Skip to content

Official repository for NeurIPS'23 paper "TriRE: A Multi-Mechanism Learning Paradigm for Continual Knowledge Retention and Promotion"

Notifications You must be signed in to change notification settings

NeurAI-Lab/TriRE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TriRE: A Multi-Mechanism Learning Paradigm for Continual Knowledge Retention and Promotion

The official repository for NeurIPS'23 paper. We extended the original repo DER++ with our method.

method_readme

How to run TriRE?

  • Use python main.py to run experiments.

  • For example, for dataset Seq-CIFAR100, run
    python main.py --dataset seq-cifar100 --model trire --buffer_size 200 --load_best_args --img_size 32 --tensorboard --reservoir_buffer --kwinner_sparsity 0.3 --pruning_technique CWI --sparsity 0.2 --lr_fl 0.002 --lr_sl 0.0001 --reset_act_counters --train_budget_1 0.6 --train_budget_2 0.2 --reparameterize --reinit_technique rewind --use_cl_mask --reg_weight 0.05 --stable_model_update_freq 0.1 --rewind_tuning_incl --use_het_drop

    where, kwinner_sparsity and sparsity represents the percentage of most activated neurons and corresponding most important weights to be retained at the end of Retain stage respectively.
    pruning_technique : {'CWI', 'Magnitude Pruning', 'Fisher Information'}
    lr_fl is the learning rate for Retain and Revise stages and lr_sl is the slowed learning rate for Revise stage.
    train_budget_1 and train_budget_2 are the percentages of epochs dedicated to Retain and Revise stages which also implicates that the rest of the epochs are used for Rewind stage.
    use_cl_mask indicates that the model is using a single head classifier.
    reinit_technique : {xavier, rewind}

Setup

  • Use argument --load_best_args to use the best hyperparameters from the paper.
  • New models can be added to the models/ folder.
  • New datasets can be added to the datasets/ folder.

Datasets

Class-Il / Task-IL settings

  • Seq-CIFAR10
  • Seq-CIFAR100
  • SeqTinyImageNet

Cite Our Work

If you find the code useful in your research, please consider citing our paper:

@article{vijayan2024trire,
  title={TriRE: A Multi-Mechanism Learning Paradigm for Continual Knowledge Retention and Promotion},
  author={Vijayan, Preetha and Bhat, Prashant and Zonooz, Bahram and Arani, Elahe},
  journal={Advances in Neural Information Processing Systems},
  volume={36},
  year={2024}
}   

About

Official repository for NeurIPS'23 paper "TriRE: A Multi-Mechanism Learning Paradigm for Continual Knowledge Retention and Promotion"

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages