-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval_prg.py
93 lines (77 loc) · 3.55 KB
/
eval_prg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import os
import torch
import torch.nn as nn
from models.nets.net import *
from utils import net_builder
from datasets.ssl_dataset import SSL_Dataset
from datasets.data_utils import get_data_loader
from train_utils import GM
from sklearn.metrics import *
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--load_path', type=str, default='./saved_models/prg/model_best.pth')
parser.add_argument('--use_train_model', action='store_true')
'''
Backbone Net Configurations
'''
parser.add_argument('--net', type=str, default='wrn',
help='use {wrn,resnet18,preresnet,cnn13} for {Wide ResNet,ResNet-18,PreAct ResNet,CNN-13}')
parser.add_argument('--depth', type=int, default=28)
parser.add_argument('--widen_factor', type=int, default=2)
parser.add_argument('--leaky_slope', type=float, default=0.1)
parser.add_argument('--dropout', type=float, default=0.0)
'''
Data Configurations
'''
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--data_dir', type=str, default='./data')
parser.add_argument('--dataset', type=str, default='cifar10')
parser.add_argument('--num_classes', type=int, default=10)
args = parser.parse_args()
checkpoint_path = os.path.join(args.load_path)
checkpoint = torch.load(checkpoint_path, map_location=torch.device('cpu'))
load_model = checkpoint['train_model'] if args.use_train_model else checkpoint['eval_model']
_net_builder = net_builder(args.net,
{'depth': args.depth,
'widen_factor': args.widen_factor,
'leaky_slope': args.leaky_slope,
'dropRate': args.dropout})
eval_model = _net_builder(args.num_classes)
eval_model.load_state_dict(load_model,strict=True)
if torch.cuda.is_available():
eval_model.cuda()
eval_model.eval()
if args.dataset=='miniimage':
from datasets_mini.miniimage import get_val_loader
eval_loader, eval_dset= get_val_loader(dataset=args.dataset, batch_size=args.batch_size, num_workers=1, root=args.data_dir)
else:
_eval_dset = SSL_Dataset(name=args.dataset, train=False, data_dir=args.data_dir)
eval_dset = _eval_dset.get_dset()
eval_loader = get_data_loader(eval_dset,
args.batch_size,
num_workers=1)
num_classes = args.num_classes
total_loss = 0.0
total_acc = 0.0
total_num = 0.0
y_true = []
y_pred = []
with torch.no_grad():
for x, y in eval_loader:
y = y.long()
x, y = x.cuda(), y.cuda()
num_batch = x.shape[0]
total_num += num_batch
logits = eval_model(x)
max_probs, max_idx = torch.max(torch.softmax(logits, dim=-1), dim=-1)
max_probs_sort, idx_sort = torch.sort(logits, descending=True)
acc = torch.sum(max_idx == y)
total_acc += acc.detach()
y_true.extend(y.cpu().tolist())
y_pred.extend(max_idx.cpu().tolist())
report = classification_report(y_true, y_pred, zero_division=1)
precision = precision_score(y_true, y_pred, average='macro', zero_division=1)
recall = recall_score(y_true, y_pred, average='macro')
gm = GM(y_pred, y_true)
print(f"Test Accuracy: {total_acc/len(eval_dset)}, Precision: {precision}, Recall: {recall}, GM: {gm}\nReport: {report}")