-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathVisualization.py
685 lines (520 loc) · 20.4 KB
/
Visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
"""
Script : Visualization.py
Definition: This script is written for the following functionality :
1. Basic visualization of the dataset
2. Subplot of clustered data
3. Overlay plot of the clustered data
4. Acorn distribution plot based on the clusters
5. Hourly mean plot of all the clusters
6. Creation of directory and saving the plots
"""
# import libraries
import pandas as pd # version 0.23.4 , because of some bugs in the latest version 0.24
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
"""
Function : visualiseData
Definition: this function takes the dataset 'df1' as argument, and shows the basic visualization of the data.
Return: none
"""
def visualise_data(dict_cluster,df1,n_cluster):
# df1= df1.sort_values(by=['Date'])
cluster_list1 = dict_cluster["3"]
print (cluster_list1)
cluster_list2 = dict_cluster["1"]
print(cluster_list2)
cols = df1.columns
plt.matshow(df1.corr())
plt.xticks(range(df1.shape[1]), df1.columns, fontsize=14, rotation=45)
plt.yticks(range(df1.shape[1]), df1.columns, fontsize=14)
cb = plt.colorbar()
cb.ax.tick_params(labelsize=14)
plt.title('Correlation Matrix', fontsize=16);
plt.show()
'''
for i in range(n_cluster):
df = pd.DataFrame(df1[dict_cluster[str(i)]])
plt.matshow(df.corr())
plt.xticks(range(df.shape[1]), df.columns, fontsize=14, rotation=45)
plt.yticks(range(df.shape[1]), df.columns, fontsize=14)
cb = plt.colorbar()
cb.ax.tick_params(labelsize=14)
plt.title('Correlation Matrix', fontsize=16);
plt.show()
#df1[cluster_list1].corr()
'''
'''
for i in housename:
df = df1[df1['Housename'] ==i]
# df1["time"] = pd.to_datetime(df1["time"], format='%Y-%m-%d %H:%M:%S')
# df.set_index(['time'], inplace=True)
df.plot()
plt.title("Plot for Housename: "+i)
plt.savefig("./Figs/visualise_data/visualisation.png", dpi = 150)
plt.show()
# print(df.info())
'''
"""
Function : cluster_visualisation_subplot
Definition: this function takes processed df and labels as arguments, and does the following:
1. plots the labeled clusters in a subplot.
Return:
"""
def cluster_visualisation_subplot(df1, labels,choice,n_clusters):
df1= df1.set_index("time")
labels = labels.tolist()
fig = plt.figure()
for j in range(len(set(labels))): # use set() to remove duplicates of list
color_map = {0: 'r',
1: 'k',
2: 'y',
3: 'b',
4: 'g',
5: 'c',
6: 'm'
}
lis = []
for i in range(len(labels)):
# print("i", labels[i])
if labels[i] == j:
lis.append(df1.columns[i])
else:
# print("false")
pass
ax = fig.add_subplot(2, 3, j+1)
ax.plot(df1[lis], c=color_map[j]) # , c=color_map[j]
ax.set_title("Cluster"+str(j))
print("cluster"+str(j), lis)
plt.tight_layout()
plt.savefig("./Figs/cluster_visualisation_subplot/" + str(choice) + "/n_cluster" + str(n_clusters) + ".png", dpi = 150)
plt.show()
"""
Function : cluster_visualisation_single_plot
Definition: this function takes processed df and labels as arguments, and does the following:
1. plots the labeled clusters in a overlay plot.
Return:
"""
def cluster_visualisation_single_plot(dict, df1,choice,n_clusters):
df1["time"] = pd.to_datetime(df1["time"], format='%d%b%Y:%H:%M:%S.%f')
df1 = df1.set_index("time")
print(df1.head())
linewidth = 0.9
alpha = 0.3
print(dict)
for i in dict.keys():
print("keys",i)
print(type(i))
color_map = {0: 'k',
1: 'r',
2: 'g',
3: 'y',
4: 'b',
5: 'c',
6: 'm'
}
plt.plot(df1[dict[str(i)]], c=color_map[int(i)], linewidth=linewidth, alpha=alpha)
patchList = []
for key in dict.keys(): # patch for holding the plots
data_key = mpatches.Patch(color=color_map[int(key)], label="Cluster"+str(key))
patchList.append(data_key)
plt.legend(handles=patchList)
linewidth = linewidth - 0.2
# alpha = alpha-0.3
# plt.legend()
plt.savefig("./Figs/cluster_visualisation_single_plot/" + str(choice) + "/n_cluster" + str(n_clusters) + ".png", dpi = 150)
plt.show()
"""
Function : mean_cluster_visualisation
Definition: this function takes processed df and labels as arguments, and does the following:
1. plots the mean lines of the clusters in a overlay plot.
Return: Dataframe of mean values of each cluster for the entire timestamp
"""
def mean_cluster_visualisation(dict, df1,choice,n_clusters):
df1["time"] = pd.to_datetime(df1["time"], format='%d%b%Y:%H:%M:%S.%f')
df1 = df1.set_index("time")
NUM_COLORS= n_clusters
df_mean = pd.DataFrame()
fig, ax = plt.subplots()
cm = plt.get_cmap('gist_rainbow')
color = [cm(1. * i / NUM_COLORS) for i in range(NUM_COLORS)]
for i in dict.keys():
#color = [cm(1. * i / NUM_COLORS) for i in range(NUM_COLORS)]
color_map_mean = {0: 'm',
1: 'c',
2: 'g',
3: 'b',
4: 'y',
5: 'k',
6: 'r'
}
patchList = []
df= pd.DataFrame()
df["mean"]= df1[dict[str(i)]].mean(axis=1)
# df["mean_new"] = df["mean"].resample("D").sum()
#print("mean df", df.head())
df_mean["cluster"+str(i)]= df["mean"]
#plt.plot(df["mean"], c= color_map_mean[(int(i))], linewidth=0.5, alpha= 0.5 )
plt.plot(df["mean"], c= color[int(i)], linewidth=0.5, alpha= 0.5 )
for key in dict.keys():
#data_key = mpatches.Patch(color=color_map_mean[int(key)], label="Cluster"+str(key))
data_key = mpatches.Patch(color=(color[int(key)]), label="Cluster"+str(key))
patchList.append(data_key)
plt.legend(handles=patchList)
plt.title('Mean plot of Clusters using ' + str(choice) + ' for N_Cluster = ' + str(n_clusters))
#plt.ylim(0, 2)
plt.savefig("./Figs/mean_cluster_visualisation/" + str(choice) + "/n_cluster" + str(n_clusters) + ".png", dpi = 150)
plt.show()
df_mean.to_csv("dfmean.csv")
return df_mean
"""
Function : resampled_cluster_visualisation
Definition: Function for plotting the resampled mean Daily, Weekly and Querterly distribution of clustered data.
Return:
"""
def resampled_cluster_visualisation(choice,n_clusters):
df_mean = pd.read_csv("dfmean.csv")
#print(df_mean.head())
df_mean["time"] = pd.to_datetime(df_mean["time"])
#df_mean= df_mean.set_index("time")
#df1 = df_mean.resample('B', on='time').mean()
df1 = df_mean.resample('D', on='time').mean()
print(df1)
df1.plot()
plt.legend()
plt.title('Daily mean plot of Clusters using ' + str(choice)+' for N_Cluster = '+str(n_clusters))
plt.savefig("./Figs/resampled_cluster_visualisation/"+ str(choice) + "/n_cluster" + str(n_clusters) + "_Daily_Mean.png",dpi = 150)
df2 = df_mean.resample('W', on='time').mean()
df2.plot()
plt.legend()
plt.title('Weekly mean plot of Clusters using ' + str(choice) + ' for N_Cluster = ' + str(n_clusters))
plt.savefig("./Figs/resampled_cluster_visualisation/" + str(choice) + "/n_cluster" + str(n_clusters) + "_Weekly_Mean.png", dpi=150)
df3 = df_mean.resample('Q', on='time').mean()
df3.plot()
plt.legend()
plt.title('Querterly mean plot of Clusters using ' + str(choice) + ' for N_Cluster = ' + str(n_clusters))
plt.savefig("./Figs/resampled_cluster_visualisation/" + str(choice) + "/n_cluster" + str(n_clusters) + "_Resampled.png", dpi=150)
plt.show()
"""
Function : acorn_plot
Definition: Function for plotting the cluster-wise acorn distribution in a stacked bar plot.
