每個向量/矩陣運算功能有一個測資文字檔Vx.txt / Mx.txt 以向量為例
4 // 檔案中包含的向量個數
V // 代表接下來的是向量(矩陣以M為代表)
3 // 向量維度
1 5 6 // 向量數值
V
3
2 4 10
V
3
5 4 -1
V
3
4 9 3
- 在TestData資料夾中有Vector和Matrix計算測資
- Vector包含V1-V16個運算數值,運算題目與答案請看解答.txt
- Matrix包含M1-M12個運算數值,運算題目與答案請看解答.txt
- 欲確認對於大維度的測資的正確性,可使用Notepad++的文件比對工具,詳參考下列網站 http://www.moonlit.me/%E9%96%8B%E5%95%9Fnotepad%E6%96%87%E4%BB%B6%E6%AF%94%E5%B0%8D%E5%B7%A5%E5%85%B7-346.html
struct Vector
{
std::string Name;
std::vector<double> Data;
}
int main()
{
Vector v;
v.Data[0] = 1;
}
struct Matrix
{
//變數名稱:輸入指令時使用
std::string Name;
//儲存向量資料
std::vector<std::vector<double>> Data;
}
int main()
{
Matrix m;
m.Data[0][0] = 1; //[Row][Column]
}
struct Vector
{
std::string Name;
std::vector<double> Data;
Vector& operator+(const Vector& v)
{
//Do something here
return *this;
}
}
- Dot of Vector (1%)
- Vector addition (1%)
- Scalar Multiplication with vector (1%) (若vector只有一個元素時,就是Scalar)
- Norm of Vector (2%)
- Vector normalization (2%)
- Cross product (2%)
- Component of a on b (2%)
- Projection of a on b (2%)
- Triangle area (2%)
- Parallel judgement (2%)
- Orthogonal judgement (3%)
- The angle between two vectors(degree) (5%)
- The plane normal that is produced by two vectors (5%)
- Linear independent judgement (10%)
- Use Gram-schmidt to find orthonormal basis (5%)
- Matrix addition & subtraction (2%)
- Matrix Multiplication (2%)
- Rank of Matrix (5%)
- Matrix Transpose (2%)
- Solve Linear System (10%)
- Determinants of Matrix (3%)
- Inverse Matrix (6%)
- Adjoint of Matrix (4%)
- Eigen Vector and Eigen Value (10%) (all eigen vector and eigen value)
- Power Method of Eigen value (10%)
- Method of Least Square (6%)