLearningExperimentalPlatform
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
291 lines (211 loc) · 11.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
"""
train.py
model train related components and functions.
"""
from datetime import datetime
import json
import os
from pathlib import Path
from PIL import ImageFile
import numpy as np
import shutil
import sys
import torch
import torch.nn as nn
import torch.optim as optim
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
import torchvision.datasets as datasets
from torchvision.transforms import CenterCrop, Compose, RandomCrop, RandomHorizontalFlip, RandomResizedCrop, Resize, Normalize, ToTensor
import ignite
import ignite.distributed as idist
from ignite.engine.deterministic import DeterministicEngine
from ignite.engine import create_supervised_evaluator, Engine, State, Events, _prepare_batch
from ignite.metrics import Loss, Accuracy, TopKCategoricalAccuracy, RunningAverage
from ignite.handlers import Checkpoint, DiskSaver, global_step_from_engine
from ignite.utils import manual_seed
from architectures import *
###############################################################################################################
seed = 123
manual_seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
save_architectures = True
###############################################################################################################
dataset_location = {
'CIFAR10': '/dataset/CIFAR10',
'CIFAR100': '/dataset/CIFAR100',
'ImageNet': '/dataset/ImageNet/Classification'
}
normalization = {
'CIFAR10': Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
'CIFAR100': Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)),
'ImageNet': Normalize((0.4850, 0.4560, 0.4060), (0.2290, 0.2240, 0.2250)),
'DEBUG': Normalize((0.5000, 0.5000, 0.5000), (0.2000, 0.2000, 0.2000))
}
creators = {
'resnet18': resnet18,
'resnet34': resnet34,
'resnet50': resnet50
}
###############################################################################################################
def get_model_skeleton(model_config, target_dataset):
return creators[model_config['backbone']](target_dataset, model_config.get('config'))
def get_transform(dataset):
if dataset == 'CIFAR10':
train_transform = Compose([RandomCrop((32, 32), 4), RandomHorizontalFlip(), ToTensor(), normalization[dataset]])
eval_transform = Compose([ToTensor(), normalization[dataset]])
elif dataset == 'CIFAR100':
train_transform = Compose([RandomCrop((32, 32), 4), RandomHorizontalFlip(), ToTensor(), normalization[dataset]])
eval_transform = Compose([ToTensor(), normalization[dataset]])
elif dataset == 'ImageNet':
train_transform = Compose([RandomResizedCrop(224), RandomHorizontalFlip(), ToTensor(), normalization[dataset]])
eval_transform = Compose([Resize(256), CenterCrop(224), ToTensor(), normalization[dataset]])
else: # fake dataset
train_transform = Compose([ToTensor(), normalization[dataset]])
eval_transform = Compose([ToTensor(), normalization[dataset]])
return train_transform, eval_transform
def get_train_eval_datasets(dataset):
train_transform, eval_transform = get_transform(dataset)
if dataset == 'DEBUG':
train_ds = datasets.FakeData(size=640, transform=train_transform)
eval_ds = datasets.FakeData(size=640, transform=eval_transform)
elif dataset == 'CIFAR10' or dataset == 'CIFAR100':
train_ds = datasets.__dict__[dataset](root=dataset_location[dataset], train=True, transform=train_transform)
eval_ds = datasets.__dict__[dataset](root=dataset_location[dataset], train=False, transform=eval_transform)
elif dataset == 'ImageNet':
train_ds = datasets.ImageFolder('{0}/train'.format(dataset_location[dataset]), transform=train_transform)
eval_ds = datasets.ImageFolder('{0}/val'.format(dataset_location[dataset]), transform=eval_transform)
return train_ds, eval_ds
def get_save_handler(config):
title = config['experiment']['title']
ID = str(config['experiment']['ID']).zfill(2)
return DiskSaver('experiments/{0}/{1}/checkpoints'.format(title, ID), require_empty=True, create_dir=True)
def get_tb_logger(config):
title = config['experiment']['title']
ID = str(config['experiment']['ID']).zfill(2)
return SummaryWriter('experiments/{0}/{1}/tensorboards'.format(title, ID))
def get_dataloader(config):
if idist.get_rank() > 0:
idist.barrier()
train_dataset, eval_dataset = get_train_eval_datasets(config['dataloader']['dataset'])
if idist.get_rank() == 0:
idist.barrier()
train_dataloader = idist.auto_dataloader(train_dataset, **config['dataloader']['train_loader_params'])
eval_dataloader = idist.auto_dataloader(eval_dataset, **config['dataloader']['eval_loader_params'])
return {'train': train_dataloader, "eval": eval_dataloader}
def create_trainer(model, optimizer, loss_function, scheduler, config):
def _update(engine, batch):
model.train()
optimizer.zero_grad()
x, y = _prepare_batch(batch, device=idist.device(), non_blocking=True)
y_pred = model(x)
loss = loss_function(y_pred, y)
loss.backward()
if config['gradient_clipping'] is not None:
torch.nn.utils.clip_grad_norm_(model.parameters(), config['gradient_clipping'])
optimizer.step()
return {'loss': loss.detach(), 'y_pred': y_pred, 'y': y}
