forked from aqlaboratory/openfold
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
136 lines (121 loc) · 4.13 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from setuptools import setup, Extension, find_packages
import subprocess
import torch
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME
from scripts.utils import get_nvidia_cc
version_dependent_macros = [
'-DVERSION_GE_1_1',
'-DVERSION_GE_1_3',
'-DVERSION_GE_1_5',
]
extra_cuda_flags = [
'-std=c++14',
'-maxrregcount=50',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda'
]
def get_cuda_bare_metal_version(cuda_dir):
if cuda_dir==None or torch.version.cuda==None:
print("CUDA is not found, cpu version is installed")
return None, -1, 0
else:
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
output = raw_output.split()
release_idx = output.index("release") + 1
release = output[release_idx].split(".")
bare_metal_major = release[0]
bare_metal_minor = release[1][0]
return raw_output, bare_metal_major, bare_metal_minor
compute_capabilities = set([
(3, 7), # K80, e.g.
(5, 2), # Titan X
(6, 1), # GeForce 1000-series
])
compute_capabilities.add((7, 0))
_, bare_metal_major, _ = get_cuda_bare_metal_version(CUDA_HOME)
if int(bare_metal_major) >= 11:
compute_capabilities.add((8, 0))
compute_capability, _ = get_nvidia_cc()
if compute_capability is not None:
compute_capabilities = set([compute_capability])
cc_flag = []
for major, minor in list(compute_capabilities):
cc_flag.extend([
'-gencode',
f'arch=compute_{major}{minor},code=sm_{major}{minor}',
])
extra_cuda_flags += cc_flag
cc_flag = ['-gencode', 'arch=compute_70,code=sm_70']
if bare_metal_major != -1:
modules = [CUDAExtension(
name="attn_core_inplace_cuda",
sources=[
"openfold/utils/kernel/csrc/softmax_cuda.cpp",
"openfold/utils/kernel/csrc/softmax_cuda_kernel.cu",
],
include_dirs=[
os.path.join(
os.path.dirname(os.path.abspath(__file__)),
'openfold/utils/kernel/csrc/'
)
],
extra_compile_args={
'cxx': ['-O3'] + version_dependent_macros,
'nvcc': (
['-O3', '--use_fast_math'] +
version_dependent_macros +
extra_cuda_flags
),
}
)]
else:
modules = [CppExtension(
name="attn_core_inplace_cuda",
sources=[
"openfold/utils/kernel/csrc/softmax_cuda.cpp",
"openfold/utils/kernel/csrc/softmax_cuda_stub.cpp",
],
extra_compile_args={
'cxx': ['-O3'],
}
)]
setup(
name='openfold',
version='2.0.0',
description='A PyTorch reimplementation of DeepMind\'s AlphaFold 2',
author='OpenFold Team',
author_email='jennifer.wei@omsf.io',
license='Apache License, Version 2.0',
url='https://github.com/aqlaboratory/openfold',
packages=find_packages(exclude=["tests", "scripts"]),
include_package_data=True,
package_data={
"openfold": ['utils/kernel/csrc/*'],
"": ["resources/stereo_chemical_props.txt"]
},
ext_modules=modules,
cmdclass={'build_ext': BuildExtension},
classifiers=[
'License :: OSI Approved :: Apache Software License',
'Operating System :: POSIX :: Linux',
'Programming Language :: Python :: 3.9,'
'Topic :: Scientific/Engineering :: Artificial Intelligence',
],
)