forked from ysparkwin/Difference-Frequency_MUSIC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFIG2.m
175 lines (133 loc) · 5.26 KB
/
FIG2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
% Version 1.0: (01/02/2023)
% written by Yongsung Park
% Yongsung Park & Peter Gerstoft
% MPL/SIO/UCSD
% yongsungpark@ucsd.edu / gerstoft@ucsd.edu
% noiselab.ucsd.edu
% Citation
% Y. Park, P. Gerstoft, and J. H. Lee, “Difference-Frequency MUSIC for DOAs,” IEEE Signal Process. Lett. 29, 2612–2616 (2022).
% https://doi.org/10.1109/LSP.2022.3230365
% Atomic norm minimization (ANM) implementation is also available.
% Y. Park and P. Gerstoft, “Difference Frequency Gridless Sparse Array Processing,” IEEE Open J. Signal Process. 5, 914–925 (2024).
% https://doi.org/10.1109/OJSP.2024.3425284
%%
clear; clc;
close all;
% addpath([cd,'/_common'])
% addpath(['../_common'])
errCut = 10; % Maximum RMSE cut-off.
rngNumber = 1; rng(rngNumber);
dbstop if error;
run_bpdn = 0;
%%
% Environment parameters
% c = 1500; % speed of sound
c = 343; % speed of sound
dfreq = 10000; % difference frequency [Hz]
% ULA-horizontal array configuration
d = .5*(c/dfreq); % intersensor spacing (based on DF)
% d = 3.75; % intersensor spacing [m]
% f = 200; % Hz -> 0.5 lambda = 0.5 * 1500 / 200 = 3.75 [m]
Nsensor = 20; % number of sensors
q = (0:1:(Nsensor-1))'; % sensor numbering
xq = (q-(Nsensor-1)/2)*d; % sensor locations
% 5-7.5 times to Difference Frequency (DF)
fmul1 = 5;
fmul2 = 7.5;
ftmp = linspace(fmul1*dfreq,fmul2*dfreq,50);
f = [ftmp,ftmp+dfreq]; % frequency [Hz]
Nfreq = numel(f);
lambda = c./f; % wavelength
% signal generation parameters
SNR = 20;
% total number of snapshots
Nsnapshot = 50;
% range of angle space
thetalim = [-90 90];
theta_separation = .005;
% Angular search grid
theta = (thetalim(1):theta_separation:thetalim(2))';
Ntheta = length(theta);
% Generate received signal
anglesTrue = [-40; 35];
fprintf(['True DOAs :',...
repmat([' %.4f '],1,numel(anglesTrue)),'\n'],anglesTrue.')
anglesTracks = repmat(anglesTrue,[1,Nsnapshot]);
anglesTracks(1,:) = anglesTracks(1,1) - 2*anglesTracks(1,1)./(1+exp(-.1*(-Nsnapshot/2:-Nsnapshot/2+Nsnapshot-1)));
anglesTracks(2,:) = anglesTracks(2,1) - 1.00*(0:Nsnapshot-1)';
anglesTracks(:,46) = anglesTracks(:,47);
sinAnglesTracks = sind(anglesTracks);
Nsource = numel(anglesTrue);
receivedSignalMultiFreq = zeros(Nsensor,Nsnapshot,Nfreq);
Xlist = [];
rPhase = (exp(1i*2*pi*rand(Nsource,Nsnapshot)));
for nfreq = 1:Nfreq
receivedSignal = zeros(Nsensor,Nsnapshot);
e = zeros(Nsensor,Nsnapshot);
for snapshot = 1:Nsnapshot
source_amp(:,snapshot) = 10*ones(size(anglesTrue));
