forked from faculerena/algebra1haskell
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathejsClase09.hs
89 lines (71 loc) · 2.48 KB
/
ejsClase09.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
diviPos :: Int -> Int -> (Int,Int)
diviPos a d | a < d = (0, a)
| otherwise = (fst q + 1, snd q)
where q = diviPos (a-d) d
diviNeg :: Int -> Int -> (Int,Int)
diviNeg a d | a < d && a >= 0 = (0, a)
| otherwise = ((fst q - 1), snd q)
where q = diviNeg (a+d) d
{-| esto esta bien pero habia que implementar todo en una sola funcion
divigeneral :: Int -> Int -> (Int,Int)
divigeneral a d | a > 0 = diviPos a d
| otherwise = diviNeg a d -}
divi :: Int -> Int -> (Int,Int) --asume d positivo
divi a d | a < d && a >= 0 = (0, a) --caso base
| a > 0 && d > 0 = (fst q1 + 1, snd q1)
| a < 0 && d < 0 = (abs (fst q3 + 1), snd q3)
| a > 0 && d < 0 = (-fst q4, snd q4)
| otherwise = (fst q2 - 1, snd q2)
where q1 = divi (a-d) d
q2 = divi (a+d) d
q3 = divi ((abs a) + (abs d)) d
q4 = divi a (-d)
mcdmod :: Int -> Int -> Int
mcdmod x 0 = x
mcdmod x y = mcdmod y (mod x y)
mcd :: Int -> Int -> Int
mcd x 0 = x
mcd x y = mcd y (snd(divi x y))
cocEntero :: Int -> Int -> Int
cocEntero n m = fst(divi n m)
resto :: Int -> Int -> Int
resto n m = snd(divi n m)
mcd2 :: Int -> Int -> Int --version lenta del mcd
mcd2 a 1 = 1
mcd2 1 b = 1
mcd2 _ 0 = 0
mcd2 0 _ = 0
mcd2 a b | menorDiv a == menorDiv b = (menorDiv a) * (mcd (div a (menorDiv a)) (div b (menorDiv b)))
| otherwise = mcd (div a (menorDiv a)) b
--funciones de otra clase-----------------------------------
menorDivDesde :: Int -> Int -> Int
menorDivDesde n m | mod n m == 0 = m
| otherwise = menorDivDesde n (m + 1)
menorDiv :: Int -> Int
menorDiv 1 = 1
menorDiv n = menorDivDesde n 2
fst3 (x, _, _) = x
snd3 (_, y, _) = y
trd3 (_, _, z) = z
-- ---------------------------------------------------------
{-
esta version usa div y mod y tarda abismalmente menos
emcdG :: Int -> Int -> (Int, Int, Int)
emcdG a 0 = (a, 1, 0)
emcdG a b = (g, s, t)
where (_, s',t') = emcdG b r
g = (s' * b) + (t' * r)
s = t'
t = s'- (t' * q)
q = div a b
r = mod a b
-}
emcd :: Int -> Int -> (Int, Int, Int)
emcd a 0 = (a, 1, 0)
emcd a b = (g, s, t)
where (_, s',t') = emcd b r
g = (s' * b) + (t' * r)
s = t'
t = s'- (t' * q)
q = cocEntero a b
r = resto a b