Return:
"""
def acorn_plot(df, n_cluster,choice):
df = df.reset_index()
df = df.drop("level_1", axis=1)
print(df.info())
acorn_list = {}
for i in range(n_cluster):
#print (i)
df2 = df[df["label"].astype(int) == i]
df1 = df2['Acorn group'].value_counts(dropna=False).to_dict()
# Uncomment the following line if distribution for acorn category needs to be checked
# df1 = df2['Acorn category'].value_counts(dropna=False).to_dict()
acorn_list["Cluster"+str(i)] = df1
df_acorn = pd.DataFrame(acorn_list).T
df_acorn= df_acorn.fillna(0)
df_acorn.plot(kind='bar', stacked=True ,fontsize=6)
plt.ylabel('numbers')
plt.title('Acorn Distribution among Clusters using ' + str(choice)+' for N_Cluster = '+str(n_cluster))
# if number of clusters are more, then less grids are required! This is implemented as follows:
plt.grid()
if n_cluster > 8:
# show 20 grids for the length of data set
minor_ticks = np.arange(0, len(df["label"])*30/100, round((len(df["label"])*30/100)/20))
else:
# show 50 grids for the length of data set
minor_ticks = np.arange(0, len(df["label"]) * 70 / 100,round((len(df["label"]) * 70 / 100) / 50))
frame1 = plt.gca()
# For showing the cluster wise distribution, a table is added with the plot
frame1.axes.xaxis.set_ticklabels([])
plt.yticks(minor_ticks)
plt.table(cellText=df_acorn.T.values,
rowLabels=df_acorn.T.index,
colLabels=df_acorn.T.columns,
cellLoc='center', rowLoc='center',
loc='bottom')
# subplot adjustments for different cluster numbers
if n_cluster > 8:
plt.subplots_adjust(left=0.2, bottom=0.6)
else:
plt.subplots_adjust(left=0.2, bottom=0.2)
plt.savefig("./Figs/acorn_plot/" + str(choice) + "/n_cluster" + str(n_cluster) + ".png", dpi=600)
plt.show()
"""
Function : acorn_plot
Definition: Function for plotting the correlation of the Radiation pattern with the clustered dataset using
pearson correlation.
Return:
"""
def correlation_plot(dict_correlation,n_cluster,choice):
print("dict_correlation",dict_correlation)
dict_mean = {}
for i in dict_correlation.keys():
#print(i)
mean = sum(dict_correlation[i])/len(dict_correlation[i])
dict_mean["Cluster "+str(i)+" mean"]= mean
print(mean)
print("lenght is",len(dict_correlation.values()))
labels, data, = dict_correlation.keys(), dict_correlation.values()
print("data is", data)
plt.boxplot(data,showmeans=True)
myxticks= []
data_list= list(data)
print(data_list)
print(len(data_list))
print(len(data_list[0]))
for i in range(n_cluster):
ll = "cluster "+ str(i) + " instances "+ str(len(list(data)[i]))
print(ll)
myxticks.append(ll)
plt.xticks(range(1, len(labels) + 1), myxticks)
plt.xticks(rotation=90)
plt.ylabel('pearson correlatoin index')
plt.savefig("./Figs/Pearson_Corr_with_Radiation_data/" + str(choice) + "/n_cluster" + str(n_cluster) + ".png", dpi=600)
#plt.text(x,y ,dict_mean)
plt.show()
"""
Function : Hourlyplot
Definition: Function for plotting the average daily distribution of the clustered data and
average hourly distribution of the clustered data for winter and summer.
