-
Notifications
You must be signed in to change notification settings - Fork 3
/
train.py
472 lines (419 loc) · 23.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import tensorflow as tf
import numpy as np
import os
import time
import datetime
import data_helpers
from sklearn.metrics import precision_score, recall_score, f1_score
from LSTM_Model import LSTM
from Bi_LSTM_Model import BiLSTM
from Attention_LSTM_Model import attentionLSTM
from tensorflow.contrib import learn
from gensim.models.keyedvectors import KeyedVectors
import sklearn.metrics
import time
import csv
from multi_layer_LSTM_Model import multi_layer_LSTM
from Self_Attention_BiLSTM_Model import self_attention_BiLSTM
np.set_printoptions(threshold=np.inf)
# Parameters
# ==================================================
# Data loading params
tf.flags.DEFINE_float("dev_sample_percentage", .1, "Percentage of the training data to use for validation")
tf.flags.DEFINE_float("test_sample_percentage", .2, "Percentage of the training data to use for test")
tf.flags.DEFINE_string("train_sarcasm", "./dataset/train/train_sarcasm.txt", "Data source for the positive data.")
tf.flags.DEFINE_string("train_nonsarcasm", "./dataset/train/train_nonsarcasm.txt", "Data source for the negative data.")
tf.flags.DEFINE_string("dev_test_sarcasm", "./dataset/dev_test/dev_test_sarcasm.txt", "Data source for the positive data.")
tf.flags.DEFINE_string("dev_test_nonsarcasm", "./dataset/dev_test/dev_test_nonsarcasm.txt", "Data source for the negative data.")
#_split
tf.flags.DEFINE_string("positive_data_file", "./dataset/train/train_sarcasm.txt", "Data source for the positive data.")
tf.flags.DEFINE_string("negative_data_file", "./dataset/train/train_nonsarcasm.txt", "Data source for the negative data.")
#Model
tf.flags.DEFINE_string("model","highway_layer_cnn", "[highway_layer_cnn,cnn,gate_cnn,gate_cnn_nopadding,twolayerCNN,twolayerCNNnopooling,lstm,bilstm,attention-bilstm,muliti-layer-lstm,muliti-layer-Bilstm]")
#embedding
tf.flags.DEFINE_string("embedding","word2vec", "word2vec,glove")
# Model Hyperparameters
#tf.flags.DEFINE_integer("embedding_dim", 128, "Dimensionality of character embedding (default: 128)")
tf.flags.DEFINE_float("dropout_keep_prob", 1.0 , "Dropout keep probability (default: 0.5)")
tf.flags.DEFINE_float("l2_reg_lambda", 0.0, "L2 regularization lambda (default: 0.0)")
tf.flags.DEFINE_float("learning_rate", 0.0001, "learning_rate")
#CNN
tf.flags.DEFINE_integer("embedding_dim", 300, "Pretrain Word2vec (default: 300)")
tf.flags.DEFINE_string("filter_sizes", "1,2,3", "Comma-separated filter sizes (default: '3,4,5')")
tf.flags.DEFINE_integer("num_filters", 128, "Number of filters per filter size (default: 128)")
#LSTM
tf.flags.DEFINE_integer("hidden_sizes", 128, "Number of hidden sizes (default: 128)")
#num_layers
tf.flags.DEFINE_integer("num_layers", 2, "Number of hidden layers(default: 2)")
#self_attention
tf.flags.DEFINE_integer("d_a",100,"d_a")
tf.flags.DEFINE_integer("r",2,"how many different parts to be extracted from the sentence")
#tf.flags.DEFINE_integer("attention_size", 300, "ATTENTION_SIZE")
# Training parameters
tf.flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)")
tf.flags.DEFINE_integer("num_epochs", 200, "Number of training epochs (default: 200)")
tf.flags.DEFINE_integer("evaluate_every", 100, "Evaluate model on dev set after this many steps (default: 100)")
tf.flags.DEFINE_integer("checkpoint_every", 100, "Save model after this many steps (default: 100)")
tf.flags.DEFINE_integer("num_checkpoints", 5, "Number of checkpoints to store (default: 5)")
# Misc Parameters
tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")
tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")
FLAGS = tf.flags.FLAGS
FLAGS._parse_flags()
print("\nParameters:")
for attr, value in sorted(FLAGS.__flags.items()):
print("{}={}".format(attr.upper(), value))
print("")
x_text_train, y_train = data_helpers.load_data_and_labels(FLAGS.train_sarcasm, FLAGS.train_nonsarcasm)
x_text_dev_test, y_dev_test = data_helpers.load_data_and_labels(FLAGS.dev_test_sarcasm, FLAGS.dev_test_nonsarcasm)
x_text = x_text_train + x_text_dev_test
max_document_length = max([len(x.split(" ")) for x in x_text])
print ("max_document_length",max_document_length)
vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)
with open ("x_train.txt","w",encoding='utf-8') as f:
for i in x_text_train:
f.write(i + "\n")
with open ("x_dev_test.txt","w",encoding='utf-8') as f:
for i in x_text_dev_test:
f.write(i + "\n")
x_train = np.array(list(vocab_processor.fit_transform(x_text_train)))
print (x_train.shape)
x_dev_test = np.array(list(vocab_processor.fit_transform(x_text_dev_test)))
y_original = y_dev_test
# Randomly shuffle data
np.random.seed(10)
shuffle_indices_train = np.random.permutation(np.arange(len(y_train)))
np.random.seed(10)
shuffle_indices_dev_test = np.random.permutation(np.arange(len(y_dev_test)))
x_train = x_train[shuffle_indices_train]
y_train = y_train[shuffle_indices_train]
x_dev_test = x_dev_test[shuffle_indices_dev_test]
y_dev_test = y_dev_test[shuffle_indices_dev_test]
x_dev ,y_dev = x_dev_test[:600],y_dev_test[:600]
x_test ,y_test = x_dev_test[600:],y_dev_test[600:]
print("Vocabulary Size: {:d}".format(len(vocab_processor.vocabulary_)))
print("Train/Dev/Test split: {:d}/{:d}/{:d}".format(len(y_train), len(y_dev) ,len(y_test)))
########combine
# Training
# ==================================================
with tf.Graph().as_default():
session_conf = tf.ConfigProto(
allow_soft_placement=FLAGS.allow_soft_placement,
log_device_placement=FLAGS.log_device_placement)
sess = tf.Session(config=session_conf)
with sess.as_default():
np.random.seed(1)
tf.set_random_seed(2)
if FLAGS.model == "cnn":
from text_cnn import TextCNN
cnn = TextCNN(
sequence_length=x_train.shape[1],
num_classes=len(y_train[1]),
vocab_size=len(vocab_processor.vocabulary_),
embedding_size=FLAGS.embedding_dim,
filter_sizes=list(map(int, FLAGS.filter_sizes.split(","))),
num_filters=FLAGS.num_filters,
l2_reg_lambda=FLAGS.l2_reg_lambda,
learning_rate = FLAGS.learning_rate)
elif FLAGS.model == "gate_cnn":
from gated_cnn import GatedCNN
cnn = GatedCNN(
sequence_length=x_train.shape[1],
num_classes=len(y_train[1]),
vocab_size=len(vocab_processor.vocabulary_),
embedding_size=FLAGS.embedding_dim,
filter_sizes=list(map(int, FLAGS.filter_sizes.split(","))),
num_filters=FLAGS.num_filters,
l2_reg_lambda=FLAGS.l2_reg_lambda,
learning_rate = FLAGS.learning_rate)
elif FLAGS.model == "gate_cnn_nopadding":
from gated_cnn_nopadding import GatedCNN_nopadding
cnn = GatedCNN_nopadding(
sequence_length=x_train.shape[1],
num_classes=len(y_train[1]),
vocab_size=len(vocab_processor.vocabulary_),
embedding_size=FLAGS.embedding_dim,
filter_sizes=list(map(int, FLAGS.filter_sizes.split(","))),
num_filters=FLAGS.num_filters,
l2_reg_lambda=FLAGS.l2_reg_lambda,
learning_rate = FLAGS.learning_rate)
elif FLAGS.model == "twolayerCNN_nopooling":
from twolayerCNN_nopooling import twolayerCNN_no_pooling
cnn = twolayerCNN_no_pooling(
sequence_length=x_train.shape[1],
num_classes=len(y_train[1]),
vocab_size=len(vocab_processor.vocabulary_),
embedding_size=FLAGS.embedding_dim,
filter_sizes=list(map(int, FLAGS.filter_sizes.split(","))),
num_filters=FLAGS.num_filters,
l2_reg_lambda=FLAGS.l2_reg_lambda,
learning_rate = FLAGS.learning_rate)
elif FLAGS.model == "twolayerCNN":
from twolayerCNN import twolayerCNN
cnn = twolayerCNN(
sequence_length=x_train.shape[1],
num_classes=len(y_train[1]),
vocab_size=len(vocab_processor.vocabulary_),
embedding_size=FLAGS.embedding_dim,
filter_sizes=list(map(int, FLAGS.filter_sizes.split(","))),
num_filters=FLAGS.num_filters,
l2_reg_lambda=FLAGS.l2_reg_lambda,
learning_rate = FLAGS.learning_rate)
elif FLAGS.model == "muliti-layer-Bilstm":
