forked from aqlaboratory/openfold
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththread_sequence.py
173 lines (143 loc) · 5.87 KB
/
thread_sequence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import argparse
import os
import logging
import random
import numpy
import torch
from openfold.config import model_config
from openfold.data import feature_pipeline
from openfold.data.data_pipeline import make_sequence_features_with_custom_template
from openfold.np import protein
from openfold.utils.script_utils import load_models_from_command_line, parse_fasta, run_model, prep_output, \
relax_protein
from openfold.utils.tensor_utils import (
tensor_tree_map,
)
from scripts.utils import add_data_args
logging.basicConfig()
logger = logging.getLogger(__file__)
logger.setLevel(level=logging.INFO)
torch_versions = torch.__version__.split(".")
torch_major_version = int(torch_versions[0])
torch_minor_version = int(torch_versions[1])
if(
torch_major_version > 1 or
(torch_major_version == 1 and torch_minor_version >= 12)
):
# Gives a large speedup on Ampere-class GPUs
torch.set_float32_matmul_precision("high")
torch.set_grad_enabled(False)
def main(args):
os.makedirs(args.output_dir, exist_ok=True)
config = model_config(args.config_preset)
random_seed = args.data_random_seed
if random_seed is None:
random_seed = random.randrange(2**32)
numpy.random.seed(random_seed)
torch.manual_seed(random_seed + 1)
feature_processor = feature_pipeline.FeaturePipeline(config.data)
with open(args.input_fasta) as fasta_file:
tags, sequences = parse_fasta(fasta_file.read())
if len(sequences) != 1:
raise ValueError("the threading script can only process a single sequence")
query_sequence = sequences[0]
query_tag = tags[0]
feature_dict = make_sequence_features_with_custom_template(
query_sequence,
args.input_mmcif,
args.template_id,
args.chain_id,
args.kalign_binary_path)
processed_feature_dict = feature_processor.process_features(
feature_dict, mode='predict',
)
processed_feature_dict = {
k: torch.as_tensor(v, device=args.model_device)
for k, v in processed_feature_dict.items()
}
model_generator = load_models_from_command_line(
config,
args.model_device,
args.openfold_checkpoint_path,
args.jax_param_path,
args.output_dir)
output_name = f'{query_tag}_{args.config_preset}'
for model, output_directory in model_generator:
out = run_model(model, processed_feature_dict, query_tag, args.output_dir)
# Toss out the recycling dimensions --- we don't need them anymore
processed_feature_dict = tensor_tree_map(
lambda x: numpy.array(x[..., -1].cpu()),
processed_feature_dict
)
out = tensor_tree_map(lambda x: numpy.array(x.cpu()), out)
unrelaxed_protein = prep_output(
out,
processed_feature_dict,
feature_dict,
feature_processor,
args.config_preset,
200, # this is the ri_multimer_gap. There's no multimer sequences here, so it doesnt matter what its set to
args.subtract_plddt
)
unrelaxed_output_path = os.path.join(
output_directory, f'{output_name}_unrelaxed.pdb'
)
with open(unrelaxed_output_path, 'w') as fp:
fp.write(protein.to_pdb(unrelaxed_protein))
logger.info(f"Output written to {unrelaxed_output_path}...")
logger.info(f"Running relaxation on {unrelaxed_output_path}...")
relax_protein(config, args.model_device, unrelaxed_protein, output_directory, output_name, False)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("input_fasta", type=str, help="the path to a fasta file containing a single sequence to thread")
parser.add_argument("input_mmcif", type=str, help="the path to an mmcif file to thread the sequence on to")
parser.add_argument("--template_id", type=str, help="a PDB id or other identifier for the template")
parser.add_argument(
"--chain_id", type=str,
help="""The chain ID of the chain in the template to use"""
)
parser.add_argument(
"--model_device", type=str, default="cpu",
help="""Name of the device on which to run the model. Any valid torch
device name is accepted (e.g. "cpu", "cuda:0")"""
)
parser.add_argument(
"--config_preset", type=str, default="model_1",
help="""Name of a model config preset defined in openfold/config.py"""
)
parser.add_argument(
"--jax_param_path", type=str, default=None,
help="""Path to JAX model parameters. If None, and openfold_checkpoint_path
is also None, parameters are selected automatically according to
the model name from openfold/resources/params"""
)
parser.add_argument(
"--openfold_checkpoint_path", type=str, default=None,
help="""Path to OpenFold checkpoint. Can be either a DeepSpeed
checkpoint directory or a .pt file"""
)
parser.add_argument(
"--output_dir", type=str, default=os.getcwd(),
help="""Name of the directory in which to output the prediction""",
)
parser.add_argument(
"--subtract_plddt", action="store_true", default=False,
help=""""Whether to output (100 - pLDDT) in the B-factor column instead
of the pLDDT itself"""
)
parser.add_argument(
"--data_random_seed", type=str, default=None
)
add_data_args(parser)
args = parser.parse_args()
if(args.jax_param_path is None and args.openfold_checkpoint_path is None):
args.jax_param_path = os.path.join(
"openfold", "resources", "params",
"params_" + args.config_preset + ".npz"
)
if(args.model_device == "cpu" and torch.cuda.is_available()):
logging.warning(
"""The model is being run on CPU. Consider specifying
--model_device for better performance"""
)
main(args)