Return:
"""
def Hourlyplot(choice,n_clusters):
df= pd.read_csv("dfmean.csv")
df["time"] = pd.to_datetime(df["time"])
# df = df.resample('D', on='time').mean()
# df["time"] = pd.to_datetime(df["time"])
df1=df
df1['day_of_week'] = df1['time'].dt.day_name()
df1= df.groupby(['day_of_week']).mean()
df1.plot()
plt.title("Avg day-wise consumption "+str(choice)+" "+str(n_clusters))
plt.savefig("./Figs/resampled_cluster_visualisation/" + str(choice) + "/n_cluster" + str(n_clusters) + "_avg day-wise consumption.png",
dpi=150)
plt.show()
df = df.resample('H', on='time').mean()
df= pd.DataFrame(df)
# print(df)
df.to_csv("df.csv", index=True)
df2= pd.read_csv("df.csv",parse_dates=True)
df2["month"]= df.index.month
df2["time"] = pd.to_datetime(df2["time"])
# df2["month"].isin([1,2,3,4,5]):
# df2= pd.DataFrame()
df3= df2.loc[df2['month'].isin(['1', '2','3','4','5','10','11','12'])]
# print("df2",df2)
df3['Hours'] = df3['time'].dt.time
df3 = df3.groupby(['Hours']).mean()
print(df3)
df3.iloc[:,0:n_clusters].plot()
plt.title("Avg hour-wise consumption from to October to May")
plt.savefig("./Figs/resampled_cluster_visualisation/" + str(choice) + "/n_cluster" + str(
n_clusters) + "avg_hour-wise_consumption_Oct_to_May.png",
dpi=150)
plt.show()
df4 = df2.loc[df2['month'].isin(['6','7','8','9'])]
print(df4)
df4['Hours'] = df4['time'].dt.time
print(df4)
df4 = df4.groupby(['Hours']).mean()
df4.iloc[:, 0:n_clusters].plot()
plt.title("Avg hour-wise consumption from June to September")
plt.savefig("./Figs/resampled_cluster_visualisation/" + str(choice) + "/n_cluster" + str(
n_clusters) + "avg_hour-wise_consumption_June_to_Sept.png",
dpi=150)
plt.show()
"""
Function : DayWiseHourlyplot
Definition: Function for plotting the average daily distribution of consumption in individual plots
for Monday to Sunday.
Return:
"""
def DayWiseHourlyplot(choice,n_clusters):
df = pd.read_csv("dfmean.csv")
df["time"] = pd.to_datetime(df["time"])
df1 = df
df = df1.resample('H', on='time').mean()
df = pd.DataFrame(df)
df = df.reset_index()
df["time"] = pd.to_datetime(df["time"])
df['day_of_week'] = df['time'].dt.day_name()
# df.to_csv("df.csv", index=True)
# Now Plot for every individual day
for i in ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"]:
df3 = df.loc[df['day_of_week'].isin([i])]
df3['Hours'] = df3['time'].dt.time
df4 = df3.groupby(['Hours']).mean()
df4.iloc[:, 0:n_clusters].plot()
plt.title("Hour-wise consumption for"+str(i))
plt.savefig("./Figs/Hour-wise consumption for Everyday/" + str(choice) + "/n_cluster" + str(n_clusters) +
"Hour-wise consumption for "+str(i), dpi=150)
plt.show()
"""
Function : DayWiseGrouppedPlot
Definition: Function for plotting the daily distribution of consumption of all the clusters in a single plot
from Monday to Sunday.
Return:
"""
def dayWiseGrouppedPlot(choice,n_clusters):
df = pd.read_csv("dfmean.csv")
df["time"] = pd.to_datetime(df["time"])
df1 = df
df = df1.resample('H', on='time').mean()
df = pd.DataFrame(df)
df = df.reset_index()
df["time"] = pd.to_datetime(df["time"])
df['day_of_week'] = df['time'].dt.day_name()
# df.to_csv("df.csv", index=True)
# Now Plot for every individual day
dayList = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"]
colors = {"Monday": 'r',
"Tuesday": 'k',
"Wednesday": 'y',
"Thursday": 'b',
"Friday": 'g',
"Saturday": 'c',
"Sunday": 'm'
}
linestyles = {'cluster0': '-',
'cluster1': '--',
'cluster2': '-.',
'cluster3': ':',
'cluster4': '-'
}
c=0
for i in dayList:
df3 = df.loc[df['day_of_week'].isin([i])]
df3['Hours'] = df3['time'].dt.time
df4 = df3.groupby(['Hours']).mean()
print(df4.head())
# df4.iloc[:, 0:n_clusters].plot()
print(df4.columns)
plt.plot(df4.iloc[:, 0:n_clusters+1], c=colors[i])
patchList = []
for key in dayList: # patch for holding the plots
data_key = mpatches.Patch(label="Day :" + str(key), color= colors[key])
patchList.append(data_key)
plt.legend(handles=patchList)
c=c+1
# plt.show()
plt.show()
#dayWiseGrouppedPlot("Autoencoder",5)
