Skip to content

NinV/Korean-License-Plate-Recognition

Repository files navigation

Korean car license plate recognition using LPRNet

This repository is based on the paper LPRNet: License Plate Recognition via Deep Neural Networks.

We use the KarPlate Dataset for training and test model

Dependencies

  • Python 3.6+
  • Tensorflow 1.15 or 2
  • Opencv 4
  • tqdm
  • editdistance

Usage

Pre-trained model

Download best_weights.zip, unzip and move into saved_models folder for testing

Demo

python predict.py -i data/test_images/4.jpg -w saved_models/weights_best.pb

Training

python train.py -l data/label.json -i data/train_images --valid_label data/test.json --valid_img_dir data/test_images --save_weights_only --load_all 

Testing

python predict.py -i data/test_images/4.jpg -w saved_models/weights_best.pb

Evaluate

python evaluate.py -l data/test.json -i data/test_images/ -w saved_models/weights_best.pb

About

Korean car license plate recognition using LPRNet

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages