-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathwithout_fine_tuning.py
341 lines (259 loc) · 13.8 KB
/
without_fine_tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
############################# IMPORT LIBRARY #################################
seed=75
import numpy as np
from tensorflow import set_random_seed
import pandas as pd
import os
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import interp
from itertools import cycle
from xgboost import XGBClassifier
from collections import Counter
from sklearn.metrics import average_precision_score, precision_recall_curve, matthews_corrcoef, precision_score, recall_score, confusion_matrix, classification_report
from sklearn.metrics import f1_score, precision_score, auc, cohen_kappa_score, precision_recall_curve, log_loss, roc_curve, roc_auc_score, classification_report, accuracy_score
from sklearn.model_selection import GridSearchCV, LeaveOneOut, cross_val_score, cross_val_predict, StratifiedKFold, StratifiedShuffleSplit
from sklearn.metrics.classification import accuracy_score
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn import metrics
from sklearn.ensemble import RandomTreesEmbedding, RandomForestClassifier, GradientBoostingClassifier, VotingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC, LinearSVC
from sklearn.neural_network import MLPClassifier, BernoulliRBM
from sklearn import model_selection
from sklearn.decomposition import PCA, KernelPCA, SparsePCA, MiniBatchSparsePCA, NMF, TruncatedSVD, FastICA, FactorAnalysis, LatentDirichletAllocation
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import make_classification
from sklearn.multiclass import OneVsRestClassifier, OneVsOneClassifier
from sklearn.preprocessing import Normalizer, MinMaxScaler, StandardScaler, RobustScaler, LabelEncoder, label_binarize, QuantileTransformer
from sklearn.manifold import TSNE
from sklearn.feature_selection import SelectFromModel, SelectKBest, chi2, RFE, RFECV
from sklearn.pipeline import make_pipeline
from imblearn.over_sampling import RandomOverSampler, ADASYN, SMOTE
from imblearn.combine import SMOTEENN, SMOTETomek
from keras.initializers import RandomNormal
from keras.wrappers.scikit_learn import KerasClassifier
from keras.layers import Input, Dense
from keras.models import Model, load_model
from keras_adversarial import AdversarialOptimizerSimultaneous, normal_latent_sampling
from variational_autoencoder import *
from aae_architechture import *
from deep_autoencoder import *
from denoising_autoencoder import *
from shallow_autoencoder import *
matplotlib.use('Agg')
np.random.seed(seed)
####################### LOAD BREAST CANCER DATASET #######################
file_1 = pd.read_csv('./data/subtype_molecular_rna_seq.csv')
data = file_1.iloc[0:20439,2:607].values
X=data.T
file_2 = pd.read_csv('./data/subtype_molecular_rna_seq_label.csv', low_memory=False)
label= file_2.iloc[0,2:607].values
y=label.T
print('Actual dataset shape {}'.format(Counter(y)))
############################ LOAD UCEC DATA ###########################
'''
file_1 = pd.read_csv('./data/ucec_rna_seq.csv')
data = file_1.iloc[0:20482,2:232].values
X=data.T
file_2 = pd.read_csv('./data/ucec_rna_seq_label.csv', low_memory=False)
label = file_2.iloc[0,2:232].values #First row then column from dataset
y=label.T
print('Actual dataset shape {}'.format(Counter(y)))
'''
count=0
aaecount=0
classifiers = [
KNeighborsClassifier(3),
DecisionTreeClassifier(random_state=seed),
RandomForestClassifier(criterion='entropy', n_estimators=100, random_state=seed),
XGBClassifier(learning_rate=0.001,max_depth=4,n_estimators=100, nthread=1, subsample=0.65),
GradientBoostingClassifier(random_state=seed),
GaussianNB(),
LinearDiscriminantAnalysis(),
QuadraticDiscriminantAnalysis(),
SVC(kernel='rbf', probability=True, random_state=seed),
LogisticRegression(C=0.1, multi_class= 'multinomial', solver='sag', random_state=seed),
