-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmlp.py
44 lines (35 loc) · 1.36 KB
/
mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from argparse import ArgumentParser
from torch.nn import Linear, Module, ModuleList
from torch.nn.functional import relu
class MLP(Module):
"""
A multilayer perceptron with one hidden ReLU layer.
Expects an input tensor of size (batch_size, input_dim) and returns
a tensor of size (batch_size, output_dim).
"""
def __init__(self,
input_dim,
hidden_layer_dim,
num_layers,
num_classes):
super(MLP, self).__init__()
self.num_layers = num_layers
# create a list of layers of size num_layers
layers = []
for i in range(num_layers):
d1 = input_dim if i == 0 else hidden_layer_dim
d2 = hidden_layer_dim if i < (num_layers - 1) else num_classes
layer = Linear(d1, d2)
layers.append(layer)
self.layers = ModuleList(layers)
def forward(self, x):
res = self.layers[0](x)
for i in range(1, len(self.layers)):
res = self.layers[i](relu(res))
return res
def mlp_arg_parser():
""" CLI args related to the MLP module """
p = ArgumentParser(add_help=False)
p.add_argument("-d", "--mlp_hidden_dim", help="MLP hidden dimension", type=int, default=25)
p.add_argument("-y", "--num_mlp_layers", help="Number of MLP layers", type=int, default=2)
return p