-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbuzzdetect.py
71 lines (58 loc) · 2.85 KB
/
buzzdetect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import argparse
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
parser = argparse.ArgumentParser(
prog='buzzdetect.py',
description='A program to train and apply machine learning models for bioacoustics',
epilog='github.com/OSU-Bee-Lab/buzzdetect'
)
subparsers = parser.add_subparsers(help='sub-command help', dest='action', required=True)
# analyze
parser_analyze = subparsers.add_parser('analyze', help='analyze all audio files in a directory')
parser_analyze.add_argument('--modelname', help='the name of the directory holding the model data', required=True,
type=str)
parser_analyze.add_argument('--cpus', required=True, type=int)
parser_analyze.add_argument('--memory', required=True, type=float)
parser_analyze.add_argument('--classes', required=False, type=str) # give as...comma-separated list?
parser_analyze.add_argument('--dir_audio', required=False, default="./audio_in", type=str)
parser_analyze.add_argument('--dir_out', required=False, default=None, type=str)
parser_analyze.add_argument('--verbosity', required=False, default=1, type=int)
# train
parser_train = subparsers.add_parser('train', help='train a new model')
parser_train.add_argument('--modelname', help='the name for your new model; created as a directory in ./models/',
required=True, type=str)
parser_train.add_argument('--set', help='the name of the training set to train with', required=True, type=str)
parser_train.add_argument('--translation', help='the name of the translation file for renaming raw labels',
required=True, type=str)
parser_train.add_argument('--epochs', help='the maximum number of training epochs (but training may stop early)',
required=False, default=300, type=int)
parser_train.add_argument('--augment', help='whether or not to use augmented data in training', required=False,
default="True", type=str)
args = parser.parse_args()
if args.action == "train":
print(f"training new model {args.modelname} with set {args.set}")
from buzzcode.train import train_model
train_model(
modelname=args.modelname,
setname=args.set,
translationname=args.translation,
epochs_in=args.epochs,
augment=str2bool(args.augment)
)
elif args.action == "analyze":
print(f"analyzing audio in {args.dir_audio} with model {args.modelname}")
from buzzcode.analyze_audio import analyze_batch
analyze_batch(
modelname=args.modelname,
cpus=args.cpus,
memory_allot=args.memory,
dir_audio=args.dir_audio,
verbosity=args.verbosity,
)