from multi_layer_Bi_LSTM_Model import multi_layer_BiLSTM
cnn = multi_layer_BiLSTM(
input_embedding_size = FLAGS.embedding_dim,
sequence_length = x_train.shape[1],
#hidden_size = FLAGS.num_filters * len(list(map(int, FLAGS.filter_sizes.split(",")))),
hidden_size=FLAGS.hidden_sizes,
output_size = y_train.shape[1],
vocab_size = len(vocab_processor.vocabulary_),
learning_rate = FLAGS.learning_rate,
num_layers = FLAGS.num_layers
)
elif FLAGS.model == "muliti-layer-lstm":
cnn = multi_layer_LSTM(
input_embedding_size = FLAGS.embedding_dim,
sequence_length = x_train.shape[1],
#hidden_size = FLAGS.num_filters * len(list(map(int, FLAGS.filter_sizes.split(",")))),
hidden_size=FLAGS.hidden_sizes,
output_size = y_train.shape[1],
vocab_size = len(vocab_processor.vocabulary_),
learning_rate = FLAGS.learning_rate,
num_layers = FLAGS.num_layers)
elif FLAGS.model == "attention-bilstm":
from Attention_BiLSTM_Model import attentionBiLSTM
cnn = attentionBiLSTM(
input_embedding_size = FLAGS.embedding_dim,
sequence_length = x_train.shape[1],
#hidden_size = FLAGS.num_filters * len(list(map(int, FLAGS.filter_sizes.split(",")))),
hidden_size=FLAGS.hidden_sizes,
output_size = y_train.shape[1],
vocab_size = len(vocab_processor.vocabulary_),
learning_rate = FLAGS.learning_rate,
ATTENTION_SIZE = max_document_length)
elif FLAGS.model == "self_attention_BiLSTM":
cnn = self_attention_BiLSTM(
input_embedding_size=FLAGS.embedding_dim,
sequence_length=x_train.shape[1],
# hidden_size = FLAGS.num_filters * len(list(map(int, FLAGS.filter_sizes.split(",")))),
hidden_size=FLAGS.hidden_sizes,
output_size=y_train.shape[1],
vocab_size=len(vocab_processor.vocabulary_),
learning_rate=FLAGS.learning_rate,
d_a = FLAGS.d_a,
r = FLAGS.r)
elif FLAGS.model == "highway_layer_cnn":
from highway_layer_cnn import hightway_CNN
cnn = hightway_CNN(
sequence_length=x_train.shape[1],
num_classes=len(y_train[1]),
vocab_size=len(vocab_processor.vocabulary_),
embedding_size=FLAGS.embedding_dim,
filter_sizes=list(map(int, FLAGS.filter_sizes.split(","))),
num_filters=FLAGS.num_filters,
l2_reg_lambda=FLAGS.l2_reg_lambda,
learning_rate = FLAGS.learning_rate)
# Define Training procedure
global_step = tf.Variable(0, name="global_step", trainable=False)
optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate)
#optimizer = tf.train.MomentumOptimizer(FLAGS.learning_rate,0.99)
grads_and_vars = optimizer.compute_gradients(cnn.loss)
train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step)
# Output directory for models and summaries
timestamp = str(int(time.time()))
out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp))
print("Writing to {}\n".format(out_dir))
# Summaries for loss and accuracy
loss_summary = tf.summary.scalar("loss", cnn.loss)
acc_summary = tf.summary.scalar("accuracy", cnn.accuracy)
# Train Summaries
train_summary_op = tf.summary.merge([loss_summary, acc_summary])
train_summary_dir = os.path.join(out_dir, "summaries", "train")
train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)
# Dev summaries
dev_summary_op = tf.summary.merge([loss_summary, acc_summary])
dev_summary_dir = os.path.join(out_dir, "summaries", "dev")
dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph)
# Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it
checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
checkpoint_prefix = os.path.join(checkpoint_dir, "model")
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints)
# Write vocabulary
vocab_processor.save(os.path.join(out_dir, "vocab"))
#load pre-train word2vec 300d
print("Start Loading Embedding!")
if FLAGS.embedding == "word2vec":
word2vec = KeyedVectors.load_word2vec_format('GoogleNews-vectors-negative300.bin', binary=True)
#load pre-train glove 200d
elif FLAGS.embedding == "glove":
word2vec = KeyedVectors.load_word2vec_format('glove.twitter.27B.200d.bin', binary=True)
print("Finish Loading Embedding!")
my_embedding_matrix = np.zeros(shape=(len(vocab_processor.vocabulary_), FLAGS.embedding_dim))
for word in vocab_processor.vocabulary_._mapping:
id = vocab_processor.vocabulary_._mapping[word]
if word in word2vec.vocab:
my_embedding_matrix[id] = word2vec[word]
else:
my_embedding_matrix[id] = np.random.uniform(low=-0.0001, high=0.0001, size=FLAGS.embedding_dim)
W = tf.placeholder(tf.float32, [None, None], name="pretrained_embeddings")
set_x = cnn.W.assign(my_embedding_matrix)
sess.run(set_x, feed_dict={W: my_embedding_matrix})
print("Finish transfer")
def train_step(x_batch, y_batch):
"""
A single training step
"""
feed_dict = {
cnn.input_x: x_batch,
cnn.input_y: y_batch,
cnn.dropout_keep_prob: FLAGS.dropout_keep_prob
}
_, step, summaries, loss, accuracy, predictions,y_actual = sess.run(
[train_op, global_step, train_summary_op, cnn.loss, cnn.accuracy, cnn.predictions,cnn.y],
feed_dict)
time_str = datetime.datetime.now().isoformat()
# print("train_f1_score:", f1_score(y_actual, predictions, average=None))
# print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
return accuracy
train_summary_writer.add_summary(summaries, step)
def dev_step(x_batch, y_batch, writer=None):
"""
Evaluates model on a dev set
"""
feed_dict = {
cnn.input_x: x_batch,
cnn.input_y: y_batch,
cnn.dropout_keep_prob: 1.0
}
step, summaries, loss, accuracy ,predictions,y_actual= sess.run(
[global_step, dev_summary_op, cnn.loss, cnn.accuracy, cnn.predictions,cnn.y],
feed_dict)
time_str = datetime.datetime.now().isoformat()
#print ("predictions",predictions)
f1 = f1_score(y_actual, predictions, average=None)
precision = precision_score(y_actual, predictions, average=None)
recall = recall_score(y_actual, predictions, average=None)
dev_result = {
"dev_f1_score_sarcasm": f1[1],
"dev_precision_sarcasm": precision[1],
"dev_recall_sarcasm": recall[1],
"dev_f1_score_nonsarcasm":f1[0],
"dev_precision_nonsarcasm": precision[0],
"dev_recall_nonsarcasm":recall[0]
}
print (dev_result)
print(sklearn.metrics.confusion_matrix(y_actual, predictions))
if writer:
writer.add_summary(summaries, step)
return (accuracy,predictions,f1[1],dev_result)
def test_step(x_batch, y_batch, writer=None):
"""
Evaluates model on a test set
"""
feed_dict = {
cnn.input_x: x_batch,
cnn.input_y: y_batch,
cnn.dropout_keep_prob: 1.0
}
step, summaries, loss, accuracy ,predictions,y_actual= sess.run(
[global_step, dev_summary_op, cnn.loss, cnn.accuracy , cnn.predictions,cnn.y],
feed_dict)
#time_str = datetime.datetime.now().isoformat()
f1 = f1_score(y_actual, predictions, average=None)
precision = precision_score(y_actual, predictions, average=None)
recall = recall_score(y_actual, predictions, average=None)
test_result = {
"test_f1_score_sarcasm": f1[1],
"test_precision_sarcasm": precision[1],
"test_recall_sarcasm": recall[1],
"test_f1_score_nonsarcasm":f1[0],
"test_precision_nonsarcasm": precision[0],
"test_recall_nonsarcasm":recall[0]
}
print (test_result)
print(sklearn.metrics.confusion_matrix(y_actual, predictions))
return test_result
# if writer:
# writer.add_summary(summaries, step)
if __name__ == "__main__":
# Save the maximum accuracy value for validation data
sess.run(tf.global_variables_initializer())
max_result = {
"max_f1_dev_sarcasm": "0.",
"max_precision_dev_sarcasm": "0.",
"max_recall_dev_sarcasm": "0.",
"max_f1_test_sarcasm": "0.",
"max_precision_test_sarcasm": "0.",
"max_recall_test_sarcasm": "0.",
"max_f1_dev_nonsarcasm": "0.",
"max_precision_dev_nonsarcasm": "0.",
"max_recall_dev_nonsarcasm": "0.",
"max_f1_test_nonsarcasm": "0.",