#resampled_cluster_visualisation("hierarchical",5)
#Hourlyplot("hierarchical",5)
#correlation_plot("a",4,"hierarchical")
"""
Function : acornWisePlot
Definition: Function for plotting the Acorn Group wise distribution of the original data in a Line plot
Return:
"""
def acornWisePlot(df):
'''
df = pd.read_csv("London_full_data.csv", index_col=None) # for London dataset
df = df.drop("Unnamed: 0", axis=1)
#print(df1.head())
df= pd.DataFrame(df)
'''
df= df.set_index(df["time"])
acorn_data = pd.read_csv("acorn_df.csv") # for full dataset
acorn_data = acorn_data.reset_index()
acorn_data = acorn_data.rename(index=str, columns={"Unnamed: 0": "HouseholdID"})
print(acorn_data.head())
print(acorn_data.shape)
df2 = acorn_data.groupby('Acorn group')['HouseholdID'].agg(lambda x: list(x))
df2 = dict(df2)
# Call function for Line Plot
plotAcorn(df, df2,'Acorn Group')
# Call this function for box plot
AcornWiseBoxPlot(df,df2,"Acorn Group")
"""
Function : acornCategoryWisePlot
Definition: Function for plotting the Acorn Category wise distribution of the original data in a Line plot
Return:
"""
def acornCategoryWisePlot(df):
'''
df = pd.read_csv("London_full_data.csv", index_col=None) # for London dataset
df = df.drop("Unnamed: 0", axis=1)
# print(df1.head())
df = pd.DataFrame(df)
'''
df = df.set_index(df["time"])
acorn_data = pd.read_csv("acorn_df.csv") # for full dataset
acorn_data = acorn_data.reset_index()
acorn_data = acorn_data.rename(index=str, columns={"Unnamed: 0": "HouseholdID"})
# print(acorn_data.shape)
# print(acorn_data["Acorn group"].to_dict())
df4 = acorn_data.groupby('Acorn category')['HouseholdID'].agg(lambda x: list(x))
df4 = dict(df4)
# print("Length of acporn category"+ str(len(df4.keys())))
# Call function for Line Plot
plotAcorn(df,df4, "Acorn Category" )
# Call this function for box plot
AcornWiseBoxPlot(df,df4,"Acorn Category")
"""
Function : plotAcorn
Definition: Function for plotting the line plot for both Acorn group and Acorn Category wise distribution
of the original data .
Return:
"""
def plotAcorn(df,df1, label ):
df= pd.DataFrame(df)
count = 0
NUM_COLORS = len(df1.keys())
cm = plt.get_cmap('gist_rainbow')
fig, ax = plt.subplots()
#ax.set_prop_cycle(color= [cm(1. * i / NUM_COLORS) for i in range(NUM_COLORS)])
color= [cm(1. * i / NUM_COLORS) for i in range(NUM_COLORS)]
patchList = []
for i in df1.keys():
print("Meter IDs for "+ str(label)+ " "+str(i)+" are: ",df1[i])
df3 = df[df1[i]]
#print(df3.head(10))
df3.plot(ax=ax, label=i, c= color[count])
# plt.plot(df3, c=colors[count])
data_key = mpatches.Patch(label=str(label) +" "+ str(i) + " , Total instances: " + str(len(df3.columns)), color=(color[count]))
patchList.append(data_key)
plt.legend(handles=patchList)
plt.xticks(rotation=90)
# df3.plot(c=colors[count])
count = count + 1
plt.savefig("./Figs/"+ str(label)+" Wise Plot", dpi= 150)
plt.show()
"""
Function : AcornWiseBoxPlot
Definition: Function for plotting the Box plot for both Acorn group and Acorn Category wise distribution
of the original data . This plot shows the mean and median distribution of the data.
Return:
"""
def AcornWiseBoxPlot(df,df1, label ):
df3 = pd.DataFrame()
for i in df1.keys():
print(df1[i])
df2 = df[df1[i]]
print(df2.head(10))
df3[str(i)] = df2.mean(axis=1)
df3.boxplot()
plt.title(str(label)+" Wise Box Plot")
plt.xticks(rotation=90)
plt.savefig("./Figs/"+ str(label)+" Wise Box Plot", dpi= 150)
plt.show()
"""
Function : meterIDBoxPlot
Definition: Function for plotting the Box plot for all the meter ids of original data.
This plot shows the mean and median distribution of the data.
Return:
"""
def meterIDBoxPlot():
df = pd.read_csv("London_full_data.csv", index_col=None) # for London dataset
df = df.drop("Unnamed: 0", axis=1)
# print(df1.head())
df = pd.DataFrame(df)
df = df.set_index(df["time"])
for column in df.loc[2:]:
plt.figure()
df.boxplot(df[column])
plt.show()
# meterIDBoxPlot()
# acornCategoryWisePlot()
# acornWisePlot()