MLPClassifier(hidden_layer_sizes=(500), random_state=seed, verbose=True, activation='tanh', solver='adam', alpha=0.0001, batch_size='auto'),
VotingClassifier(estimators=[('MLP', MLPClassifier(hidden_layer_sizes=(500), random_state=seed, verbose=True, activation='tanh', solver='adam', alpha=0.0001, batch_size='auto')),
('LDA', LinearDiscriminantAnalysis()),
('LR', LogisticRegression(C=0.1, multi_class= 'multinomial', solver='sag', random_state=seed))], voting='soft')
]
log_cols=["Classifier", "Accuracy", "F1-Score", "Recall", "Precision", "AUC", "MCC", "Kappa", "Log-Loss"]
log = pd.DataFrame(columns=log_cols)
def zero_mix(x, n):
temp = np.copy(x)
noise=n
if 'spilt' in noise:
frac = float(noise.split('-')[1])
for i in temp:
n = np.random.choice(len(i), int(round(frac * len(i))), replace=False)
i[n] = 0
return (temp)
def gaussian_mix(x):
n = np.random.normal(0, 0.1, (len(x), len(x[0])))
return (x + n)
# The above two functions are used to add noise in the data
# And used to train denoising autoencoder
skf = StratifiedKFold(n_splits=5, shuffle=False, random_state=seed)
skf.get_n_splits(X, y)
print(skf)
for train_index, test_index in skf.split(X, y):
#print("TRAIN:", train_index, "TEST:", test_index)
x_train, x_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
#print("TRAIN:", x_train, "TEST:", x_test)
print('Dataset shape for Train {}'.format(Counter(y_train)))
print('Dataset shape for Test {}'.format(Counter(y_test)))
################################# OVER SAMPLING ###############################
sm = SMOTE(ratio=1, random_state=seed, kind='borderline1')
x_train, y_train = sm.fit_sample(x_train, y_train)
#oversample only traning data
'''
sm = SMOTEENN(ratio=1, random_state=seed)
x_train, y_train = sm.fit_sample(x_train, y_train)
'''
'''
sm = SMOTETomek(ratio=1, random_state=seed)
x_train, y_train = sm.fit_sample(x_train, y_train)
'''
'''
sm=RandomOverSampler(ratio=1, random_state=seed)
x_train, y_train = sm.fit_sample(x_train, y_train)
'''
'''
sm=ADASYN(ratio=1, random_state=seed, n_neighbors=5, n_jobs=1)
x_train, y_train = sm.fit_sample(x_train, y_train)
'''
print('Resampled dataset shape for Train {}'.format(Counter(y_train)))
print('Resampled dataset shape for Test {}'.format(Counter(y_test)))
#use this when train denoising autoencoder
#use either gaussian mix or zero mix
#x_train_noisy=zero_mix(x_train, 'spilt-0.05')
#x_test_noisy=zero_mix(x_test, 'spilt-0.05')
#x_train_noisy=gaussian_mix(x_train)
#x_test_noisy=gaussian_mix(x_test)
#n_samples, n_features = x_train.shape
############################# FEATURE SCALING/NORMALIZATION ##################
qt = QuantileTransformer(n_quantiles=10, random_state=seed)
qt.fit(x_train)
x_train=qt.transform(x_train)
x_test=qt.transform(x_test)
'''
# Standart Scaling
sc = StandardScaler()
sc.fit(x_train)
x_train=sc.transform(x_train)
x_test=sc.transform(x_test)
'''
###############################DIMENSION REDUCTION ############################
'''
pca = PCA(n_components=50, random_state=seed)
pca.fit(x_train, y_train)
x_train = pca.transform(x_train)
x_test = pca.transform(x_test)
print ('After PCA', x_train.shape)
'''
################ VARIOUS AUTOENCODERS ###############
aaecount= aaecount+1
aaenum=str(aaecount)
######### Shallow Autoencoder ############
'''
shallow_autoencoder_fit(x_train, x_test, encoding_dim=50, optimizer="adadelta",
loss_function="binary_crossentropy", nb_epoch=100,
batch_size=20, path='./feature_extraction/shallowAE/'+aaenum+'/')
#do not require fine tuning since this autoencoder does not have any hidden layer
shallow_autoencoder = load_model('./feature_extraction/shallowAE/'+aaenum+'/shallow_encoder'+'.h5')
x_train = shallow_autoencoder.predict(x_train)
print('X_Train Shape after ShallowAE :', x_train.shape)
x_test = shallow_autoencoder.predict(x_test)
print('X_Test Shape after ShallowAE :', x_train.shape)
'''
######### Denoising Autoencoder ############
'''
denoising_autoencoder_fit(x_train, x_test, x_train_noisy, x_test_noisy, encoding_dim=50, optimizer="adadelta",
