-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLesson10(PrimeAndCompositeNumbers)-MinPerimeterRectangle.cpp
52 lines (46 loc) · 1.74 KB
/
Lesson10(PrimeAndCompositeNumbers)-MinPerimeterRectangle.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
// 2. MinPerimeterRectangle.
/**
* An integer N is given, representing the area of some rectangle.
* The area of a rectangle whose sides are of length A and B is A * B, and the perimeter is 2 * (A + B).
* The goal is to find the minimal perimeter of any rectangle whose area equals N.
* The sides of this rectangle should be only integers.
*
* For example, given integer N = 30, rectangles of area 30 are:
* • (1, 30), with a perimeter of 62,
* • (2, 15), with a perimeter of 34,
* • (3, 10), with a perimeter of 26,
* • (5, 6), with a perimeter of 22.
*
* Write a function:
* class Solution { public int solution(int N); }
* that, given an integer N, returns the minimal perimeter of any rectangle whose area is exactly equal to N.
*
* For example, given an integer N = 30, the function should return 22, as explained above.
*
* Write an efficient algorithm for the following assumptions:
* • N is an integer within the range [1..1,000,000,000].
*/
#include <cmath>
#include <limits>
#include <algorithm>
int minPerimeterRectangle(int N)
{
int squareRootN = (int)std::sqrt(N),
side = 0,
perimeter = 0,
minPerimeter = std::numeric_limits<int>::max();
if (std::pow(squareRootN, 2) != N) {
squareRootN++; // Round up for all non-perfect squares.
} else {
// Calculate and set the minimum perimeter since the loop won't reach a perfect square root.
minPerimeter = 2 * (squareRootN + squareRootN);
}
for (int i = 1; i < squareRootN; ++i) {
if (!(N % i)) {
side = N / i;
perimeter = 2 * (side + i);
minPerimeter = std::min(perimeter, minPerimeter);
}
}
return minPerimeter;
}