-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathDocClassifier.py
272 lines (231 loc) · 10.3 KB
/
DocClassifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
#! /usr/bin/env python
from __future__ import print_function # requires print() format
import logging
import numpy as np
from optparse import OptionParser
import sys
from time import time
import matplotlib.pyplot as plt
import os, sys
from pysam import FastaFile
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.feature_selection import SelectKBest, chi2
from sklearn.linear_model import RidgeClassifier
from sklearn.pipeline import Pipeline
from sklearn.svm import LinearSVC
from sklearn.linear_model import SGDClassifier
from sklearn.linear_model import Perceptron
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.naive_bayes import BernoulliNB, MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neighbors import NearestCentroid
from sklearn.ensemble import RandomForestClassifier
from sklearn.utils.extmath import density
from sklearn import metrics
from sklearn.cross_validation import train_test_split
# Labels
PROMOTER = 0 #'promoter'
ENHANCER = 1 #'enhancer'
def trim(s):
"""Trim string to fit on terminal (assuming 80-column display)"""
return s if len(s) <= 80 else s[:77] + "..."
def size_mb(docs):
return sum(len(s.encode('utf-8')) for s in docs) / 1e6
class DocClassifier(object):
max_region_size = 1000
def iter_peaks_and_labels(self, fname):
with open(fname) as fp:
for line in fp:
data = line.split()
yield (data[0], int(data[1]), int(data[2])), data[3] # returns region and its label: ('chrY', 20575266, 20576266), 'promoter'/'enhancer'
return
def extractDataPointRegionStringAndLabel(self, directory, genome):
''' Returns a list of data points in form of an array of dna strings and an array of labels for each datapoint'''
dataFiles = os.listdir(directory)
files = []
for s in dataFiles:
if ".bed" in s:
files.append(s)
print("Input DataFiles: ", files)
regions = []
labels = []
#### TODO: UNCOMMENT EXTERNAL FOLLOWING LOOP TO RUN OVER ALL FILES (Takes longer)
#for i in files:
#print ("Using training file: ", filename)
inputTestFile = directory+files[0]
print ("Using test file: ", inputTestFile, " Use full dataDirectory for complete training")
for region, label in self.iter_peaks_and_labels(inputTestFile):#sys.argv[1]):
# create a new region exactly max_region_size basepairs long centered on
# region
expanded_start = region[1] + (region[2] - region[1])/2 - self.max_region_size/2
expanded_stop = expanded_start + self.max_region_size
#region = (region[0], expanded_start, expanded_stop)
#print "Region: ", region, " Label: ", label
#allRegions.append(Region(region, genome.fetch(*region), label))
#dataPoints.append((genome.fetch(*region), label))
regions.append(genome.fetch(*region))
if label == 'promoter': # = 1
labels.append(1)
elif label == 'enhancer':
labels.append(0)
else:
print ("Wrong label: ", label)
sys.exit(-1)
return regions, labels
###############################################################################
# Benchmark classifiers
def benchmark(self, clf):
print('_' * 80)
print("Training: ")
print(clf)
t0 = time()
clf.fit(X_train, y_train)
train_time = time() - t0
print("train time: %0.3fs" % train_time)
t0 = time()
pred = clf.predict(X_test)
test_time = time() - t0
print("test time: %0.3fs" % test_time)
score = metrics.accuracy_score(y_test, pred)
print("accuracy: %0.3f" % score)
if hasattr(clf, 'coef_'):
print("dimensionality: %d" % clf.coef_.shape[1])
print("density: %f" % density(clf.coef_))
if opts.print_top10 and feature_names is not None:
print("top 10 keywords per class:")
for i, category in enumerate(categories):
top10 = np.argsort(clf.coef_[i])[-10:]
print(trim("%s: %s"
% (category, " ".join(feature_names[top10]))))
print()
if opts.print_report:
print("classification report:")
print(metrics.classification_report(y_test, pred,
target_names=categories))
if opts.print_cm:
print("confusion matrix:")
print(metrics.confusion_matrix(y_test, pred))
print()
clf_descr = str(clf).split('(')[0]
return clf_descr, score, train_time, test_time
if __name__ == '__main__':
c = DocClassifier()
# Display progress logs on stdout
logging.basicConfig(level=logging.INFO,
format='%(asctime)s %(levelname)s %(message)s')
# parse commandline arguments
op = OptionParser()
op.add_option("--report",
action="store_true", dest="print_report",
help="Print a detailed classification report.")
op.add_option("--chi2_select",
action="store", type="int", dest="select_chi2",
help="Select some number of features using a chi-squared test")
op.add_option("--confusion_matrix",
action="store_true", dest="print_cm",
help="Print the confusion matrix.")
op.add_option("--top10",
action="store_true", dest="print_top10",
help="Print ten most discriminative terms per class"
" for every classifier.")
op.add_option("--all_categories",
action="store_true", dest="all_categories",
help="Whether to use all categories or not.")
op.add_option("--use_hashing",
action="store_true",
help="Use a hashing vectorizer.")
op.add_option("--n_features",
action="store", type=int, default=2 ** 16,
help="n_features when using the hashing vectorizer.")
op.add_option("--filtered",
action="store_true",
help="Remove newsgroup information that is easily overfit: "
"headers, signatures, and quoting.")