loss_function="binary_crossentropy", nb_epoch=50,
batch_size=20, path='./feature_extraction/denoisingAE/'+aaenum+'/')
#after fiting the model once; it can be directly load from the saved folder hence you can comment out the above lines
#do not require fine tuning since this autoencoder does not have any hidden layer
denoising_autoencoder = load_model('./feature_extraction/denoisingAE/'+aaenum+'/denoising_encoder'+'.h5')
x_train = denoising_autoencoder.predict(x_train)
print('X_Train Shape after ShallowAE :', x_train.shape)
x_test = denoising_autoencoder.predict(x_test)
print('X_Test Shape after ShallowAE :', x_train.shape)
'''
######### Deep Autoencoder ##########
'''
deep_autoencoder_fit(x_train, x_test, encoding_dim=50, optimizer="adadelta",
loss_function="binary_crossentropy", nb_epoch=100,
batch_size=20, path='./feature_extraction/DeepAE/'+aaenum+'/')
####### don't need to use the following lines if autoencoder require fine tuning
deep_encoder = load_model('./feature_extraction/DeepAE/'+aaenum+'/deep_autoencoder'+'.h5')
x_train = deep_encoder.predict(x_train)
print('X_Train Shape after DeepAE :', x_train.shape)
x_test = deep_encoder.predict(x_test)
print('X_Test Shape after DeepAE :', x_test.shape)
'''
############## AAE ##############
'''
aae_model('./feature_extraction/AAE/'+aaenum+'/', AdversarialOptimizerSimultaneous(),
xtrain=x_train,ytrain=y_train, xtest=x_test, ytest=y_train, encoded_dim=50,img_dim=x_train.shape[1], nb_epoch=100)
####### don't need to use the following lines if autoencoder require fine tuning
model = load_model('./feature_extraction/AAE/'+aaenum+'/aae_encoder'+'.h5')
x_train = model.predict(x_train)
print('X_Train Shape after AAE :', x_train.shape)
x_test = model.predict(x_test)
print('X_Test Shape after AAE :', x_test.shape)
'''
################ Variational Autoencoder ####################
'''
vae_model_single('./feature_extraction/VAE/'+aaenum+'/',x_train.shape[1],
x_train,x_test,intermediate_dim=1000,batch_size=20,latent_dim=50,epochs=50)
'''
####### don't need to use the following lines if autoencoder require fine tuning
model = load_model('./feature_extraction/VAE/'+aaenum+'/vae_encoder'+'.h5')
x_train = model.predict(x_train)
print('X_Train Shape after VAE :', x_train.shape)
x_test = model.predict(x_test)
print('X_Test Shape after VAE :', x_test.shape)
######################## CLASSIFICATION ##########################
for clf in classifiers:
clf.fit(x_train, y_train)
name = clf.__class__.__name__
print("="*30)
print(name)
print('****Results****')
y_pred = clf.predict(x_test)
y_pred_proba = clf.predict_proba(x_test)
y_test_binarize = label_binarize(y_test, classes=[0,1,2,3])
acc = accuracy_score(y_test, y_pred)
print("Accuracy: {:.4%}".format(acc))
f1=f1_score(y_test, y_pred,average='weighted')
print("F1 Score Weighted: {:.4%}".format(f1))
rs=recall_score(y_test, y_pred, average='weighted')
print("Recall Score Weighted: {:.4%}".format(rs))
ps=precision_score(y_test, y_pred, average='weighted')
print("Precision Weighted: {:.4%}".format(ps))
auc=roc_auc_score(y_test_binarize,y_pred_proba, average='macro')
print("AUC Score: {:.4%}".format(auc))
mcc=matthews_corrcoef(y_test, y_pred)
print("MCC Score: {:.4%}".format(mcc))
kappa=cohen_kappa_score(y_test, y_pred, labels=None, weights=None, sample_weight=None)
print("Kappa: {:.4%}".format(kappa))
ll = log_loss(y_test, y_pred_proba)
print("Log Loss: {:.4%}".format(ll))
log_entry = pd.DataFrame([[name, acc, f1, rs, ps, auc, mcc, kappa, ll]], columns=log_cols)
log = log.append(log_entry)
print("="*30)
print (log)
################################################################################
print('###########################################')
result_temp = pd.DataFrame(log)
result_final=result_temp.groupby('Classifier').mean()
result_final.to_csv("./results/result.tsv", sep='\t')
print (result_final)
print('###########################################')
print('Result Saved Successfully')