"max_precision_test_nonsarcasm": "0.",
"max_recall_test_nonsarcasm": "0.",
"max_epoch": "0"
}
converge_epoch = 0
for epoch in range(FLAGS.num_epochs):
time_start = time.time()
epochs = data_helpers.epochs_iter(list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)
for batch in epochs:
x_batch , y_batch = zip(*batch)
train_accuracy = train_step(x_batch , y_batch)
if train_accuracy == 1 and converge_epoch == 0:
converge_epoch = epoch
print ("\nConverge_epoch:",epoch)
current_step = tf.train.global_step(sess, global_step)
print("\nEvaluation:")
print("Epoch: %03d" % (epoch))
dev_accuracy, dev_predictions,dev_f1,dev_result = dev_step(x_dev, y_dev, writer=dev_summary_writer)
if dev_f1 > float(max_result["max_f1_dev_sarcasm"]):
test_result = test_step(x_test, y_test, writer=dev_summary_writer)
#dev
max_result["max_f1_dev_sarcasm"] = dev_result["dev_f1_score_sarcasm"]
max_result["max_precision_dev_sarcasm"] = dev_result["dev_precision_sarcasm"]
max_result["max_recall_dev_sarcasm"] = dev_result["dev_recall_sarcasm"]
max_result["max_f1_dev_nonsarcasm"] = dev_result["dev_f1_score_nonsarcasm"]
max_result["max_precision_dev_nonsarcasm"] = dev_result["dev_precision_nonsarcasm"]
max_result["max_recall_dev_nonsarcasm"] = dev_result["dev_recall_nonsarcasm"]
#test
max_result["max_f1_test_sarcasm"] = test_result["test_f1_score_sarcasm"]
max_result["max_precision_test_sarcasm"] = test_result["test_precision_sarcasm"]
max_result["max_recall_test_sarcasm"] = test_result["test_recall_sarcasm"]
max_result["max_f1_test_nonsarcasm"] = test_result["test_f1_score_nonsarcasm"]
max_result["max_precision_test_nonsarcasm"] = test_result["test_precision_nonsarcasm"]
max_result["max_recall_test_nonsarcasm"] = test_result["test_recall_nonsarcasm"]
max_result["max_epoch"] = epoch
path = saver.save(sess, checkpoint_prefix, global_step=current_step)
print("max_f1_dev %f" %max_result["max_f1_dev_sarcasm"])
time_end = time.time()
print ("time in one epoch",time_end-time_start)
if (epoch - max_result["max_epoch"]) > 5:
break
with open("result.csv", "a", encoding='utf8', newline='') as c:
writer = csv.writer(c)
if FLAGS.model == "cnn" or FLAGS.model == "twolayerCNN" or FLAGS.model == "highway_layer_cnn":
writer.writerow([FLAGS.model, FLAGS.num_filters, FLAGS.filter_sizes, FLAGS.dropout_keep_prob
,FLAGS.batch_size,FLAGS.learning_rate,FLAGS.l2_reg_lambda,
max_result["max_f1_dev_sarcasm"] , max_result["max_precision_dev_sarcasm"] ,
max_result["max_recall_dev_sarcasm"] , max_result["max_f1_dev_nonsarcasm"] ,
max_result["max_precision_dev_nonsarcasm"] , max_result["max_recall_dev_sarcasm"],
max_result["max_f1_test_sarcasm"] , max_result["max_precision_test_sarcasm"] ,
max_result["max_recall_test_sarcasm"], max_result["max_f1_test_nonsarcasm"] ,
max_result["max_precision_test_nonsarcasm"] , max_result["max_recall_test_sarcasm"],
max_result["max_epoch"],converge_epoch
])
else:
writer.writerow([FLAGS.model, FLAGS.hidden_sizes, FLAGS.num_layers, FLAGS.dropout_keep_prob,
FLAGS.batch_size, FLAGS.learning_rate, FLAGS.l2_reg_lambda,
max_result["max_f1_dev_sarcasm"] , max_result["max_precision_dev_sarcasm"] ,
max_result["max_recall_dev_sarcasm"], max_result["max_f1_dev_nonsarcasm"],
max_result["max_precision_dev_nonsarcasm"],max_result["max_recall_dev_sarcasm"],
max_result["max_f1_test_sarcasm"],max_result["max_precision_test_sarcasm"],
max_result["max_recall_test_sarcasm"],max_result["max_f1_test_nonsarcasm"],
max_result["max_precision_test_nonsarcasm"],max_result["max_recall_test_sarcasm"],
max_result["max_epoch"],converge_epoch
])