trainer = DeterministicEngine(_update)
RunningAverage(output_transform=lambda x: x['loss']).attach(trainer, 'Train/Loss')
RunningAverage(Accuracy(output_transform=lambda x: [x['y_pred'], x['y']])).attach(trainer, 'Train/Top-1')
RunningAverage(TopKCategoricalAccuracy(k=5, output_transform=lambda x: [x['y_pred'], x['y']])).attach(trainer, 'Train/Top-5')
@trainer.on(Events.EPOCH_COMPLETED)
def schedule(engine):
scheduler.step()
if config['resume_from'] is not None:
checkpoint_fp = Path(config['resume_from'])
assert checkpoint_fp.exists(), "Checkpoint '{}' is not found".format(checkpoint_fp.as_posix())
checkpoint = torch.load(checkpoint_fp.as_posix(), map_location='cpu')
Checkpoint.load_objects(to_load={"trainer": trainer, "model": model, "optimizer": optimizer},
checkpoint=checkpoint)
model = model.to(idist.device())
scheduler.optimizer = optimizer
scheduler.last_epoch = trainer.state.epoch
return trainer
def create_evaluator(model, config):
evaluator = create_supervised_evaluator(model, device=idist.device(), non_blocking=True)
Accuracy(output_transform=lambda x: [x[0], x[1]]).attach(evaluator, 'Eval/Top-1')
TopKCategoricalAccuracy(k=5, output_transform=lambda x: [x[0], x[1]]).attach(evaluator, 'Eval/Top-5')
return evaluator
def register_tb_logger_handlers(trainer, evaluator, optimizer, tb_logger, config):
@trainer.on(Events.ITERATION_COMPLETED(every=config['train_constants']['log_train_stats_every_iters']))
def _log_train_statistics(engine):
tb_logger.add_scalar('Train/Loss', engine.state.metrics['Train/Loss'], global_step=engine.state.iteration)
tb_logger.add_scalar('Train/Top-1', engine.state.metrics['Train/Top-1'], global_step=engine.state.iteration)
tb_logger.add_scalar('Train/Top-5', engine.state.metrics['Train/Top-5'], global_step=engine.state.iteration)
@evaluator.on(Events.COMPLETED)
def _log_evaluation_statistics(engine):
tb_logger.add_scalar('Eval/Top-1', engine.state.metrics['Eval/Top-1'], global_step=trainer.state.epoch)
tb_logger.add_scalar('Eval/Top-5', engine.state.metrics['Eval/Top-5'], global_step=trainer.state.epoch)
@trainer.on(Events.EPOCH_COMPLETED)
def _log_train_params(engine):
tb_logger.add_scalar('Train/lr', optimizer.param_groups[0]['lr'], global_step=engine.state.epoch)
def prepare(config):
model = get_model_skeleton(config['model'], config['dataloader']['dataset'])
model = model.to(idist.device())
model = DDP(model, device_ids=[idist.get_local_rank()], find_unused_parameters=True)
optimizer = optim.__dict__[config['optimizer']['type']](
model.parameters(), **config['optimizer']['params']
)
optimizer = idist.auto_optim(optimizer)
loss_function = nn.__dict__[config['loss_function']['type']]().to(idist.device())
scheduler = optim.lr_scheduler.__dict__[config['scheduler']['type']](
optimizer, **config['scheduler']['params']
)
return model, optimizer, loss_function, scheduler
def train_process(local_rank, config):
dataloader = get_dataloader(config)
model, optimizer, loss_function, scheduler = prepare(config)
trainer = create_trainer(model, optimizer, loss_function, scheduler, config)
evaluator = create_evaluator(model, config)
to_save = {"trainer": trainer, "model": model, "optimizer": optimizer, "scheduler": scheduler}
@trainer.on(Events.EPOCH_COMPLETED(every=config['train_constants']['save_every_epochs']) | Events.COMPLETED)
def evaluate(engine):
evaluator.run(dataloader['eval'])
checkpoint_handler = Checkpoint(
to_save=to_save,
save_handler=get_save_handler(config),
score_function=lambda engine: engine.state.metrics['Eval/Top-1'],
score_name='eval_top1_accuracy',
n_saved=None,
global_step_transform=global_step_from_engine(trainer)
)
evaluator.add_event_handler(Events.COMPLETED, checkpoint_handler)
if idist.get_rank() == 0:
tb_logger = get_tb_logger(config)
register_tb_logger_handlers(trainer, evaluator, optimizer, tb_logger, config)
try:
trainer.run(dataloader['train'], max_epochs=config['train_constants']['max_epochs'])
evaluator.run(dataloader['eval'])
except Exception as e:
import traceback
print(traceback.format_exc())
if idist.get_rank() == 0:
tb_logger.close()
def run(config):
with idist.Parallel(backend='nccl', nproc_per_node=8) as parallel:
parallel.run(train_process, config)
def save_current_component_and_model_files_and_given_configuration_file(config_as_argument):
with open(config_as_argument, 'r') as config_file:
config = json.load(config_file)
title = config['experiment']['title']
ID = str(config['experiment']['ID']).zfill(2)
os.makedirs('experiments/{0}/{1}'.format(title, ID))
config['datetime'] = datetime.now().strftime("%Y%m%d")
with open('experiments/{0}/{1}/config.json'.format(title, ID), 'w') as save_config_file:
json.dump(config, save_config_file, indent=4)
if save_architectures:
shutil.copytree('architectures',
'experiments/{0}/{1}/architectures'.format(title, ID))
return config
if __name__ == "__main__":
if os.path.isdir(sys.argv[1]):
for filename in sorted(os.listdir(sys.argv[1])):
if filename.endswith('.json'):
config = save_current_component_and_model_files_and_given_configuration_file('Q/{0}'.format(filename))
run(config)
else:
config = save_current_component_and_model_files_and_given_configuration_file(sys.argv[1])
run(config)