(opts, args) = op.parse_args()
if len(args) > 0:
op.error("this script takes no arguments.")
sys.exit(1)
print(__doc__)
op.print_help()
print()
###############################################################################
# Load data
genomeDirectory = './genome/'
dataDirectory = './train_data/' #dataFiles = ['E114.bed', 'E116.bed']#, 'E117.bed', 'E118.bed', 'E119.bed']#, 'E120.bed', 'E121.bed', 'E122.bed', 'E123.bed', 'E124.bed', 'E126.bed', 'E127.bed', 'E128.bed', 'E129.bed']
genome = FastaFile("./genome/GRCh38.genome.fa")
regions, labels = c.extractDataPointRegionStringAndLabel(dataDirectory, genome)
# split a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(regions, labels, test_size=0.33, random_state=42)
print ("Registered ", len(regions)," regions and ", len(labels), " labels")
# test_df = pd.DataFrame({'region' : regions, 'label' : labels}, columns=["region", "label"])
# train_df = pd.DataFrame({'region' : regions, 'label' : labels}, columns=["region", "label"])
# train_df.describe()
# print "Unique region values: ", train_df.region.nunique()
categories = set(labels) #train_df.region.nunique() #data_train.target_names # for case categories == None
print('Data loaded. Categories: %s', categories)
data_train_size_mb = size_mb(X_train)
data_test_size_mb = size_mb(X_test)
print("%d documents train " % len(X_train))
print("%d documents test " % len(X_test))
print("%d categories train " % len(y_train))
print("%d categories test " % len(y_test))
print("Extracting features from the training data using a sparse vectorizer")
t0 = time()
if opts.use_hashing:
vectorizer = HashingVectorizer(stop_words='english', non_negative=True,
n_features=opts.n_features)
X_train = vectorizer.transform(X_train)
else:
vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5,
stop_words='english')
X_train = vectorizer.fit_transform(X_train)
duration = time() - t0
print("done in %fs at %0.3fMB/s" % (duration, data_train_size_mb / duration))
print("n_samples: %d, n_features: %d" % X_train.shape)
print()
print("Extracting features from the test data using the same vectorizer")
t0 = time()
X_test = vectorizer.transform(X_test)
duration = time() - t0
print("done in %fs at %0.3fMB/s" % (duration, data_test_size_mb / duration))
print("n_samples: %d, n_features: %d" % X_test.shape)
print()
# mapping from integer feature name to original token string
if opts.use_hashing:
feature_names = None
else:
feature_names = vectorizer.get_feature_names()
#print ("feature_names: ",feature_names)
if opts.select_chi2:
print("Extracting %d best features by a chi-squared test" % opts.select_chi2)
t0 = time()
ch2 = SelectKBest(chi2, k=opts.select_chi2)
X_train = ch2.fit_transform(X_train, y_train)
X_test = ch2.transform(X_test)
if feature_names:
# keep selected feature names
feature_names = [feature_names[i] for i
in ch2.get_support(indices=True)]
print("done in %fs" % (time() - t0))
if feature_names:
feature_names = np.asarray(feature_names)
print ("Feature names: ", feature_names)
results = []
for clf, name in (
(RidgeClassifier(tol=1e-2, solver="lsqr"), "Ridge Classifier"),
(Perceptron(n_iter=50), "Perceptron"),
(PassiveAggressiveClassifier(n_iter=50), "Passive-Aggressive"),
(KNeighborsClassifier(n_neighbors=10), "kNN"),
(RandomForestClassifier(n_estimators=100), "Random forest")): # criterion='gini' for the Gini impurity and 'entropy' for the information gain
print('=' * 80)
print(name)
results.append(c.benchmark(clf))
indices = np.arange(len(results))
results = [[x[i] for x in results] for i in range(4)]
clf_names, score, training_time, test_time = results
training_time = np.array(training_time) / np.max(training_time)
test_time = np.array(test_time) / np.max(test_time)
print ("training times: ", training_time)
print ("test_times: ", test_time)