Xsource = source_amp(:,snapshot).*exp(1i*2*pi*rand(Nsource,1)); % random phase
Xlist = [Xlist,Xsource];
% Represenation matrix (steering matrix)
transmitMatrix = exp( -1i*2*pi/lambda(nfreq)*xq*sinAnglesTracks(:,snapshot).' );
% Received signal without noise
receivedSignal(:,snapshot) = sum(transmitMatrix*diag(Xsource),2);
% add noise to the signals
rnl = 10^(-SNR/20)*norm(Xsource);
nwhite = complex(randn(Nsensor,1),randn(Nsensor,1))/sqrt(2*Nsensor);
e(:,snapshot) = nwhite * rnl; % error vector
receivedSignal(:,snapshot) = receivedSignal(:,snapshot) + e(:,snapshot);
end
receivedSignalMultiFreq(:,:,nfreq) = receivedSignal;
end
% Design/steering matrix (Sensing matrix)
sin_theta = sind(theta);
sensingMatrixFreq = zeros(Nsensor,Ntheta,Nfreq);
for nfreq = 1:Nfreq
sensingMatrixFreq(:,:,nfreq) = exp(-1i*2*pi/lambda(nfreq)*xq*sin_theta.')/sqrt(Nsensor);
end
% Sensing matrix for DF
sensingMatrixDF = exp(-1i*2*pi/ (c/dfreq) *xq*sin_theta.')/sqrt(Nsensor);
%% Auto-product
APset = zeros(Nsensor,Nsnapshot,Nfreq/2);
for nfreq = 1:Nfreq/2
receivedSignalTmp(:,:) = receivedSignalMultiFreq(:,:,nfreq);
receivedSignalTmp2(:,:) = receivedSignalMultiFreq(:,:,nfreq+Nfreq/2);
APTmp = receivedSignalTmp2 .* conj(receivedSignalTmp);
APset(:,:,nfreq) = APTmp;
end
%% Auto-Product aligned along columns as they have the same freq. difference
APsetR = reshape(APset,Nsensor,Nsnapshot*Nfreq/2);
%% MUSIC-Single snapshot thanks to multi-frequency
Neig = Nsource;
if Nfreq/2 > Nsource
PmusicDFsingle = zeros(Ntheta,Nsnapshot);
for nsnapshot = 1:Nsnapshot
APsetTmp = reshape(APset(:,nsnapshot,:),Nsensor,Nfreq/2);
RzzTmp = APsetTmp*APsetTmp'/(Nfreq/2);
[Rv,Rd] = eig(RzzTmp);
Rvn = Rv(:, 1:end-Neig);
PmusicTmp = zeros(numel(theta),1);
for ii=1:length(theta)
PmusicTmp(ii) = 1./(sensingMatrixDF(:,ii)'*(Rvn*Rvn')*sensingMatrixDF(:,ii));
end
PmusicDFsingle(:,nsnapshot) = PmusicTmp;
[~, Ilocs] = findpeaks(abs(PmusicTmp),'SORTSTR','descend','Npeaks', Nsource);
DoA_error_sin(:,nsnapshot) = errorDOAcutoff(theta(Ilocs),anglesTracks(:,nsnapshot),errCut);
end
disp(['RMSE single-MUSIC: ',num2str(sqrt(mean(mean(power(DoA_error_sin,2)))))])
PmusicDFsingle = abs(PmusicDFsingle);
figure,
set(gcf,'position',[180,200,1180,420])
set(gca,'position',[0.157,0.163,0.748,0.762])
imagesc(1:Nsnapshot,theta,10*log10(PmusicDFsingle./max(PmusicDFsingle,[],1)))
caxis([-40 0])
set(gca,'fontsize',24,'TickLabelInterpreter','latex','YTick',-80:40:80, 'YDir','normal')
% title('DF MUSIC single snapshot','interpreter','latex');
xlabel('Snapshot','interpreter','latex');
ylabel('DOA~[$^\circ$]','interpreter','latex');
% set(gca,'YTickLabel',' ');
end
%%
% rmpath([cd,'/_common'])
% rmpath(['../_common'])