-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
61 lines (46 loc) · 1.77 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import pickle
from txtai import Embeddings
import numpy as np
from numpy import dot
from numpy.linalg import norm
import heapq
import ultraprint.common as p
from flask import Flask, request, jsonify
app = Flask(__name__)
embedding = Embeddings()
with open('data.pkl', 'rb') as file:
# Load the object
data = pickle.load(file)
with open('embedding.pkl', 'rb') as file:
# Load the object
embeddings = pickle.load(file)
def search(query_embedding, num_results):
#convert to numpy array of float16
query_embedding = np.array(query_embedding, dtype=np.float16)
cosine_similarity = lambda x, y: dot(x, y) / (norm(x) * norm(y))
# Calculate similarity
similarities = []
index_count = 0
for vector in embeddings:
similarity = cosine_similarity(query_embedding, vector)
# Use negative similarity because heapq is a min-heap
heapq.heappush(similarities, (similarity, index_count))
if len(similarities) > num_results:
heapq.heappop(similarities)
index_count += 1
#print(similarities)
#sort the results
similarities = sorted(similarities, reverse=True)
# add the result from books_batches
similarities = [{"Output":data.iloc[index].to_dict(), "Probability" :round(float(similarity), 3)} for similarity, index in similarities]
return similarities
@app.route('/search', methods=['POST'])
def post_request():
# Access JSON data from the request
data = request.get_json()
UserInput= data.get("query","")
NumResults= int(data.get("results",5))
user_embedding=embedding.transform(UserInput)
return jsonify(search(user_embedding,NumResults))
if __name__ == '__main__':
app.run(debug=True)