-
Notifications
You must be signed in to change notification settings - Fork 2
/
unitSystem.tex
91 lines (81 loc) · 4.38 KB
/
unitSystem.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
%!TEX TS-program = pdflatex
\documentclass{article}
\usepackage[letterpaper,total={5.5in, 8in}]{geometry}
\usepackage{siunitx,float}
\sisetup{load-configurations = abbreviations}
\usepackage{threeparttable,booktabs}
%opening
%\author{}
\begin{document}
%\maketitle
\section*{The System of Units}
\renewcommand{\arraystretch}{1.2}
We define a new time unit $\mathrm{T}$ such that a wave number $\tilde{\nu}$ has the same numerical value as the corresponding angular wave frequency $\omega=\tilde{\nu} 2\pi c$ ($c$ is the speed of light).
\begin{table}[H]
\centering
\begin{threeparttable}
\begin{tabular}{rll}
\toprule
& SI & New \\
\midrule
$\tilde{\nu}$ & \SI{1}{\per\centi\meter} & $1\mathrm{cm^{-1}}$ \\
$\omega$ & $1.8836515673088531\times 10^{11}$ \SI{}{\per\s} & $1\mathrm{T}^{-1}$ \\
Time Unit(SI) & \SI{1}{\s} & ${1.8836515673088531\times 10^{11}}\mathrm{\,T}$ \\
Time Unit(New) & $5.308837458876145\times 10^{-12}$\SI{}{\s} & $1\mathrm{T}$ \\
\bottomrule
\end{tabular}
\caption{The Defining Relationship: $\omega = 2\pi c \nu.$ $c =\SI{2.99792458e10}{\centi\meter\per\s}$.}
\end{threeparttable}
\end{table}
With the time unit defined, we further define a new energy unit $\mathrm{E}$ such that Planck's constant $\hbar$ is $1\mathrm{E\,T}$. Planck's constant in SI is \SI{1.054571817e-34}{\joule\s}. Once $\mathrm{E}$ is defined, for $\tilde{\nu}=\SI{1}{\centi\meter}$, we will have the corresponding angular frequency $\omega=1\mathrm{cm}^{-1}$ and the energy $\mathcal{E}=\hbar\omega = 1\mathrm{\,E\,T}\times 1\mathrm{\,T}^{-1}=1\mathrm{\,E}$.
\begin{table}[H]
\centering
\begin{threeparttable}
\begin{tabular}{rll}
\toprule
& SI & New \\
\midrule
$\hbar$ & $1.054571817\times 10^{-34}$\SI{}{\joule\s} & $1\mathrm{E\cdot T}$ \\
Time Unit(SI) & \SI{1}{\s} & $1.8836515673088531\times10^{10} \mathrm{\,T}$ \\
Time Unit(New) & \SI{5.308837458876145e-12}{\s} & $1\mathrm{T}$ \\
Energy Unit(SI) & \SI{1}{\joule} & $5.0341165706272096\times 10^{22} \mathrm{\,E}$ \\
Energy Unit(New) & $1.986445855931795\times10^{-23}$\SI{}{\joule} & $1 \mathrm{E}$ \\
\bottomrule
\end{tabular}
\caption{The Defining Relationship: $\hbar = 1.054571817\times10^{-34}\SI{}{\joule\s} =1\mathrm{ET}$.}
\end{threeparttable}
\end{table}
With the two units defined, we calculate the value of Boltzmann's constant in this system of units.
\begin{table}[H]
\centering
\begin{threeparttable}
\begin{tabular}{rll}
\toprule
& SI & New \\
\midrule
Energy Unit(SI) & \SI{1}{\joule} & $5.0341165706272096\times10^{22} \mathrm{\,E}$ \\
Energy Unit(New) & $1.986445855931795\times10^{-23}$\SI{}{\joule} & $1 \mathrm{E}$ \\
$k_\mathrm{B}$ & $1.380649\times10^{23}$\SI{}{\joule\per\kelvin} & $0.6950348009119888 \mathrm{\,E\,K^{-1}}$ \\
\bottomrule
\end{tabular}
\caption{The Defining Relationship: $k_{\mathrm{B}} = \SI{1.380649e-23}{\joule\per\kelvin} =\SI{1.380649e-23}{\joule\per\kelvin} \times \num{15.0341165706272096e22} \frac{\mathrm{E}}{\mathrm{J}} = \num{0.6950348009119888} \mathrm{E\,K^{-1}}$.}
\end{threeparttable}
\end{table}
Now we list the necessary unit conversion coefficients from atomic units to this new set of units
\begin{table}[H]
\centering
\begin{threeparttable}
\begin{tabular}{rll}
\toprule
& a.u. & New \\
\midrule
Mass & 1\, a.u. & $1.627096855727954\times10^{11} \mathrm{\,M}$ \\
Mass & $6.145915631756325\times10^{-12}$\, a.u. & $1\,\mathrm{M}$ \\
Length& 1\, a.u. & $5.29177210903\times 10^{-9}$ \SI{}{\centi\meter} \\
Energy& 1\, a.u. & $2.1947463068\times10^5$ E \\
\bottomrule
\end{tabular}
\caption{The Defining Relationship: .}
\end{threeparttable}
\end{table}
\end{document}