Skip to content

NoiseLabUCSD/SBL

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Sparse Bayesian learning (SBL) for DOA

A set of MATLAB codes for direction-of-arrival (DOA) estimation, beamforming.

Features

The codes provide:

-Beamforming based on a loss function

-Loss function: Maximum-Likelihood (ML) loss for the circularly symmetric complex Gaussian distribution, Gauss loss

Citation

SBL implementation is also available. [CODE]
-P. Gerstoft, C. F. Mecklenbräuker, A. Xenaki, and S. Nannuru, “Multi-snapshot sparse Bayesian learning for DOA,” IEEE Signal Process. Lett. 23(10) (2016).

Robust SBL with other loss functions is available. [CODE]
-C. F. Mecklenbräuker, P. Gerstoft, E. Ollila, and Y. Park, “Robust and Sparse M-Estimation of DOA,” Signal Process. 220, 109461, pp. 1-10 (2024).
-C. F. Mecklenbräuker, P. Gerstoft, and E. Ollila, “DOA M-estimation using sparse bayesian learning,” in Proc. IEEE ICASSP (2022), pp. 4933–4937.

Updates

Version 4.5: (08/26/2024 by Y. Park)

Contact

Yongsung Park & Peter Gerstoft
MPL/SIO/UCSD
yongsungpark@ucsd.edu
gerstoft@ucsd.edu

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • MATLAB 100.0%